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Abstract. The piecewise linear (“multilinear”) approximatioaf realistic force-deformation
capacity curves is investigated for structural eys$ incorporating generalized plastic, hard-
ening, and negative stiffness behaviors. This§tprocess factually links capacity and de-
mand and lies at the core of nonlinear static assest procedures. Despite codification, the
various fitting rules used can produce highly hetgmeous results for the same capacity
curve, especially for the highly-curved backboresutting from the gradual plasticization or
the progressive failures of structural elements.athieve an improved fit, the error intro-
duced by the approximation is quantified by stuglytrat the single-degree-of-freedom level,
thus avoiding any issues related to multi- versagle-degree-of-freedom realizations. In-
cremental Dynamic Analysis is employed to enabdirect comparison of the actual back-
bones versus their candidate piecewise linear axiprations in terms of the spectral
acceleration capacity for a continuum of limit-&st In all cases, current code-based proce-
dures are found to be highly biased wherever widssp significant stiffness changes occur,
generally leading to very conservative estimatepaformance. The practical rules deter-
mined allow, instead, the definition of standarditew-bias bilinear, trilinear, or quadrilin-
ear approximations, regardless of the details ef¢hpacity curve shape.

1 INTRODUCTION

In the last decades, improvements in the compunaiticapabilities of personal computers
have allowed the employment of nonlinear analyseshimds in many earthquake engineering
problems. In this framework, nonlinear static aseyis becoming the routine approach for
the assessment of the seismic capacity of exidtinlglings. Consequently, nonlinear static
procedures (NSPs) for the evaluation of seismitop@ance, based on static pushover analy-
sis (SPO), have been codified for use in prachmst of such approaches consist of the same
five basic steps: (a) perform static pushover aislgf the multi-degree-of-freedom (MDOF)
system to determine the base shear versus (eaf),digplacement response curve; (b) fit a
piecewise linear function (typically bilinear) t@fthe period and backbone of an equivalent
single-degree-of-freedom system (SDOF); (c) useeacplibrated R+-T (reduction factor —
ductility — period) relationship for the extractpaecewise linear backbone to obtain SDOF
seismic demand for a given spectrum; (d) tranglaeSDOF response to the MDOF “target
displacement” (usually at the roof level) and use static pushover curve to extract MDOF
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response demands for the entire structure; (e) asengemands to capacities; see [1] for ex-
ample.

NSP is a conventional method without a rigoroustégcal foundation for application on
MDOF structures [2], as several approximationsiavelved in each of the above steps. On
the other hand, its main strength is that it presién estimate of structural demand and ca-
pacity in a simple and straightforward way. Althbugeveral improvements and enhance-
ments have been proposed since its introductionirmnease in the accuracy of the method is
worth only if the corresponding computational effdoes not increase disproportionately.
Extensively investigated issues are the choicdefpattern considered to progressively load
the structure and the implication of switching fréme nonlinear analysis of an MDOF system
to the analysis of the equivalent SDOF sharingstdrae (or similar) capacity curve. Regard-
ing the shape of the force distributions, it wasesled that an adaptive load pattern could
account for the differences between the initiab&tamodal shape and the displacement shape
in the nonlinear range [3,4,5]. Contemporarily,estenhanced analysis methodologies were
proposed to account for higher mode effects anthpwove the original MDOF-to-SDOF ap-
proximation [e.g., 6]. Regarding the demand sidi®rts have been made to improve the es-
timation of the target displacement, especiallypbyviding advance®-.~T to better evaluate
the inelastic seismic performance at the SDOF jeael, [7,8]. A comprehensive investiga-
tion of many of these issues has recently appearée NIST GCR 10-917-9 [9] report.

One of the issues not yet systemically investigatdtie approximation introduced by the
imperfect piecewise linear fit of the capacity cfer the equivalent SDOF. The necessity to
employ amultilinear fit (an inexact, yet common, expression to degcabsingle-variable
piecewise linear function) arises due to the us@retdetermined?-u-T relationships that
have been obtained for idealized systems with pieseelinear backbones. This has become
even more important recently since nonlinear modefiractice has progressed towards real-
istic member models, which may accurately captheeinitial stiffness using uncracked sec-
tion properties and/or include in-cycle strengtiyrdelation. The gradual plasticization of such
realistic elements and models introduces a highature into the SPO curve that cannot be
easily represented by one or two linear segmenis.an important issue whose true effect is
often blurred, being lumped within the wider implilons of using an equivalent SDOF ap-
proximation for an essentially MDOF system. Despitese limitations, some light has al-
ready been shed on this issue. For example red¢edies have shown the influence of
accounting for uncracked stiffness in the strudtuesponse of reinforced concrete (RC)
structures [10], while others [9] have shown the@amance of accurately capturing both the
pre- and post-cracking stiffness for RC shear wstulictures; such studies already provide a
general idea on the phenomena that an optimahditilsl be able to capture within conven-
tional NSP approaches to maintain accuracy.

To reach concrete solutions, the effect of thegwese linear approximation will be inves-
tigated in stages, practically following the praggi®n of moderiR-u-T relationships from the
simple bilinear to the more complex quadrilineackine shapes by adding one linear seg-
ment at a time. Thus, starting with an elastic sagimwe will successively add a perfectly-
plastic or positive-stiffness “hardening” segmentegative stiffness “softening” segment and
a low-strength zero-stiffness “residual” plateaueksence, the optimal fitting of four differ-
ent shapes will be examined comprising (a) bilinetastoplastic, (b) bilinear elastic-
hardening (c) trilinear elastic-hardening-negatiamed (d) quadrilinear elastic-hardening-
negative-residual. While the first two cases apcal in most NSP guidelines, e.g., [11,12],
the latter two have also become an option in recedes (ASCE/SEI 41-06) [13,14], or lit-
erature [15,16].

The approach employed will be based on the accasgessment of the effect of the ca-
pacity curve fit on the NSP results. This is achtby proper quantification of the bias intro-
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duced into the estimate of the seismic responskealevel of the SDOF itself. Incremental
dynamic analysis (IDA) [17] will be used as the tiemark method to quantify the error in-
troduced by each candidate fit with respect toetkeect capacity curve of the SDOF. Figure la
shows a typical example, where an elastoplastikbdmae is fitted to a highly-curved SPO
shape according to the equal area criterion,dyeequalizing the area discrepancy above and
below the fitted curve. Such an approximation dttufallows the Eurocode 8 (EC8) provi-
sions [11] and it is not far from the ASCE/SEI 48.{@3] guidelines for a target displacement
deep within the plastic plateau. The corresponduegliian IDA curves displayed in Figure 1b
in terms of spectral acceleration (the intensityasuee, or IM) versus displacement (the engi-
neering demand parameter, or EDP) show that tteel fitackbone produces nearly 25% high-
er displacement demand at all intensity levels.sTlaven code-mandated fitting rules may
lead to an unintended hidden bias that will be shombe generally conservative but may of-
ten become unreasonably high.

In the sections to follow the methodology considevell be fleshed out and applied to
quantify the approximation errors. By extensiveestgation of numerous candidate piece-
wise linear fits, a set of fitting rules will betablished that can offer a standardized near-
optimal capacity curve approximation, suitableifomediate application in NSPs with supe-
rior performance compared to fitting approacheserly in use.
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Figure 1. (a) Example of exact capacity curve veitielastoplastic bilinear fit according to EGRigb) the
corresponding median IDA curves showing the negditenservative) bias due to fitting fox0.5s.

2 METHODOLOGY

The main target is the quantification of the eirdroduced in the NSP-based seismic perfor-
mance assessment by the replacement of the origapakity curve of the system, termed the
“exact” or “curved” backbone, with a piecewise Bnepproximation, i.e., the “fitted” or “ap-
proximate” curve (e.g., Figure 1a). This will eralal reliable comparison between different
fitting schemes in an attempt to minimize the obsérdiscrepancy between actual and esti-
mated performance. In all cases, to achieve anraiecand focused comparison of the effect
of fitting only, it is necessary to disaggregate #rror generated by the fit from the effect of
approximating an MDOF structure via an SDOF systéhus, all the investigations are car-
ried out entirely at the SDOF level, using a varieft capacity curve shapes, different periods
and hysteresis rules and using IDA as the methochoice for assessing the actual perfor-
mance of the different alternatives. Such an apgpras&meant to single out a near-optimal fit
that can be directly included in current NSP praces.

2.1 Exact versus approximate SDOF systems

An ensemble of SDOF oscillators is considered widrying curved shapes of force-
deformation backbones. Their strength and stiffnessssentially provided by bundling to-
gether multiple uniaxial springs in parallel (iaefiber section), each with its own bilinear,
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trilinear, or quadrilinear capacity curve but haythe same general hysteretic (cyclic) behav-
ior. The first part of the investigation addresses-softening behaviors; the backbones, in
fact, display a monotonically decreasing stiffndsat starts from its elastic value and de-
grades with increasing displacement to reach d #iaeo or positive stiffness that remains
constant afterwards (e.g., Figure 1a). Accordinth&r final constant stiffness, these will be
termed “generalized elastoplastic” and “generaliekdtic-hardening” systems, respectively.
They are all fitted accordingly with bilinear elagtastic or elastic-hardening shapes. The se-
cond part of the investigation focuses on backbaiigdaying negative stiffness, i.e., soften-
ing, termed “generalized elastic-hardening-negatsystems. First the use of an elastoplastic
fit that is extended beyond the peak of the backhontake into account the early negative
slope will be investigated (e.g., as recommendedhbycurrent Italian building code [18]).
Then, the higher fidelity three- or four-segmerdgqgawise linear fit for backbones with non-
trivial softening behavior, will be addressed.

For each considered curved backbone shape, 5%tioacviscous damping was used and
appropriate masses were employed to obtain a raihgetching “reference” periods of 0.2,
0.5, 1 and 2 seconds. The concept of the “refefgmeeod, instead of the actual initial (tan-
gent at zero displacement) period, is introducezhbige of the highly curved shape of some
backbones. In some cases the backbones show tlydtv@alized significant change in the
initial stiffness, resulting in periods lower th@r01s. Since this initial stiffness disappears
almost immediately for any kind of loading histosymore representative reference period is
required for each exact (curved) capacity curvee fidference periodl(herein) was defined
as the secant period at 2% of the displacemen¢goonding to the peak force capacity.

Actually, in the vast majority of the cases theraswinsignificant difference between the
initial tangent period and the reference secarib@etn all cases, both the exact and the ap-
proximate system share the same mass, but, dine tiygically lower initial stiffness of the
latter, the “equivalent” period of the fitted curtends to be higher than the “reference” one,
thus replicating the approach followed in the corimal NSP methodology [1]. In addition,
it is assumed that the backbone curve itself sedfito capture via its shape all the in-cycle
degradation effects (e.g., due to material nontibgaP-Delta effects, etc.) without needing to
use approximate coefficients (FEMA-356 [12]) or tegparate analyses with and without P-
Delta (FEMA-440 [14]).

In order to draw general conclusions that are ieddpnt of the cyclic hysteretic behavior
assumed, two distinct cyclic hysteretic rules wiargally considered for each curved back-
bone and its fit. The first is a standard kinemati@in hardening model without any cyclic
degradation characteristics. The second is a pigchysteresis featuring cyclic stiffness deg-
radation [19]. In all cases, when comparing aninalgsystem with its approximate having a
piecewise linear backbone, the same hysteretic rale always employed, so that both sys-
tems display the same characteristics when unlgaaina reloading in time-history analyses.
In other words, all differences observed in the parnsons to follow can be attributed to the
fitted shape of the approximate backbone, obvioasdp capturing any differences due to
mismatches between the exact (“reference”), ifdlewing always referred to ag, and the
“equivalent” oscillator period.

When working with the backbone shapes and tharitfits useful to avoid the appearance
of arbitrary scales and units of forEeor displacemend. Thus, using the normalized counter-
parts,F, andd,, becomes attractive. Unfortunately, the concidendi®n of a yield point on
curved (exact) backbones is impractical, unlesktbesome preselected fitting rules; therefore
it is not possible to use a strength reductiondiaair equivalent ductility, without bias. In-
stead, it was chosen to uniformly normalize forod displacement by the reference values of
1kN and 0.10m, respectively. These values corrasgonthe point where the generalized
elastic-plastic backbones reach their plastic plat@.g. Figure 1a) by becoming fully plasti-
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cized. More complex backbone curves have been gekbuilding upon the elastoplastic
ones in a consistent manner; i.e., by replacingritividual bilinear uniaxial springs forming
the overall SDOF system with trilinear or quadedm ones sharing the same yield points.
Thus, the above reference values generally represeoint in the “hardening” region, be-
tween near-elastic behavior and peak strength, evaarominal yield point would normally
reside.

For each exact shape of the SDOF'’s capacity cuneefar each period value, several
piecewise linear fit approximations have been aereid according to different fitting rules.
These include typical code-suggested fits, e.gla@sout in Eurocode 8 [11], FEMA-356
[12], ASCE/SEI 41-06 [13], and the Italian Coder@@lare 617/2009, [18]). In addition sev-
eral bilinear, trilinear and quadrilinear fits, iading solutions available in literature
[15,16,20], have been investigated. Different rgticriteria, e.g., varying initial stiffness,
yield point definition, and softening slope, haweeb employed in an attempt to pinpoint the
consistent characteristics that can define an @btonnear-optimal fit. In all cases, the aim is
to provide a standardized approximation that dediaecuracy yet remains largely independ-
ent of the NSP target displacement, to offer alsimgpresentation of the static pushover
curve for a wide range of limit-states considei@doosing among such candidate fits neces-
sitates a precise comparison on the basis of tlogilinear dynamic response. Thus, as men-
tioned, IDA will be employed.

2.2 Performance-based comparison via IDA

IDA is arguably the most comprehensive analysishottavailable for determining the
seismic performance of structures. It involves aring a series of nonlinear dynamic anal-
yses by scaling a suite of ground motion recordseteeral levels of intensity, characterized
by a scalar IM, and recording the structural resporia one or more EDPs. The results typi-
cally appear in terms of multiple IDA curves, ome €ach record, plotted in the IM versus
EDP space. These can be in turn summarized intd@hB0, 84% fractile curves of EDP giv-
en IM (EDP|IM) or, equivalently [21], as the praetiy identical 84, 50, 16% fractile curves
of IM given EDP (IM|EDP). The summarized curvesighprovide the (central value and the
dispersion of the) distribution of EDP seismic @ given the IM intensity of the earth-
quake or, vice-versa, the distribution of a streeslIM-capacity that a ground motion’s in-
tensity should reach to achieve the given value® response.

To perform IDA for each exact and approximate deicl considered, a suite of sixty
ground motion records was used, comprising botizbotal components from thirty record-
ings from the PEER database [22]. They are all atttarized by relatively large moment
magnitude (between 6.5+6.9) and moderate distaotéise recording site from the source
(15km-+35km), all recorded on firm soil and bearmagmarks of directivity. Using theunt &
fill algorithm [21], 34 runs were performed, per rectoccapture each IDA curve with excel-
lent accuracy. The IM of choice w&{), the 5%-damped elastic spectral acceleratioheat t
periodz of the oscillator, this being the reference pefmdthe exact systems or the equiva-
lent for the fitted ones. The oscillator displaceing (or its normalized counterpadt) was
used as the corresponding EDP, being the only Si2§ponse of interest for NSP.

Once the IM and EDP are decided, spline or linerpolation [21] allows the generation
of a continuous IDA curve from the discrete poiokdained by the 34 dynamic analyses for
each ground motion record. The resulting sixty IB&ves can then be employed to estimate
the summarized IDA curves for each exact and apmate pair of systems considered. Still,
in order to be able to compare an exact systemnefdrence period with its approximation
having an equivalent periok, it was necessary to have their summarized IDA/esIex-
pressed in the same IM. In this case it is choedmetS,(T), i.e., the spectral ordinate at the
reference period of the curved (exact) backbondlatse. Thus, while the approximate sys-
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tem IDA curves are first estimated as curves in{{&.) — o (or J,) plane, they are then
transformed to appear @&(T) — o axes. This is achieved on a record-by-record basmsul-
tiplying all 34 §(Teq values comprising theth IDA curve (=1,2,...,60) by the constant
spectral ratio $:(T)/Si(Teg)]i that characterizes theh record [23].

The error is evaluated for every value of displagetin terms of the relative difference
between the two systems’ medigncapacities, both evaluated at the reference parmfdhe
exact system:

S;i,tSO (§n ) - S;g%Ct(gn )
Seso ()

Alternatively, one could use the relative errothe median displacement response given the
level of spectral acceleration:
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Similarly, the same definitions can be used toneste the errors for different demand or
capacity fractile values, e.g., 16% or 84%, or efarthe dispersion in response or capacity,
which, assuming lognormality, can be defined as lwalé the difference between the corre-
sponding 84% and 16% values. Thus, two differengsanaf measuring the discrepancy be-
tween IDA curves are available, e.g., for the twedran IDA curves shown in Figure 1b. In
one case “horizontal statistics” are employed, waykvith the median EDP given IM, and in
the other case *“vertical statistics” of IM given EQOwith compliments to Professor H.
Krawinkler for these very descriptive terms). AsrMaatsikos and Cornell [21] have shown,
the median IDA curve is virtually the same, regesdl of how it is calculated, while, as dis-
cussed earlier, the 16, 84% fractiles are simpppéd. In addition, while there might be dif-
ferences in the error estimates using these twierdiit methods, they are only an issue of
scale. Figures 2a, 2b compare the two error queatibn methods for the median IDAs
shown in Figure 1b (an example of generalized ielgpgastic behavior). The observed trends
are actually the same, but simply inverted: obJiguen overestimation in response becomes
an underestimation in capacity and vice-versa.
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Figure 2. The mean relative error in the mediaracayp (black line) shown against the overall averégyey line)
as introduced by the bilinear fit in Figure laislexpressed on the basis of (a) response givensity (EDP|IM)
and (b) intensity given response (IM|EDP).

Why then should one method be preferred over ther@tThere are three important rea-
sons that make the IM-based method (IM|EDP) a ratiractive solution. First, parameteriz-
ing the error in terms of the displacement resposgeplifies its visualization since
displacement is directly mapped to specific regiohthe oscillator force-deformation back-
bone. Thus, it is possible to see directly in FegRb, when it is compared vis-a-vis Figure 1a,
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whether it is the “elastic” or the “post-elasticanp that is causing the accumulation of error.
Figure 2a is much more difficult to understand,eesqlly if more complex backbones, than
the ones used here, are considered. Second, cophe exact versus the fitted equivalent
system on the basis &-capacity, links directly to comparison in termssafismic perfor-
mance, as expressed by the mean annual frequerily)(df violating limit-states defined by
the oscillator displacement [24]. An over/underiraation ofS;-capacity maps to a consistent
(although not commensurable) under/over-estimatiothe MAF of limit-state exceedance,
provided that the difference between the referearu@ the equivalent period is not overly
large. Finally, when collapse enters the problens ibbvious that the error in displacement
may easily diverge when, at a given intensity lewak system has collapsed, while the other
has not. On the contrary, this is never a problenitfeS,;-based error. These are all compel-
ling reasons to recommend only tBebased comparison for general use.

As a final note, it should be stated that when gppglto actual NSP, there are many fac-
tors that will determine the final error. Thus, #reor found herein, either represente&;jror
in displacement terms, is oniydicative of the magnitude of the overall error that woutl b
observed in NSP of a given structure. Other detadsed on the nature of the structure itself
will often matter more. Still, the error estimateere is an accurate measure of the quality of
the fit itself, and it will allow selecting the ornkat best fits any given backbone curve and
minimizes the contribution of this source of ert@the overall results.

3 BILINEAR FITS FOR NON-SOFTENING BEHAVIOR

Bilinear elastic-plastic or elastic-hardening e the fundamental force-deformation approx-
imations employed in NSP guidelines. The simplicityhe bilinear shape means that the on-
ly need is to estimate the position of the nomilyatld point” and select a value for the
constant post-elastic stiffness. Eurocode 8 [1dlJpWing the original N2 method [1], sug-
gests an elastic-plastic idealized backbone baseth® balancing of the area discrepancy
above and below the fit, optionally using an iteatprocedure. FEMA documents [12,14]
generally employ a bilinear elastic-hardening cuupeto the target point. While a third sof-
tening segment was also considered indirectly biIAEB56 [11], for demand estimation,
FEMA-440 [13] and consequently ASCE/SEI 41-06 [dR]y use it to limit the allowable
value of theR-factor to protect against global collapse. In cdkes, the idealized elastic-
hardening shape is fitted through an iterative pdoice: the nominal yield point and the post-
yield slope are selected to achieve a balanceeoimisfit areas above and below the capacity
curve up to the target displacement, while alsairewy that the elastic segment remains se-
cant at 60% of the nominal yield strength.

In order to develop an improved bilinear fit, thitirig of the initial “elastic” segment is
investigated separately and then the post-elastienegative stiffness part is added. General-
ized elastic-plastic systems will be first studiedhere the stiffness becomes zero beyond a
displacement of 0.10 m, followed by generalizestsdahardening backbones were the post-
yield stiffness is positive. In all cases the tangedeveloping a standardized fitting rule that
performs well for a continuum of limit-states irethon-negative stiffness region.

3.1 Elastic-plastic fits

First, elastoplastic bilinear fits are consideredd family of generalized elastic-plastic ca-
pacity curves that exhibit a stiffness graduallgréasing with deformation, starting from the
initial elastic and reaching zero slope. The shayesmainly characterized by the rate and
magnitude of the changes in stiffness with incregsiisplacement. Figure 3a and 3b give an
example of the shapes employed and emphasize tposm cases. The first (Figure 3a) is
not characterized by significant curvature, whhe second (Figure 3b) shows a significant
change in slope that can be representative of @mawor of a model that accounts for
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uncracked stiffness (e.g., for RC or masonry stmesf) or displays progressive yielding of
elements.
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Three basic fitting rules are compared: (a) theMAESstyle” fit (60% fif), (b) the “EC8-
style” fit using a simple area-balancing criteri@yual areg, and (c) thel0% fit defined so
that the intersection between the capacity curetha fitted elastic segment is at 10% (in-
stead of 60% for the “FEMA-style” fit) of the maxiim base shear. The latter is a simple
standardized rule that has been derived from exenasting to better (near-optimally) cap-
ture the early seismic behavior. In all three cabespost-yield linear segment is chosen to
match the exact plastic-plateau. Strictly speakimg marks a slight deviation from the actual
FEMA fit which stipulates a variable post-elastegment depending upon the target dis-
placement and the area-balancing rule. Still, qapr@ach may be thought of being repre-
sentative of the code-mandated fit for a targgtldsement deep into the plastic plateau.
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Figure 3a shows that when the capacity curvesa@reharacterized by significant stiffness
changes, the three fits are very similar to eabtlerotThey differ significantly, though, when
the initial stiffness diminishes rapidly, as in &ig 3b. To investigate the differences between
the three fitting rules when applied to the twdetént backbones, IDA is performed for each
of the actual and approximate SDOF systems fonge®f periods. Figures 4 show the com-
parison in terms of the normalized difference ia thediarS,-capacity (Eqg. 1) foll equal to
0.2 and 1.0 s. Obviously, the shape of the origb@akbone has a significant impact. In all
cases, the error increases with curvature whilenéximum always appears at the earlier
backbone segments. Curiously, the 10% fit leadsriemarkable decrease in the error for any
deformation level, even for the highly curved shap€&igure 3b where it clearly violates any
notion of equal area (@qual energythat seems to be prevalent in current guidelitdsads
to a slightly non-conservative estimation of theamity for displacements before the full
plasticization (fow, up to 1) and only for short-period systeffis; 0.2 s. In addition, even in
case of highly-curved backbones (Figure 4b) onll0% underestimation appears at most.
Conversely, code approaches are always conservatial the displacement levels and all
the shapes considered, but at a cost of almost 20%-underestimation of capacity when
high curvature is present. The trends identifiezl ggnerally confirmed for all other periods
considered. As noted previously, such conclusioasnarrored when operating on demands
(e.g., via EqQ. 2) rather than capacities. Thusekample, code fits are found to cause a signif-
icant (conservative) overestimation of displacendgarhand at all levels of intensity in com-
parison to the near-optimal 10% fit.
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Figure 5. (a) Monotonic backbones and (b) the tyatdretic rules considered for the generalizedielatastic
systems, resulting in a sample of ten generalifzstie-plastic systems.

To verify the above observations, a sample of fiiéerent generalized elastic-plastic
shapes (see Figure 5a) was also considered foradable two hysteretic rules described in
section 2, and shown in Figure 5b. Figure 6 disphegystatistics of the relative error on the
medianS,-capacity evaluated dt= 0.2s and 1.0s for the proposed 10% fit versestmnven-
tional FEMA-style 60% fit. The bias (computed ondia® response) is evaluated upyc= 2
(roughly a ductility of 2), where most of the sifycant differences appear. The cyclic hyster-
etic rules were found to be relatively insignifitaas the magnitude of the error depends pri-
marily on the shape of the fitted backbone (see [IS]); this result has also been confirmed
for other types of backbones and essentially ftsesom the problem of having a hysteresis-
dependent optimal fit. Hysteresis aside, all thevimusly drawn conclusions are confirmed.
The 10% fit enjoys an insignificant bias, on averaor all the periods considered and its er-
ror never exceeds 20%. FEMA-style fits (60% findasimilarly EC8-style approximations,
again show a strictly negative; i.e., conservatbias of 20% or even 60%, depending on the
shape of the original backbone, most of which iscemtrated at the low displacement range.



However, if the target displacement falls in thegion, a strict application of the code guide-

lines would reduce the latter effect as they aalld more localized fit.
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Figure 6. The relative error in the median Sa-capéar the 10% and 60% fit, for a reference perad = 0.2s,
1.0s, computed for ten generalized elastic-plastitems, represented by the grey dotted lines.

The above stated results must still be viewed watiition whenever the equivalent “fitted”
and the reference “exact” periodl) (differ significantly [24]. Since the 10% rule, ature,
maintains a close match to the actual period, ouclasions regarding its excellent perfor-
mance remain robust. On the other hand, the coskedbiits may result to disproportionately
large equivalent periods for highly-curved backlmnghen, the results of a more accurate
MAF-based performance comparison might differ fribra S;-based results discussed above
depending on the nature of the seismic hazard.algiut is possible that employing a code-
based fit for NSP assessment may prove to be uanais/e due to this effect. For example,
if using a uniform-hazard spectrum with significalifterences between short and long-period
hazard, the 20%+40% conservative bias predicteliee@an be nullified or reversed. This
restriction should be kept in mind for all comparis in the following sections.

Error comparisons for th&-capacity (record to record) dispersion are notghas all fits
generally achieve equally good estimates. Of couli$erences appear in the region preced-
ing the nominal yield point of each approximatidimerein the fitted system will predict no
dispersion, being essentially elastic and perfeptigdicted byS,, whereas the actual one
shows some small variability due to early inelasticThis is to be expected and it cannot
weigh in favor of one fit over another.

Summing up, it can be stated that capturing thtelrstiffness of the actual backbone is of
primary importance, as suggested also by [9,10istlg guidelines fail to achieve this for
highly curved backbones, leading to biased reghiis may become overly conservative.
Thus, the optimal fit should capture, as closeassible, the initial stiffness of the backbone,
being careful to avoid unreasonable estimatesnitially ultra-stiff systems that quickly lose
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their initial properties. Thus, fitting the “elastisecant at 5% or 10% of the maximum base
shear, as opposed to 0.5% or 1%, is considereldustratrategy that delivers excellent results.

Despite solid numerical verification, the abovealfilgs viewed against Figure 3b may be-
come puzzling as the near-optimal fit does notmdse the curved backbone. This seems to
violate a fundamental “rule”, where fitting shoudé “close” to be accurate. In spite of our
findings above, such intuition is not in danger. r&sults show (e.g., see also [9], App.C),
when using more than two linear segments to fitrthle-negative curved backbone, then in-
deed higher fidelity in capturing the backbone shisgossible and the accuracy increases, as
long as the initial stiffness (and period) is stiintly represented. Thus, when utilizing better
and better discretization, things become indeedistent with our current views: being closer
to the actual curve works best. The problems appban working with a limited set of linear
segments; the indiscriminate use of area-balarneiads us to believe that the “area under the
curve” holds the same meaning for an elastic, ddrang or (later on) a softening segment. In
particular, the reason why the 60% fit is inferiorthe 10% fit (e.g., Figure 3b) is simply be-
cause misrepresenting the initial stiffness hag weportant implications for seismic re-
sponse; much more important than misrepresentidatial area under the curve, as the 10%
fit does. Therefore, the proposedar-optimalfitting rules are simply a product of compro-
mise driven by the fact th&u-T relationships currently exist only for simple saap

3.2 Elastic-hardening fits

The second type of approximation investigated & lillinear elastic-hardening fit for a
family of shapes characterized by a generalizestietaardening behavior. Only the pinching
hysteretic rule was considered, given the insigaiit differences observed earlier when com-
pared to the kinematic hardening. Each backbonesiiyated is characterized by different
curvatures and final hardening stiffness, allowingiide coverage of the typical shapes that
can be obtained considering different structuraldyers and modeling options.

When attempting to fit such shapes by a bilineateining the post-yield segment often
involves some kind of optimization to better fietburved shape. Guidelines, such as EC8 [11]
or ASCE-41 [13] prescribe the graphical methodalbcing the area discrepancy above and
below the fitted line, or, equivalently, of balamgithe area enclosed by the fitted with the ar-
ea enclosed by the exact curve. While easy to agmphically, area-balancing is an ill-
defined criterion that can yield mixed results: sider two coincident linear segments where
one, the “approximation”, is rotated by an arbitrangle (other than 9paround the common
center (Figure 7). Obviously, the rotated segméemays satisfies the area balancing rule as a
valid approximation to the original. This is rareyproblem when applying by hand, as engi-
neers will intentionally make sure that the fitmdve is also close to the exact by minimizing
the absolute area discrepancy between the curvelasActually, pure area minimization
practically leads to the same result as the tymogineering approach above. In the thought
experiment of Figure 7, it produces a single solytias the absolute discrepancy is A + A =
2A and it becomes zero only when the fitted coiesiavith the exact segment. Thus, area
minimization is algorithmically and mathematicaiyperior and it will be our optimization
criterion of choice for all discussions that follow

In analogy with the previous subsection, two ddfarbackbones will be presented in de-
tail. The first (Figure 8a) is characterized bydnihanges in the oscillator stiffness, in con-
trast to the second (Figure 8b). The target digpleant is assumed to be equal to 0.2m. The
ECS fit is not applied as it is restricted to dlagiastic approximations which are clearly in-
ferior for the shapes shown in Figure 8. On theeottand, the “FEMA fit” rule can be ap-
plied without problems, although, strictly speakiiigmight call for slightly different
approximations depending on the value of the tadigilacement. Still, the results and the
corresponding conclusions remain the same in a#xarhe alternative fit proposed, based on

11



the 10% rule, determines the initial stiffness @¥ol(instead of 60%) of the nominal yield
shear defined in accordance with FEMA, while thetgsastic stiffness is determined by
minimizing the absolute area discrepancy betweenctpacity curve and the fitted line. In
total, the proposed rule came out as the simplastiardizable rule with a near-minimum er-
ror for this family of backbones. In fact, while myaother alternatives were considered, they
are not shown for the sake of brevity. It suffitesay that capturing the initial stiffness by a
secant in the range of 5%+10% of the peak stremtlthe nominal yield point) remains the
most important aspect of any successful fit. THend®n of the nominal yield point is made
according to FEMA [12-14] provisions, thus the irspd intersection at 10% in alternative to
the suggested 60% and the use of area-minimiza¢ipresent the only differences with the
codified approach.

force
\

displacement

Figure 7. There is an infinite number of “fitted@gments that will satisfy the area-balancing rslévalid” ap-
proximations of the exact horizontal segment, asaiea discrepancy is always A — A = 0.
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The results of the proposed and the FEMA fittinggedures applied to the example
shapes appear in Figure 8. Obviously, when thineti§ of the backbone is not characterized
by abrupt changes in the curvature (Figure 8a) btsthiend to be practically the same. Figure
9 show the error introduced by each fit, for bo#ickbone shapes considered in Figure 8, in
the cases of = 0.2 and 1.0 s. In analogy with the results presgkfor the elastic-plastic case,
most of the error is concentrated at the beginmihthe backbone. For low changes in the
stiffness (low curvature), it can be observed thaterror is negligible for both fits, while it
becomes substantial for higher curvatures. In ¢hse, the error introduced by the 60% fit
misrepresenting the initial stiffness is propagat@wughout the results, even to displace-
ments deep in the nonlinear range, proving ouestant that the area under the curve does
not hold the same importance everywhere. Captuhiegnitial stiffness is the key issue in the
fitting procedure, while the fitted hardening segitis an additional improvement. In fact,
replacing the hardening segment with a plasticeplatintersecting the actual backbone at the
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target displacement (in this case 0.2 m) gave @aitisfactory results, at least for the cases at
hand.

For further verification a family of four differeshapes is considered, shown in Figure 10a
where only the pinching hysteretic rule is used(@Ff¢ 10b). In Figure 11 the relative errors in
the medianS,-capacity, are compared fdr= 0.2s, 1.0s. Again, the proposed fit leads to a
small and relatively unbiased error, which seldormeeds 10%. In this case the sample of
backbones considered for the elastic-hardening wasesmaller than the elastic-plastic case,
but the robustness of the general results, shothiagame trends in both cases, supports the
remarks.
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Figure 9. The relative error in the median Sa-cipad the “FEMA fit” and 10% fit, when applied tihe capac-
ity curves of Figure 8: (a)&(c) insignificant vess(b)&(d) significant changes in initial stiffness.
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Figure 10. (a) The backbones and (b) the hystengiiicconsidered for the generalized elastic-hardgsystems.

It should be noted that the results of the FEMAragpnation will improve if we refit ap-
propriately for each target displacement. Figura fpesents such an example for the elasto-
plastic backbone of Figure 3b, where both the FEMAand the proposed 10% fit are
compared by applying them not once for the entinevee but rather refitting them for each
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target point separately over the range of 0 to Q@m® to 4 in normalized terms). Two fit ex-

amples are provided for each fit rule in Figure.12@m the error results in Figure 12b (in
which dots represents the errors at the targetatispment for the two fitting rules), it be-

comes obvious that while both of the rules bengfita custom-made fit, the proposed rule
retains its edge, typically halving the error of ffEMA fit.
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4 MULTILINEAR FITS FOR SOFTENING BEHAVIOR

Fitting the negative stiffness part of the statisiover curve has lately become an option
in NSP. In some cases (e.g., Italian provisiong)[4B8 elastoplastic fit is simply extended to
cover some portion of the early negative stiffnesgye while in others (e.g. FEMA-440 [14])
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an additional negative stiffness linear segmenitiized. Until fairly recently, the negative-
stiffness segment was typically employed only iedily either to achieve demand modifica-
tion (FEMA-356 [12]) or to set a limit on the allable R-factor (ASCE/SEI 41-06 [12],
FEMA-440 [13]) due to the lack of appropriag®eu-T relationships. With the emergence of
SPO2IDA, a set oR-u-T expressions that can provide the distribution aflmear dynamic
response for complex SDOF systems [15], it is nogsfble to achieve for the entire range of
displacements, up to and including collapse, disetsmic demand and capacity estimation
for trilinear or quadrilinear backbone approximasidhat include negative stiffness.

4.1 Extended elastoplastic fits for generalized elastibardening-negative systems

The recent Italian seismic code [18] suggests #adtoplastic systems with extended
plateaus may be used to capture negative-stifimeisaviors up to a 15% loss of the peak base
shear capacity. Specifically, the Italian codesseatially a derivative of the FEMA-356 [12]
rule where a 60%-secant defines the initial stsfhand an area-balancing criterion is used to
get the plastic plateau which may now be extendtathe negative stiffness range. Obvious-
ly, the yield strength of such a fit is always loviean the peak strength of the exact backbone.

To verify the feasibility of such an approach adirsearch was undertaken by investigat-
ing an array of combinations of different plateauels and “elastic” secant values in search
of the optimal solution. Out of the large numbercahdidate fits tried, only four will be
showcased (Figure 13a) on a highly-curved backloonef a family of twelve (Figure 13b).
The initial stiffness is set at 10% or 60% of noatiyield strength combined with two plateau
levels at 80% (L) or 100% (H) of peak shear strenigspectively. The corresponding candi-
date rules are named 10%L, 10%H, 60%L and 60%H teid performance is shown in Fig-
ure 14a and 14b for 0.2s and 1.0s, respectivelgulReshow that capturing the initial part of
the backbone is still important, as the 10% fit m&ins a consistently low-bias whenever
there are significant curvature changes in thetdsxackbone. Furthermore, foregoing any no-
tions of area-minimization or balancing to match treak point instead (H versus L fits), is
always beneficial. The Italian fit rule will alwaysave a plateau height between 80% and
100% therefore it displays a performance right leetwthe 60%H and 60%L cases, in general
showing a 20%+40% conservative bias. While only tbésults for pinching hysteresis are
shown herein, our conclusions persist if kinemstiiain is employed instead.
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Figure 13. (a) An example of generalized elasticibaing-negative capacity curve having significatminges
in initial stiffness and its corresponding fits) (he backbones considered for the generalizetielzardening-
negative system sample.

The sample family of twelve backbones, selectedHeir diversity of shape (Figure 13b)
was also tested for the two opposing rules of 6@¥d 10%H. Figure 15 display the relative
medianSacapacity errors plotted against a displacemerd that has been normalized for
each backbone separately to ensure that the pgakd the ultimateu) displacement points
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are aligned. The results verify that the 10%H ditan unbiased approach with robust perfor-
mance, at least up to the point where the strudtses about 20% of its maximum strength.
Consequently, it makes sense to suggest that amipedtl rule should forego any strict area-
minimization (or balancing) considerations in fawar accurately capturing the maximum
base shear strength. Failing to follow this appnodlee Italian code rule was, again, found to
be generally conservative, in analogy with othetecits. On the other hand, the limit that it
enforces when extending the plastic plateau findslia confirmation in the results; in fact,
none of the bilinear fits considered can adequatetwulate the softening behavior beyond
20% shear loss, as they would result in a systealainconservative underestimation of the
actual response.
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4.2 Multilinear fits of generalized elastic-hardening-regative systems

It is easy to recognize that if the softening betwais characterized by mild changes in the
negative slope, any negative stiffness segmentithat the peak point with any other specific
point in the softening branch (such as 60% of tbeninal yield strength suggested in
ASCE/SEI 41-06 [13]) will allow a reliable fit thaaptures softening behavior. The difficul-
ties in determining a single reliable slope for gwtening branch arise when the capacity
curve is characterized by significant changes saagla steep segment followed by a milder
one or a milder slope followed by a steeper oneamndcombinations of the two. Such phe-
nomena, while rare in the hardening range, canaappgte frequently in the softening range,
thus, typically complicating the fit.

A wide family of capacity curves with non-triviabBening shapes is employed to establish
a reliable fitting criterion independent from theesific shape considered. In addition, a large
number of competing fitting-rules was consideredvbich only the most promising will be
shown. Figure 16a and 16c¢ show two examples of rgéped elastic-hardening-negative
backbones that differ in two main aspects: the {ifggure 16a) is characterized by a nearly
linear initial elastic part with a somewhat steejdnii.e. first steep then mild) trend in the
softening segment; the second one (Figure 16c)erealy, is characterized by significant
curvature in the elastic-hardening part of the badle and a mild-steep trend in softening. To
provide a reference basis for all three fits attedpthe pre-peak part of the backbone is ap-
proximated according to the optimal rule of sect®@, i.e. using a 10% rule with area-
minimization for the hardening segment that tern@sat the peak strength. To determine the
softening segment, which extends from the peaktpoirthe ultimate, three different ap-
proaches are considered: (a) the first, tersemant employs the slope linking the peak point
with the ultimate; (b) the second, termiddn et al, which follows the graphical approach
suggested in [20], provides as softening slopebtbector between the peak-to-ultimate point
slope and the slope at the end of the backbonethéc)hird, termedalanced uses area-
minimization to fit the descending segment, utiizia negative slope and, at times, a horizon-
tal residual strength segment. The latter is onligeal when it can help achieve a closer fit,
typically being needed for steep-mild cases. Incafies, the fit is terminated at the ultimate
displacement, if necessary by assuming a verticgd tb zero strength. The errors introduced
by each fit are shown in Figure 16b and Figure fb8d = 1.0s. For the steep-mild case (Fig-
ure 16b), the balanced and the secant fit arelglda best, with the former being slightly on
the conservative side. In the mild-steep caseyehalts of thebalancedand theHan et al.
approach are practically indistinguishable, sliglaitperforming thesecantfit, (Figure 16d).
Taking into account numerous tests, not showrs the area-minimization fit that generally
offers the best performance across different shapegeriods. Still, it is not strictly optimal.

Curiously, all three fits are conservatively biagsedalmost the entire displacement range
in the case of Figure 16c. They were found to mnewore so for extreme steep-mild behav-
ior in Figure 17a. In both these highly curved bmmtes, a linear softening segment, or a sof-
tening-residual segment combination that would poednear-zero error would need to be
high above and to the right of the actual backbpalesrly enveloping them in the negative
stiffness range. Apparently, the curvature in thepe of the actual backbone has a protective
effect on the system that cannot be replicated byear segment and cannot be easily cap-
tured in a practical rule. A possible explanatisrthat typical ground motion records (e.g.,
non-pulse-like) produce most of the damage in qu or two large pushes within the post-
peak negative stiffness range. Perhaps the chargjéfness, and correspondingly in the tan-
gent period, take the edge off any large nonliree@ursion that can proceed unchecked in a
constant-stiffness linear segment. Especially far éxtreme steep-mild case of Figure 17a
this effect is so strong that even using a resiglateau that starts at the intersection of the
two different slopes and maintains the same sthengtil the ultimate displacement is not
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enough to reach a fully unbiased solution (Figufb)1Nevertheless, the latter amendment to
the area-minimization rule was found to be the antgple practical rule that can reliably re-
duce the bias in all such cases to an acceptalde dé 20%+30%. Therefore, this will form
the final part of our “optimal” practical fittingite.
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Figure 16. Generalized elastic-hardening-negat@gacity curve having steep-mild (a) and mild-stggmega-
tive slope and the relative median Sa-capacityewbthe secant, Han et al. and balanced fit3 £dr.0s.
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5 DEFINITION AND TESTING OF THE NEAR-OPTIMAL FIT

Combining all previous results, it is now possitdgropose an “optimal” fitting rule that,
while not strictly optimized, manages to maintaiw lerror and low bias and can be standard-
ized to be applicable to a wider range of capauitye shapes than the ones investigated. Es-
sentially, it is based on fitting the distinct regs of structural behavior that may typically be
observed in realistic pushover curves, namely tefgshardening” and “softening”; see [25].
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These will be approximated by linear segments édfiny three specific points, namely the

nominal yield (y), the nominal peak strength (pgl &ime ultimate displacement (u) point:

a) The “elastic” pre-nominal-yield part is captured &ysecant linear segment with initial
stiffness matching the secant stiffness of the cigpaurve at 5%+10% of the peak or the
nominal yield base shear. Using the peak is preferas, without any loss of accuracy, it
allows a fast estimation without needing multigkrations.

b) The “hardening” pre-nominal-peak non-negative séffs segment is chosen to terminate
at the maximum base shear while minimizing the kitscarea difference (formally the
integral of the difference) of the fitted and th&et curve between the displacements cor-
responding to the nominal peak and the nominabypaints, as defined by the intersec-
tion of this segment with the preceding and sucogeohe.

c) The “softening” post-nominal-peak negative stifffieegment is also defined by minimiz-
ing the absolute area difference between the fitted the exact curve in the negative
stiffness region. It may be further augmented liguath, residual plateau segment in two
cases: (i) if the negative stiffness region is abtarized by steep slopes that partway
down grow significantly milder, a plateau shoulddvawn at the intersection of these two
distinct zones; (ii) if instead the negative st#ffs progressively grows steeper, then a re-
sidual should be used only if found to improve ftiting according to the area-
minimization rule.
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Figure 18. Blind testing sample of (a) capacityvesrand (b) their optimized fits.

To properly assess the error induced by the praposkes, a new sample of curves is
needed. These should not be involved in deriviegtites to achieve objectivity by blind test-
ing. Forty capacity curves were randomly generatedstly considering relatively highly
curved shapes with non-trivial softening behavibys including either steep-mild or mild-
steep negative slopes combined with various rdtebange in the initial stiffness, as shown
in Figure 18a. Essentially they are complex shaypeated by varying the parameters of the
uniaxial springs composing each SDOF system tleatregant to provide a severe test for the
proposed rule. Each curve was fitted accordindh&“obptimal” fitting rule, resulting in the
forty fits showed in Figure 18b. The relative med@apacity errors appear in Figure 19 for
0.2s, 0.5s, 1.0s, and 2.0s. To facilitate comparisbe displacement axis has been non-
homogeneously normalized to match the three charatit points (y, p, u) of the exact push-
over curves. Typical applications of NSP would nallgnfall within the y and p points. The
mean value of the error never exceeds 20% andehd ts always conservative except for the
first part of the hardening behavior (between y prbints) when low period values are con-
sidered (see Figure 19a). Still, it should be naked different shape backbones will result to
different errors, in many cases lower than the @mesvn due to the deliberate high curvature
of the tested curves.
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In Figure 20 normal probability plots of the errare shown at the three characteristic points
for T= 0.2 and 2.0 seconds and for all the forty cuoagssidered, showing a strong resemblance
to a normal distribution. Table 1 shows mean aaddsrd deviation of the relative errors at the
three characteristic points y, p and u, respegtifa@l T = 0.2, 0.5, 1.0, and 2.0s; the data shows
that the distributions are generally conservativegétive errors). Some slightly unconservative
bias can be found only at the yielding point (y) To= 0.2s. There is also some significant con-
servative bias (red points with negative errorBigure 20) close at the ultimate point (collapse)
that can be attributed to the abundance of setegp-mild cases in the tested sample.

+60%

: ‘ +60%—— ;
(a) T=0.2s +=-=mean+sigma (b) T=0.5s +=-=mean+sigma
~ —mean | o) —mean
o, +40% - --mean-sigma o, T40% = =-mean-sigma
2 3
o O +20%
S S
5] @ o
© ©
%) (%)
= g —20%
S S
o g -40%
-60%
y i P u y ) P u
normalized displacement, 6n normalized displacement, 6n
+60% ! . +60% T T
(c) T=1.0s -=--mean+sigma (d) T=2.0s +=-=mean+sigma
—~ ——mean S ——mean
= 0, ] =4 AR
o, +40% ---mean-sigma o, *40% ==-mean-sigma
3 3
) Q 20%
S S
5] o 0}
© (]
n 0 /
c g -20%f
5 S
e g -10%

-60%

y . p ) P
normalized displacement, 6n normalized displacement, 6n

Figure 19. The statistics of the relative erroth@ mediars;-capacity forT = 0.2s, 0.5s, 1.0s, and 2.0s, in the
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Figure 20. Probability plot for normal distributio the relative errors in the medi&gcapacity evaluated at the
three significant points y, p and u fér= 0.2s and = 2.0s.

A Kolmogorov-Smirnov hypothesis test [26] was peried on the sample of forty relative
errors at each of the three characteristic pointp @nd u) for each of the four periods. At the
95% significance level this cannot reject the myibothesis that they follow normal distribu-
tions with the means and standard deviations showiable 1; the only exception is the ulti-
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mate (u) point foil = 0.2s (Figure 20a) due to some large tail valUsing such results, it is
possible to have at least some general sense apieemic uncertainty introduced by the
optimized piecewise linear approximation at thee¢hdifferent ranges of behavior. It goes
without saying that the results for current codedukfits are far more dispersed and heavily
biased towards the conservative range.

Table 1. Mean and standard deviation of the redatiedian error i1, at the characteristic points y, p, u
T=0.2¢ T=0.5¢ T=1.0¢ T=2.0¢
y p u y p u Y p u y p u
u| 0.02¢ | -0.01% | -0.08€¢ |-0.03(]|-0.04¢|-0.14%]|-0.09¢]|-0.05%|-0.162] -0.06( | -0.02% | -0.12¢
c| 0.06( | 0.06¢ | 0.18Z | 0.04<| 0.071] 0.21¢| 0.05€ | 0.097| 0.18¢ | 0.04Z | 0.05% | 0.12¢

6 CONCLUSIONS

A near-optimal piecewise linear fit is presented $tatic pushover capacity curves that can
offer nearly-unbiased low-error approximation o thynamic response of non-trivial systems
within the framework of Nonlinear Static ProcedureEremental Dynamic Analysis is used
to rigorously assess different fits on an intensiyasure capacity basis, allowing a straight-
forward performance-based comparison that is Igrgelependent of site hazard. A fitting
rule emerged that is based on using appropriagalisegments to capture the three typical
ranges of structural behavior appearing in realiptishover curves: (a) “elastic’ where the
initial stiffness should always be captured by @ase at 5%+10% of the peak strength regard-
less of any area-balancing or minimization rulds, “bardening”, where it is important to
maintain the actual peak shear strength but nassecily the corresponding displacement (c)
“softening”, where the ultimate displacement shaalldays be matched while the linear seg-
ment itself should closely fit the negative sti§sgpushover curve. In the latter case, if a sig-
nificant lessening of the slope is observed wittréasing displacements then an additional
enveloping residual-plateau segment should be graglo

In addition, it was found that simple elastopladtie capturing the initial stiffness and the
maximum strength may serve as very simple appraiemsin most practical situations even
venturing into the early negative stiffness regiom the other hand, all codified approaches
tested generally err on the conservative sidepath high changes in initial stiffness may
reverse this finding for certain sites. In gendnalugh, the error in code fits always increases
disproportionately when encountering significanames in stiffness, representative of mod-
els that account for uncracked stiffness or thegmbplasticization and failure of elements. In
particular, the area-balancing fitting process guibed by most codes is often the culprit. Its
indiscriminate use ignores the strong beneficidafof backbone shape and curvature, invar-
iably introducing bias. The proposed fit is fourdsignificantly reduce the error introduced
by the piecewise linear approximation, offeringragtical solution to upgrade existing guide-
lines.
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