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ABSTRACT 11 

A mixture model approach is presented for combining the results of different models or 12 

analysis methods into a single probabilistic demand model for seismic assessment. In general, 13 

a structure can be represented using models of different type or different number of degrees of 14 

freedom, each offering a distinct compromise in computational load versus accuracy; it may 15 

also be analysed via methods of different complexity, most notably static versus dynamic 16 

nonlinear approaches. Employing the highest fidelity options is theoretically desirable but 17 

practically infeasible, at best limiting their use to calibrating or validating lower fidelity 18 

approaches. Instead, a large sample of low fidelity results can be selectively combined with 19 

sparse results from higher fidelity models or methods to simultaneously capitalize on the frugal 20 

nature of the former and the low bias of the latter to deliver fidelity at an acceptable cost. By 21 

employing a minimal 5 parameter power-law-based surrogate model we offer two options for 22 

forming mixed probabilistic seismic demand models that (i) can combine different models with 23 

varying degree of fidelity at different ranges of structural response, or (ii) nonlinear static and 24 

dynamic results into a single output suitable for fragility assessment. 25 
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1 Introduction 31 

Seismic performance assessment lacks no breadth in the choices that an analyst needs to make 32 

when tackling any single structure. Structural models can range from minimalistic oscillators 33 

to high-resolution behemoths of millions of degrees-of-freedom, each offering different levels 34 

of accuracy (e.g. Lachanas and Vamvatsikos, 2020, Silva et al. 2019, Chi et al. 1998). Further 35 

issues of the explicit simulation of brittle or ductile failure mechanisms and 36 

material/section/member models (e.g. Jalayer et al. 2010, Vamvatsikos and Fragiadakis 2010, 37 

Ibarra and Krawinkler 2011, Kazantzi et al. 2014) provide a myriad of options that come with 38 

obvious improvements in the fidelity of the results, together with an equally obvious cost in 39 

computational resources. Selecting the proper combination of model options is a problem that 40 

heavily depends upon the experience of the analyst, the task at hand, and the available 41 

resources, namely time, data and computer power.  42 

The typical approach is to select the model and analysis method, accept the consequences 43 

and just go with it. Still, there are advantages in being able to combine models and approaches 44 

of different fidelity and complexity to deliver a better compromise. Low-fidelity models can 45 

be leveraged for achieving speedup at the cost of reduced accuracy, effectively offsetting (and 46 

contrasting) the high-expense/high-accuracy of high-fidelity models. Multifidelity approaches 47 

can combine low and high-fidelity outputs to achieve an overall improved accuracy in the 48 

structural estimate at a reasonable cost, for a final result that is more than the sum of its parts. 49 

In the literature, multiple strategies are offered for employing mutlifidelity methods 50 

(Peherstorfer et al. 2018), such as adapting the computation process of low-fidelity models 51 

based on the outputs of high-fidelity ones (adaptation), combining the results of both low- and 52 

high-fidelity models a posteriori into a single output (fusion), and filtering the results of low-53 

fidelity models to keep only those consistent with higher fidelity computations (filtering).  54 

In seismic assessment, there are cases where two different model types are complementary, 55 

offering improved accuracy at different regions of response. This is the case of distributed 56 

plasticity fiber models that offer higher fidelity at low (pre-capping) deformations, while 57 

lumped plasticity models are more reliable for larger (post-capping) deformations closer to 58 

collapse (Haselton et al., 2007). Combining the two could leverage the complementary benefits 59 

of both to deliver a single response model of high fidelity at all deformation/intensity ranges. 60 

There are also cases where one approach is clearly the better, but (per the “no free lunch” 61 

theorem) also the disproportionally more expensive one, such as the case of nonlinear static 62 

versus dynamic analysis (e.g. Fragiadakis et al. 2014). A static procedure can inexpensively 63 
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provide intensity versus deformation results at all ranges of response, but with non-negligible 64 

bias as one deviates from simple first-mode-dominated structures (Krawinkler and Seneviratna 65 

1998). Nonlinear response history analyses (NRHA), suffers from little to no bias (assuming a 66 

good structural model), but it is often prohibitively expensive for practical applications. 67 

Optimally, a static pushover (SPO) based approach could be relied upon to provide the bulk of 68 

the data, while a few higher fidelity dynamic runs could be employed for correcting the bias, 69 

e.g., due to higher modes unaccounted for by the SPO.  70 

Overall, in terms of Peherstorfer et al. (2018), we aim to follow a fusion approach to 71 

combine via data fitting low- and high-fidelity outputs from distinct structural model and 72 

analysis pairs into a single multifidelity surrogate model (Fernández-Godino et al. 2019) of 73 

seismic demand. This provides the functional relationship between the input variable, i.e., the 74 

intensity measure (IM), and the output of interest, i.e., the Engineering Demand Parameter 75 

(EDP) per the Cornell and Krawinkler (2000) performance-based earthquake engineering 76 

framework. In the following we aim to describe the conceptual approach to deriving and 77 

employing such mixed fidelity models while offering two practical examples of application for 78 

the assessment of a 4-story reinforced concrete (RC) frame (i) using lumped and distributed 79 

plasticity models and (ii) combining nonlinear static with dynamic analysis.  80 

Mixing demand models 81 

Multiple methods of varying complexity can be employed to combine two or more sets of 82 

results of different fidelity into a single data-fit surrogate that can be used for seismic response 83 

assessment. For instance, parametric or non-parametric regression analysis (Hastie et al 2009, 84 

Weisberg 2005) can be applied in order to combine any number of disparate IM – EDP data 85 

into a single functional representation. The functional form of parametric models, e.g. 86 

polynomial regression, is predetermined, while in non-parametric ones the predictor does not 87 

take a predetermined shape but is constructed based on information derived from the data and 88 

can be adjusted to capture any unusual or unexpected features, as in smoothing splines or k-89 

nearest-neighbor regression. The analyst in both cases should avoid including too many 90 

parameters in parametric regressions or too much flexibility in non-parametric ones to avoid 91 

overfitting, i.e., fitting the random quirks of the dataset while not being able to capture the 92 

characteristics of new data points outside the fitted set. When it comes to an error minimization 93 

criterion for finding the best-fit function, equal weighting of observations tends to be the typical 94 

answer, as in the case of ordinary least squares that minimize the residual sum of squares. Still, 95 

this is not necessarily the optimal for our purposes. To better covey the different confidence 96 
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inherent to results of different fidelity, placing higher weights (e.g. in weighted least squares) 97 

on the few high-fidelity results is a more viable option, appropriately biasing the fit towards 98 

the points with higher importance.  99 

An alternative non-regression (or non-parametric regression, depending on one’s point of 100 

view) option is to employ a Bayesian framework (e.g. Jalayer et al. 2011, 2015) to update the 101 

probabilistic distribution of a prior estimate of structural response (e.g. obtained by low-fidelity 102 

methods) as more (and potentially higher fidelity) data become available. Other methods that 103 

do not necessarily include the data-fit surrogate have also been proposed, such as the one of 104 

Patsialis and Taflanidis (2020) that utilizes the multi-fidelity Monte Carlo simulation to 105 

selectively run analyses on low/high-fidelity models and combine their results for seismic risk 106 

assessment. Still, to the authors’ belief, the simplest viable solution that can be practically 107 

implemented for the problem at hand relies upon fitting the 5-parameter surrogate of Jalayer 108 

and Cornell (2009). 109 

The 5-parameter surrogate of Jalayer and Cornell 110 

The 5-parameter surrogate treats non-collapse and collapse data separately: a power-law-based 111 

approximation (3 parameters) is fit to the non-collapse data for estimating the distribution of 112 

EDP response (and associated probability of exceeding any EDP level) for a certain level of 113 

the IM, given that collapse has not occurred. This is augmented by the distribution of collapse-114 

inducing IMs or, equivalently, the probability of collapse given the IM, as determined by fitting 115 

an idealized lognormal distribution to the collapse data; effectively two more parameters are 116 

added, namely the median value of the distribution and its dispersion. Consequently, a total of 117 

5 parameters fully characterizes the model of demand. The mutually exclusive events of 118 

collapse, C, and no collapse, NC, are combined through the total probability theorem to 119 

estimate the probability of exceeding any limit state of interest, LS, given the level of the IM: 120 

 [ | ] [ | , ] (1 [ | ]) 1 [ | ]C CP EDP EDP IM P EDP EDP NC IM P C IM P C IM =   − + 
 (1) 

where P[EDP > EDPC | IM] is the probability of the demand, EDP, exceeding the EDP capacity, 121 

EDPC, given the IM, and P[EDP > EDPC | NC,IM] is the probability of EDP exceeding EDPC 122 

given the IM and no collapse. The value of 1 stands for P[EDP > EDPC | C,IM] that is the 123 

probability of EDP exceeding EDPC given collapse that always equals 1 and P[C | IM] is the 124 

probability of collapse given the IM. 125 

The power-law model (Shome and Cornell 1999) is employed for the non-collapse data to 126 

estimate the P[EDP > EDPC | NC,IM]: 127 
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 bEDP a IM=    (2) 

where b is the slope in log-log space, ln(a) is the intercept and ε is the regression error, i.e., a 128 

lognormal random variable with unit median and a logarithmic standard deviation of σlnε. The 129 

basic assumption that lies behind Eq. (2) is that the EDP | IM dispersion is constant for all IMs, 130 

also known as homoscedasticity. However, the dispersion of EDP | IM is expected to increase 131 

for higher IM values, due to increasing nonlinearilty. In cases of large discrepancies in 132 

dispersion at low and high IM values, a separate power-law model can be employed in each 133 

region to avoid otherwise complicating its application.  134 

Global collapse is generally deemed to occur when numerical non-convergence appears in 135 

a rigorous model that incorporates both material and geometric nonlinearities or when 136 

unrealistically large values of EDP appear. To overcome potential bias in the low IMs due to 137 

the large near-collapse EDP values, non-collapse and collapse data are treated separately, and 138 

the probability of collapse is estimated directly from the collapse points. Multiple methods 139 

have been proposed for fitting the collapse data, most notably the logistic regression, the 140 

maximum likelihood estimation (MLE) or the method of moments (Baker 2015). MLE can be 141 

employed in cases of binary input, such as for the case at hand since records may either cause 142 

structural collapse (i.e., 1) or not (i.e., 0), as long as estimates of two numerically different 143 

values of collapse probability are available at least at two different levels of IM. The median 144 

and the dispersion of the lognormally distributed collapse fragility curve are the parameters 145 

that maximize the likelihood function (as per Baker 2015): 146 
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where θ and β are the estimates of the mean, θ, and the standard deviation, β, of the logarithmic 147 

collapse fragility distribution, argmax abbreviation stands for maximizing the function, Φ(∙) 148 

denotes the cumulative density function of the standard normal distribution, nj is the number 149 

of ground motions per IM = xj, zj is the number of ground motions that caused structural 150 

collapse for IM = xj, and m is the number of IM levels. The probability of collapse can be 151 

directly determined via 𝜃 and �̂�. 152 

Overall, the 5-parameter surrogate is arguably the minimum comprehensive surrogate that 153 

can represent the full-range IM – EDP response space. Adding more parameters, e.g., by 154 

augmenting the regression expression of Eq. (2) by more terms, is a natural improvement that 155 

may result in a more flexible yet less practical model that would require more data for a reliable 156 
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fit. Most importantly, employing it with inadequate data may lead to overfitting of the so-called 157 

“training” dataset, thus capturing idiosyncratic effects that cannot be generalized. Note here 158 

that flexible non-parametric surrogates with an appropriate regularization scheme to avoid 159 

overfitting can potentially offer a fully customizable near-automatic regression capability to fit 160 

any situation of interest, encompassing both small and large datasets. Still, having only a 161 

handful of distinct parameters makes it easier to gain intuition on the effects of our modeling 162 

and combination choices and on how to fit each parameter, if needed. Thus, the 5-parameter 163 

surrogate is our baseline choice for all subsequent work, offering a good compromise between 164 

accuracy and computational effort.  165 

Herein, we propose two ways of how to form mixed surrogate models for seismic response 166 

by fitting our baseline surrogate to analysis results from a single case-study building in two 167 

distinct situations: (i) combining the results of two different models with different accuracy in 168 

disparate regions of response via weighted regression and a user-defined IM-based degree of 169 

model preference, and (ii) employing the results of nonlinear static and nonlinear dynamic 170 

analysis to directly determine each of the five model parameters. 171 

2 Case-study building 172 

To illustrate the proposed framework, a 4-story RC building is studied. In each principal 173 

direction, the building has two perimeter moment-resisting frames (MRFs) of four bays each, 174 

as well as internal columns that carry only gravity loads. The plan view of the building and the 175 

elevation of the moment frame are shown in Fig. 1. The overall plan dimensions are about 176 

55x37m (120’x180’) while the total height is about 16.5m (54’), with heights of 4.5m (15’) at 177 

the first story and 4m (13’) for subsequent ones. The building was originally designed by 178 

Haselton (2008), while Aschheim et al. (2019) re-designed the structure following a 179 

performance-based approach via the use of the Yield Frequency Spectra (Vamvatsikos and 180 

Aschheim 2016). 181 

The two-dimensional model of the building is developed in OpenSees software (Mazzoni 182 

et al. 2000). Only one out of the two MRFs that act in each principal direction is modeled along 183 

with a leaning column. The leaning column is pinned at the foundation and modeled using 184 

linear elastic elements having cross sectional properties of one half of the gravity columns of 185 

the building plus one half of the columns that belong to the MRFs acting in the other direction. 186 

Two 2D distinct models of the case study building are formed (Chatzidaki and Vamvatsikos 187 
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2021), one using lumped plasticity elements and another employing distributed plasticity ones, 188 

both being viable alternatives for assessment purposes.  189 

 
 

(a) (b) 

Fig. 1 (a) Plan view of the building indicating the perimeter frames by dashed lines and (b) elevation 190 

of the perimeter moment resisting frame (adopted from Aschheim et al. 2019). 191 

Beams and columns of the distributed plasticity model are modeled using force-based fiber 192 

elements discretized into longitudinal steel and concrete fibers. A bilinear constitutive law 193 

accounting for pinching and stiffness degradation is employed to model the steel reinforcing 194 

bars. The cover concrete is modeled without confinement, while the confinement-related 195 

parameters of the core concrete are calculated per Mander et al. (1988). The strength of the 196 

steel and concrete materials is set at their expected values, rather than nominal characteristic 197 

strengths, thus fye = 475MPa (69ksi) and fce = 44.8MPa (6.5ksi). The rigid diaphragm is 198 

simulated via stiff truss elements connecting the frame nodes at each floor level. One end of 199 

each horizontal beam element is provided with a low stiffness axial spring at the connection 200 

with the column. This solution is preferred instead of imposing rigid kinematic constraints, 201 

since they would impose the condition of zero axial strain on beams resulting in the generation 202 

of fictitious axial compression forces that would artificially increase the bending moment 203 

capacity of beam sections. Rayleigh damping of 1% is assigned to the first and second mode. 204 

Although this is lower than a typical value of 5% usually assigned to RC structures, it is 205 

considered realistic as cracking is directly incorporated in the fiber model giving rise to early 206 

hysteretic damping (Sousa et al. 2020). 207 

Beams and columns of the lumped plasticity model are realized by a single force-based 208 

beam-column element per member with plastic hinges located at each end. Moment-rotation 209 

laws for each plastic hinge are defined in terms of the backbone curve of ASCE 41-13 (2014). 210 

Rigid kinematic constrains are applied on all nodes of each floor thus enforcing the same lateral 211 

displacements. A minor calibration of the elastic member stiffness is employed to avoid a large 212 

mismatch in the periods of the distributed and lumped plasticity models. Specifically, the 213 
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“cracked” moment of inertia of both lumped plasticity beams and columns is determined by 214 

averaging the initial “uncracked” stiffness and the nominal “cracked” stiffness at yield, as 215 

derived by moment-rotation analyses of the actual fiber sections. A Rayleigh damping of 5% 216 

is assigned in the first and second mode for the lumped plasticity model. In all cases, P-Δ effects 217 

are accounted for via a first-order treatment.  218 

The SPO capacity curves resulting from a first-mode-proportional lateral load pattern are 219 

shown in Fig. 2 for both models, in terms of base shear, Vbase, and roof drift ratio, θroof. The 220 

fundamental periods of the distributed and the lumped plasticity models are T1,f = 0.79sec and 221 

T1,l = 0.97sec, respectively. Incremental Dynamic Analysis (IDA, Vamvatsikos and Cornell 222 

2002) is performed on both models to compare their respective response. The far-field ground 223 

motion set of FEMA P695 (FEMA 2009) is used for the analysis; it comprises 22 ground 224 

motions, each having two horizontal components, resulting in a total of 44 accelerograms. To 225 

facilitate comparison between the two models, a common IM is adopted that is the average 226 

spectral acceleration (AvgSa, see Kohrangi et al. 2017) for the period range [0.3sec, 3.0sec] 227 

with an increment of 0.1sec. For illustration purposes, the individual IDA curves for the 228 

maximum interstory drift ratio, θmax, along with the 16, 50 and 84% fractiles are presented in 229 

Fig. 3a-b for the lumped and the distributed plasticity models, respectively.  230 

 231 

Fig. 2 Static pushover capacity curves of the distributed plasticity model (grey line) versus the lumped 232 

plasticity model (black line). 233 

 234 
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(a) lumped plasticity model  (b) distributed plasticity model  

Fig. 3 IDA results of the (a) lumped plasticity model and (b) the distributed plasticity model in terms 235 

of AvgSa and θmax along with the 16%, 50% and 84% IDA fractiles. 236 

3 Application 1: Mixing structural models of different accuracy 237 

The lumped and the distributed plasticity models offer different accuracy and convergence 238 

capabilities in the complementary response regions of low versus high IMs (and EDPs). 239 

Specifically, the distributed plasticity models allow representation of phenomena such as 240 

concrete cracking and gradual plastification of sections, thus they can better reproduce the 241 

behavior of the structure in the pre-yield segment. However, they cannot capture the post-242 

capping response of the system and they often fail to converge in the region of negative global 243 

lateral stiffness. On the contrary, phenomenological lumped plasticity elements can model the 244 

post-capping response but often fail to capture the transition of the system from the initial 245 

uncracked stiffness to the cracked one, thus they cannot fully reproduce the pre-yield structural 246 

behavior (Haselton et al. 2007). At the same time, they offer easier convergence, thus they can 247 

be applied when NRHA is performed to assess the structural behavior even close to collapse.  248 

Given the relative strengths and weaknesses of each modelling type, we expect different 249 

degrees of bias in the estimation of EDP response given the IM level. For low IMs, the lumped 250 

plasticity model cannot capture the pre-yield evolution of member stiffness, thus leading to 251 

lower, or unconservatively biased, variability estimates. This tendency is evident in the IDA 252 

curves, especially when plotted in terms of 5%-damped first-mode spectral acceleration 253 

Sa(T1, 5%). It can only be partially observed in Fig. 3a-b due to the use of AvgSa as the IM, 254 

which tends to increase the record-to-record variability in the elastic range, involving, e.g., 255 

“elongated” periods that only become relevant after yield. A higher median EDP response is 256 

also observed for the distributed plasticity model. Although this latter observation is not 257 
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necessarily generalizable, it surely tells us that, for the case at hand, the lumped plasticity model 258 

underestimates both the median and the dispersion of EDP given IM. For higher IMs, the 259 

distributed plasticity model is clearly disadvantaged by its propensity for non-convergence, 260 

being unable to reliably predict the post-capping response. It offers conservative biased-high 261 

estimates of EDP given IM, or conversely biased-low estimates of the distribution of IM given 262 

EDP for practically any fragility in the post-capping region.  263 

The aforementioned observations can cast doubt on the suitability of either single model 264 

for fragility assessment, and point to the potential for improvement by combining their 265 

respective results. As a minimalistic example, in the spirit of multi-stripe analysis (MSA, 266 

Jalayer and Cornell 2009), we shall employ two stripes of EDP given IM from each model, as 267 

schematically presented in the conceptual algorithmic process of Fig. 4. The lower stripes come 268 

from the distributed plasticity model and target the pre/near-yield response, while the two 269 

higher stripes come from the lumped plasticity model to better capture the post-yield and near-270 

collapse behavior. More stripes, cloud analysis (Jalayer 2003) or IDA can also be employed, 271 

to obtain the IM – EDP representation of the source models. Even different methods can be 272 

adopted for the two source models without problems. In the end, we seek to determine a single 273 

5-parameter surrogate that incorporates both sets of results to optimally determine the 274 

fragilities of interest.  275 

Weighted regression is our method of choice for fitting the 5-parameter surrogate to 276 

combine the outputs of the lumped and the distributed plasticity models. This is fairly 277 

straightforward for fitting collapse-level data, as one would expect to derive the collapse 278 

fragility based on the more reliable model for that range of response, thus giving full weight to 279 

the lumped plasticity model. Assigning model weights a priori to non-collapse results is a more 280 

difficult premise. For instance, if N low-fidelity data points are to be mixed with M << N high-281 

fidelity points, the higher number of low-fidelity points will dominate the result, unless a 282 

significantly higher weight is assigned to the few high-fidelity points, so that they can still have 283 

an impact on the mixed model. Similarly, when EDP results at multiple IM levels are mixed, a 284 

few high IM and EDP values can have a disproportionally higher leverage relative to the lower 285 

ones, easily acting as outliers that can dominate the regression, potentially causing bias in low-286 

IM estimates of response. Finally, the fragilities targeted also play a role; for example, one 287 

would emphasize the lower IM stripes if mainly serviceability level limit-states are of interest. 288 

As a potential solution, we propose the concept of an IM-based Degree of Preference 289 

(DOP), whereby a user declares his/her relative confidence per model given the IM level. Then, 290 

a direct search optimization algorithm is employed for determining near-optimal regression 291 
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weights that minimize the difference among the mixed model’s fragility and the target/ideal 292 

fragilities as computed based on the DOPs. 293 

 294 

Fig. 4 Conceptual approach for mixing structural models of different accuracy via the 5-parameter 295 

model. The numbers indicate the corresponding steps of the WeightSearch algorithm. 296 

Degree of preference, target fragilities, and optimal mixing weights 297 

The DOP is loosely defined as the analyst’s degree of belief on the applicability of each source 298 

model given the IM level. Mathematically speaking, it is a function, DOPi(IM), per each model 299 

i = 1,…, Ν, where: 300 

   ( ) ( )
1

0 1, 1
N

i i

i

DOP IM DOP IM
=

  =
 

(4) 

It may have any shape, but complicated functions are not recommended unless they have an 301 

explicit physical meaning. For our purposes, a linear function will be adequate. 302 

A definition akin to Eq. (4) but parameterized on the EDP may seem to be more 303 

straightforward, as specific EDP thresholds can better (and a priori) delineate regions of 304 

differing structural behavior compared to IM thresholds. However, this can become 305 

problematic if MSA is applied with records coming from a hazard-consistent selection process 306 

(e.g., Lin et al 2013a,b). Then, placing differing weights on the results of records selected as a 307 

single set may cause inconsistency with the hazard, partially defeating the purpose of selection. 308 

To avoid such pitfalls and any associated complex workarounds, we shall opt for the 309 

practicality of DOPi(IM) rather than the intuitive simplicity of DOPi(EDP).  310 

The purpose of the DOP is to allow estimating an intermediate proxy, termed the target 311 

fragility curve, Ptgt,j[EDP > EDPC,j | IM], for limit state j characterized by a threshold EDP 312 
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capacity of EDPC,j, by combining the corresponding fragilities Pi,j[EDP > EDPC,j | IM] of the 313 

source models weighted by the DOP of each model as: 314 

 ( ), , , ,

1

[ | ] [ | ]
N

tgt j C j i i j C j

i

P EDP EDP IM DOP IM P EDP EDP IM
=

 =    (5) 

Fig. 5 shows two examples of DOP functions as well as the corresponding target fragility 315 

curves that are computed via Eq. (5). Specifically, Fig. 5b shows the target fragility curve when 316 

constant DOPs are assumed (Fig. 5a), while Fig. 5d shows the target fragility when linear DOP 317 

functions are adopted that range from 0 to 1 (Fig. 5c). 318 

  

(a) constant DOPs (b) target fragility for constant DOPs 

  

(c) ramp DOPs (d) target fragility for ramp DOPs 

Fig. 5 Two examples of DOPs and the resulting target fragilities for combining two arbitrary models, 1 319 

and 2. The constant DOPs of (a)-(b) imply a consistent preference of model 2 over model 1 for any IM. 320 

The ramp DOPs of (c)-(d) assume that the fidelity of model 2 increases over model 1 with the IM level. 321 

The target fragility is not necessarily what one would like to employ as the final fragility 322 

estimate, as for some DOP choices it may not even resemble a traditional fragility; it is only a 323 
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proxy to help us determine the candidate fragility that best matches the analyst’s preference. 324 

For any given limit-state this is achieved by selecting the mixed-model fragility 325 

Pmixed,j[EDP > EDPC,j | IM] having the minimum “distance” Dj from the target fragility. Several 326 

options are available to quantify the difference of the two distributions. Potential choices are 327 

the relative entropy or Kullback-Leibler divergence (Tsioulou and Galasso 2018), the Cramer-328 

Von Mises distance (Parr 1981), and the absolute area difference. The latter, is simply the 329 

integral of the absolute difference between the two cumulative distribution functions, and it is 330 

our baseline choice:  331 

 , , , ,

0

| | dj tgt j C j mixed j C jD P EDP EDP IM P EDP EDP IM IM

+

   =  −    
 

(6) 

One may further refine the distance metric of Eq. (6) by emphasizing divergence in the lower 332 

left tail, which often figures more prominently in risk assessment (due to the higher frequency 333 

of the IM level) than the corresponding right tail. 334 

Minimizing Eq. (6) separately per each limit-state fragility j = 1,…,M would lead to M 335 

different 5-parameter surrogates and corresponding weights for their fitting. Instead, for 336 

reasons of logistical simplicity, a single mixed model (and set of weights) may be employed to 337 

determine all limit-state fragilities. Then one should seek to minimize a combination of all Dj, 338 

such as Dtot, the sum of the distances for all limit states of interest: 339 

 
1

M

tot j

j

D D
=

=
 

(7) 

Having all our machinery in place, it now becomes a straightforward application of direct 340 

search to determine optimal (or near-optimal) weights for the model mixing, as indicatively 341 

presented for mixing two source models via the WeightSearch algorithm, following the 342 

conceptual model of Fig. 4: 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 
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Algorithm WeightSearch: Selection of near-optimal mixing weights for two source models  351 

As the very first step of the WeightSearch algorithm we need to determine IM − EDP pairs 352 

for each source model. To do so effectively, we need to keep in mind the end game of step 3, 353 

i.e., fitting a 5-parameter surrogate per source. Given the differing predictive power of the 354 

source models, it actually makes sense to fit only the non-collapse part of Eq. (2) for the 355 

distributed plasticity model, i.e., only 3 parameters, effectively assuming that the probability 356 

of collapse is zero, and both parts (all five parameters) for the lumped plasticity. Of course, this 357 

means that the source fragilities determined in step 6 for the distributed plasticity model make 358 

little sense for large EDPC values near collapse. Yet, this is of little concern if an appropriate 359 

DOP is selected that deemphasizes the distributed plasticity model results for high IM values, 360 

e.g., as in Fig. 5c, thus allowing the target fragility of step 7 to be dominated by the lumped 361 

plasticity model at high IMs. Following the pre-processing part of steps 1-9, we select the 362 

collapse fragility of the lumped plasticity model for the mixed model in step 10, and then we 363 

enter the direct search of steps 11-21, iteratively trying K different weight combinations, and 364 

culminating in step 22 with the selection of those that provide the lowest total distance, Dtot, 365 

from the target fragilities. 366 

1 for i = 1 to 2 source models 

2  obtain the IM-EDP pairs of source model i 

3  fit the 5-parameter surrogate to source model i  

4  determine the DOPi (IM) 

5  for j = 1 to M limit states  

6   calculate i-th source fragilities Pi,j[EDP > EDPC,j | IM] from the 5-parameter surrogate 

7   calculate Ptgt,j[EDP > EDPC,j | IM] via Eq. (5) 

8  end for 

9 end for 

10 select the mixed model’s collapse fragility P[C | IM] from the most reliable source model for collapse 

11 for k = 1 to K weights 

12  assign weight w1 = 1/(2K) + (k-1)/K on the non-collapse data of source model 1 

13  assign weight w2 = 1 – w1 on the non-collapse data of source model 2 

14  fit the 3-parameters of Eq. (2) via (w1, w2)-weighted regression  

15  for j = 1 to M limit states 

16   calculate mixed fragility Pmixed,k,j[EDP > EDPC,j | NC, IM] from the fitted 3-parameters 

17   find Pmixed,k,j[EDP > EDPC,j | IM] via Pmixed,k,j[EDP > EDPC,j | NC, IM] and P[C | IM] via Eq. (1) 

18   calculate Dj,k via Eq. (6) 

19  end for 

20  calculate Dtot,k via Eq. (7) 

21 end for 

22 select weight combination k corresponding to the minimum Dtot,k 
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Note that a prerequisite of applying the WeightSearch algorithm is being able to fit at least 367 

the non-collapse part of the 5-parameter surrogate to both source models, thus being able to 368 

actually derive fragilities from both. Where insufficient data is available to allow such fitting 369 

per source, as in the case of having just a few sparse time history analyses, only one or two 370 

parameters out of the three in Eq. (2) may be fitted. Then, the DOP approach is an overkill, and 371 

a priori weight assignments may be preferable or even more intuitive, as will be discussed in 372 

the second application example (Section 4). 373 

Application to the case-study building 374 

Τhe IM − EDP characterization for the case study building is determined by performing two 375 

stripes of analyses on each source model. An interesting question of computational significance 376 

is how many records to use per stripe. An optimal number would depend on parameters such 377 

as the type of the structure, as well as the IM and EDP used. In our case we have selected 378 

relatively well-behaved variables for the IM and EDP, i.e., AvgSa and θmax, with dispersions in 379 

the order of 30-40%. In similar EDP situations, Baltzopoulos et al. (2018) employed a 380 

minimum of 20 records per stripe. In our case, thanks to the good performance of AvgSa and 381 

to showcase a relatively frugal application, a single set of 9 ground motion records is adopted 382 

that are randomly selected out of the 44 records of FEMA P695. Taking in regard the relative 383 

advantages of each model, the stripes of the distributed plasticity model are performed at 384 

relatively low AvgSa values equal to 0.10g and 0.15g, while higher values of 0.60g and 1.00g 385 

are employed for the lumped plasticity model, aiming to capture the behavior closer to the 386 

collapse region, as shown in Fig. 6. 387 

 

 

 

 

Fig. 6 The four IM-EDP stripes, showing both 

collapse (C) and non-collapse (NC) points. 

Fig. 7 DOPs assumed for the distributed and the 

lumped plasticity model. 
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The power-law fit of the non-collapse data is presented in Fig. 8 for the lumped and the 388 

distributed plasticity models. Only the first stripe, i.e. at 0.6g, is considered in the non-collapse 389 

fit of the lumped plasticity model assuming b = 1, while the other one having more than 16% 390 

of collapses is omitted. In the low-IM stripes of the distributed plasticity model, all records 391 

achieved convergence; thus unreliable “collapse” points did not appear. If that was not the case, 392 

such data would be neglected in the fitting of the collapse fragility, effectively assigning a 393 

weight of 1.0 to the lumped plasticity estimates of collapse. In the high-IM stripes of the lumped 394 

plasticity model, both collapse and non-collapse points appeared. Furthermore, each stripe has 395 

a different percentage of collapsed points. Had the same percentage been estimated, we would 396 

either have to add more records to the two stripes, or simply add a new stripe to be able to 397 

achieve a full-range estimate of the collapse fragility.  398 

  399 

Fig. 8 Non-collapse IM − EDP pairs from the lower three stripes of Fig. 6, as considered in the power-400 

law fit of the lumped plasticity (dashed line) and the distributed plasticity model (continuous line). The 401 

power-law based approximation of the mixed model is also presented in magenta. 402 

Having established the IM − EDP points, the relative DOPs are assumed to follow a ramp 403 

pattern, linearly varying within 0g and 0.6g and remaining constant thereafter as shown in Fig. 404 

7. This corner IM point is selected to be at the level of the first high-IM stripe employed for 405 

the lumped plasticity model. Different choices would obviously present different final results, 406 

still there is a wide range of IMs where the precise corner point value is of secondary 407 

importance.  408 

Herein, a single mixed model is to be determined for the four limit states considered at θmax 409 

capacities, θmax,C = 0.015, 0.02, 0.025 and 0.030. The source fragilities, resulting from fitting 410 

the power-law approximation on the distributed plasticity model and the 5−parameter surrogate 411 

to the lumped plasticity model, are presented in Fig. 9a-d for all limit states of interest. The 412 
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target fragilities resulting from combining the fragilities of the source models based on the pre-413 

defined DOPs via Eq. (5) are then determined. Their shape does not necessarily resemble the 414 

“classic” S-shaped fragilities (Fig. 9a), or even conform to the monotonicity expected of a 415 

fragility curve (Fig. 9b-d), due to the DOPs ramp-shape. Still, this is of no concern, as the target 416 

fragility is only meant to serve as a simple proxy. 417 

The mixed model non-collapse fit that offered the fragilities best matching the target curves 418 

(i.e., with the lowest total distance Dtot) is presented in Fig. 8. The resulting mixed fragility 419 

curves lie between the source fragilities in all cases, as shown in Fig. 9a-d. As required, they 420 

all lean towards the distributed plasticity model for lower IMs, and veer off towards the more 421 

reliable lumped plasticity model at higher IMs, with this change occurring earlier (in IM terms) 422 

as a higher-damage fragility is sought. To achieve this transition within the constraints of the 423 

5-parameter model, the mixed curves show a larger dispersion compared to the source ones, 424 

necessitated by the need for a shallower slope around the median to capture the two different 425 

source models. As a result, at the low left tail, some minor overlapping of the mixed fragilities 426 

and the distributed plasticity source fragility occurs. If this is undesirable, given the 427 

significance of the lower tail for risk assessment, additional constraints may be added to the 428 

optimization algorithm. 429 

The median and dispersion values, assuming lognormality, of the fragility curves for the 430 

lumped, the fiber and the mixed model for all limit states are listed in Table 1. The fiber model 431 

shows constant dispersion per the non-collapse power-law model while this constant dispersion 432 

is further modulated by the collapse fragility in the case of the lumped-plasticity model. Note 433 

how in the latter case the dispersion decreases with the IM as AvgSa is better performing away 434 

from the elastic region where “elongated periods” captured by AvgSa come into play. The 435 

mixed model, by virtue of combining both models, naturally employs a larger starting 436 

dispersion that converges to the lower lumped-plasticity dispersion close to collapse.  437 

Countless other improvements can be incorporated, ranging from using different surrogates 438 

as a basis, to mixing more models and using different weighting approaches. These will 439 

probably come out naturally as different applications are tackled. Still, even the baseline 440 

approach proposed herein is enough to generate a single mixed model surrogate from disparate 441 

sources that conforms to the model with the higher validity in each region of response.  442 
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(a) fragility curves for θmax,C = 1.5% (b) fragility curves for θmax,C = 2.0% 

  

(c) fragility curves for θmax,C = 2.5% (d) fragility curves for θmax,C = 3.0% 

Fig. 9 Fragility curves for all examined limit states. For each limit state the two source fragilities, the 443 

target, and the mixed fragility are presented. 444 

Table 1 Fragility curve median and dispersion values in terms of AvgSa, assuming lognormality, for 445 
all models and limit states. 446 

Model 

Limit State     
Fiber Lumped Mixed 

θmax,C = 1.5% 0.20 (31%) 0.46 (34%) 0.31 (56%) 

θmax,C = 2.0% 0.25 (31%) 0.59 (29%) 0.48 (48%) 

θmax,C = 2.5% 0.30 (31%) 0.67 (24%) 0.62 (37%) 

θmax,C = 3.0% 0.35 (31%) 0.71 (21%) 0.69 (28%) 

4 Application 2: Mixing different structural analysis types 447 

The approximation of the multi degree-of-freedom (MDOF) structure via an equivalent single 448 

degree-of-freedom (ESDOF) model renders SPO analysis the preferred option for many 449 
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applications since it offers computational simplicity and can be implemented with ease. In the 450 

context of seismic codes (e.g., ASCE 41-13, 2014 or EN1998-3, 2005), SPO is used to provide 451 

a single estimate of the EDP response for a given level of seismic intensity, yet it is often 452 

disregarded that the ESDOF approximation can also be adopted to comprehensively assess the 453 

dynamic response of the structure. This SPO/ESDOF approach requires following a procedure 454 

similar to the one appearing in current codes, namely (i) performing SPO analysis on the 455 

MDOF structure, (ii) obtaining the SPO curve of the ESDOF system, (iii) fitting a piecewise 456 

linear function to the SPO curve, (iv) estimating the seismic demand of the ESDOF system 457 

based on the SPO curve, and (v) translating the ESDOF seismic demand to the MDOF 458 

response.  459 

The important difference between typical code-style application and a full-range 460 

estimation comes in the fourth step, i.e., the estimation of ESDOF seismic demand. Typically, 461 

one would employ R-μ-T (strength ratio-ductility-period) relationships to determine a central 462 

value (mean or median) of the ESDOF displacement response given the intensity level of 463 

interest, usually in terms of Sa(T1, 5%) (see Miranda 2001 and references therein). Instead, the 464 

full distribution of demand can also be obtained. This is typically assumed to follow the 465 

lognormal distribution, characterizing the EDP | IM response by two parameters, i.e., the 466 

conditional mean and variance. Both parameters can be assessed either by subjecting the 467 

ESDOF to a number of dynamic analyses, e.g., via the open-source tools developed by 468 

Baltzopoulos et al. (2018), Elkady and Lignos (2018), or by employing advanced R-μ-T 469 

relationships, such as the ones proposed by Ruiz-García and Miranda (2007) for elastoplastic 470 

oscillators, or the SPO2IDA tool (Vamvatsikos and Cornell 2006, Baltzopoulos et al. 2016) for 471 

oscillators with complex quadrilinear backbones. 472 

Assessing the MDOF response using the ESDOF as a basis inevitably brings in all the 473 

weaknesses associated with the ESDOF approximation of the mean and/or variance of dynamic 474 

response. The ESDOF model cannot accurately reproduce complex dynamic characteristics of 475 

the MDOF, potentially resulting in biased mean estimates of the seismic demand, especially in 476 

cases of tall or plan-asymmetric buildings. Regarding variance, the ESDOF model can only 477 

capture the record-to-record variability in the first-mode, while being unable to reproduce the 478 

additional variability contributed by higher modes. 479 

These issues reduce the fidelity of SPO-based results and render one unable to recommend 480 

the SPO/ESDOF approach with some confidence as a generally viable method. The question, 481 

thus, remains: Can one still ride this trusty old workhorse of seismic assessment to deliver 482 
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credible results in a performance-based world? Perhaps yes, with a pair of new horseshoes. In 483 

this regard, Baltzopoulos et al. (2017) proposed a methodology to assess the missing variability 484 

in the elastic range and inject it back into the SPO/ESDOF estimate, using precomputed 485 

dynamic analysis results of simplified MDOF systems. Similarly, a limited number of “just-in-486 

time” computed dynamic analyses of the MDOF model can be employed to refine the 487 

SPO/ESDOF mean estimate of response. This allows taking advantage of the full-range 488 

computational capability of the ESDOF and then bias-correcting the less-than-ideal estimate 489 

using MDOF results. In line with our mixed model concept, a minimalistic approach is offered 490 

herein to combine pushover and dynamic analysis source results into a single mixed 5-491 

parameter surrogate that is suitable for fragility assessment, as schematically presented in the 492 

flowchart of Fig. 10. This approach is illustrated by means of an example for the lumped 493 

plasticity model of the case-study building. 494 

 495 

Fig. 10 Conceptual flowchart of mixing structural analyses of different accuracy: the case of static 496 

pushover and nonlinear response history analyses. 497 

The SPO-based approximation of IDA 498 

The SPO analysis of the MDOF model (Fig. 11a) is used as a basis to determine the backbone 499 

curve of the ESDOF oscillator, e.g., following the recommendations of Fajfar (2000): The 500 

MDOF Vbase and roof displacement are divided by the first-mode participation factor, Γ, while 501 

the first-mode effective mass, m*, is adopted for the oscillator. To achieve a simpler 502 

representation of the ESDOF backbone, a piecewise linear function can be fitted. For the case 503 

at hand, a bilinear backbone curve is adopted. De Luca et al. (2013) suggested that the elastic 504 

segment of bilinear backbones should match the elastic stiffness of the SPO curve, especially 505 

for structures that are not characterized by significant stiffness changes. This is the expected 506 
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behavior of the case-study lumped plasticity model since by its nature it cannot reproduce 507 

concrete cracking and gradual plastification of sections, thus resulting in minor stiffness 508 

changes in the elastic range. Consequently, the elastic segment of the bilinear fit is selected to 509 

match the initial stiffness of the SPO curve. The post-yield linear segment of zero stiffness 510 

matches the maximum base shear and the horizontal plateau ends at the deformation limit of 511 

0.33 where more than 20% of the maximum base shear is lost per De Luca et al. (2013). The 512 

resulting SPO of the ESDOF model as well as its bilinear fit are presented in Fig. 11b. Given 513 

the nominal yield displacement, δy
*, and yield force, Fy

*, the resulting period, T*, of the ESDOF 514 

is estimated as 2 y yT m F   =   , almost perfectly matching the MDOF’s T1 by construction; 515 

thus, they are going to be used interchangeably henceforth. 516 

 

 

 

 

(a) MDOF (b) ESDOF 

Fig. 11 Static pushover curve of (a) the lumped plasticity model and (b) its bilinear fit in ESDOF 517 

terms. 518 

For illustrative purposes, and to dispense with any further approximations introduced even 519 

by elaborate R-μ-T relationships such as SPO2IDA, the bilinear-backbone ESDOF is directly 520 

subjected to IDA to assess its seismic response using the far-field ground motion set of FEMA 521 

P695. The resulting IDA curves are presented in Fig. 12a along with their 16%, 50% and 84% 522 

IDA fractiles in terms of Sa(T1, 5%) and θmax, where T1 is the period of the lumped plasticity 523 

MDOF model. A cut-off limit is employed in IDA results for ESDOF displacement equal to 524 

0.33, as imposed by the ultimate ductility of the fitted bilinear backbone (Fig. 11b). The grey 525 

rectangle of Fig. 12a highlights that all IDA fractiles of the SPO/ESDOF approach coincide 526 

for low Sa(T1, 5%) values, where the ESDOF behaves elastically thus resulting in zero response 527 

variability.  528 
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For comparison purposes, IDA curves and IDA fractiles are also presented in Fig. 12b for 529 

the lumped plasticity model in terms of Sa(T1, 5%) and θmax. The 50% IDA fractile of the 530 

SPO/ESDOF approach appears somewhat shifted to the left in respect to that of the MDOF, 531 

indicating that bias is introduced in the median SPO/ESDOF estimate. In any case, obtaining 532 

the same median estimate from the two different approaches would be quite fortuitous since 533 

multiple approximations are involved in the SPO/ESDOF. Herein this results in 534 

underestimation of the true MDOF response. While this outcome tends to occur fairly often, it 535 

cannot be generalized as it is attributed to many user-selected factors. One is the fitting of the 536 

oscillator backbone, with different fits resulting to changes in the SPO/ESDOF estimates. 537 

Another could be the lateral load pattern used in the SPO analysis. In our case, a first-mode 538 

proportional lateral load pattern is adopted, but adaptive load patterns that allow accounting for 539 

stiffness changes, changes of the modal characteristics and period elongation of the structure 540 

(Elnashai 2001) could potentially better reproduce the behavior of the MDOF in the negative 541 

stiffness segment. Regardless of the approach adopted, such bias should always be expected 542 

when an ESDOF is used in place of the MDOF; it is of more interest now to show how one can 543 

take advantage of the higher-fidelity MDOF model to bias-correct the SPO/ESDOF estimate 544 

at a low computational cost. 545 

 

 
 

(a) SPO/ESDOF (b) MDOF  

Fig. 12 IDA analysis results (grey) and 16%, 50% and 84% IDA fractiles (black) from (a) the 546 

SPO/ESDOF approach (with a grey rectangle showing the area of pure linear-elastic response) versus 547 

(b) the MDOF model. 548 

Bias-correction via a single MDOF stripe 549 

Any number of MDOF analyses can be employed to improve upon the SPO/ESDOF results. 550 

Ideally, one could employ several MDOF stripes or even a cloud of MDOF data and combine 551 
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them within a weighted regression scheme (similar to Section 3) to determine the mixed model 552 

per a user’s preferences. Still, as the number of MDOF analyses increases, the usefulness of 553 

the SPO/ESDOF combination disproportionately diminishes. Frugal options are of more 554 

practical interest.  555 

Actually, even a single stripe of, say, five to ten MDOF dynamic analyses can offer usable 556 

information on the seismic response. Assuming mostly non-collapse points are recorded, such 557 

a limited number of analyses can typically provide a better estimate of the median EDP | IM 558 

response than the SPO/ESDOF, but not necessarily of the dispersion, which tends to be 559 

underestimated by small samples. Still, there are cases where even small samples can provide 560 

a viable estimate of the dispersion, for instance, if ground motion records are selected via a 561 

stratified (rather than random) sampling scheme, as performed, e.g., by the Conditional 562 

Spectrum approach (Lin et al. 2013a,2013b, Kohrangi et al. 2017). Then, a stripe of ten MDOF 563 

analyses may offer a competitive estimate of dispersion. Nevertheless, for reasons of generality 564 

the MDOF model is only employed herein for updating the median non-collapse response 565 

estimate and/or the collapse fragility. Therefore, the MDOF stripe results are selectively 566 

assimilated into the 5-parameter surrogate as shown in Table 2. 567 

Table 2 Source model used to compute each parameter of the mixed 5-parameter surrogate. 568 

The probability of collapse of the MDOF model, Pstripe = P[C | IM=IMstripe], given the 569 

stripe’s IM level, IMstripe, can be directly computed as the fraction of ground motion records 570 

that cause structural collapse out of the total number of records used in the stripe. Depending 571 

on the value of Pstripe, the MDOF model can be used to update the non-collapse and/or collapse 572 

estimate obtained by the SPO/ESDOF, as presented in Table 2. In general, if a single stripe is 573 

to be performed on the MDOF model, the IMstripe should be selected so that the resulting 574 

Pstripe is preferably lower than 0.5, and optimally lower than 0.16, since in the latter case the 575 

Data (Fit) Parameter MDOF or SPO/ESDOF model? 

Non-collapse data 

(power-law regression fit) 

a 
if Pstripe ≤ 0.16 then MDOF, 

else SPO/ESDOF 

b SPO/ESDOF 

σlnε SPO/ESDOF 

Collapse data 

(lognormal MLE fit) 

θ 
if Pstripe in [0.2, 0.8] then MDOF,  

else SPO/ESDOF 

β 
if Pstripe in (0,0.2) or (0.8,1) then MDOF, 

else SPO/ESDOF† 

†
 if Pstripe = 1 the MDOF stripe is mostly discarded 
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MDOF can also be used to bias-correct the non-collapse estimate obtained by the SPO/ESDOF. 576 

Obviously, if Pstripe = 1.0, the MDOF is essentially disregarded since it cannot be used for 577 

updating neither collapse or non-collapse SPO/ESDOF results. It can only provide some 578 

limited value, e.g., within an appropriate MLE refitting of the collapse fragility, if the 579 

SPO/ESDOF predicts a non-unitary collapse probability at the IMstripe level.  580 

Regarding the non-collapse data, the power-law model of Eq. (2) is regressed on the non-581 

collapse data of SPO/ESDOF to estimate the aESDOF, bESDOF, and σlnε-ESDOF parameters. If few 582 

or no collapses appear in the MDOF model, i.e., Pstripe ≤ 0.16, then the analysis results of the 583 

MDOF are used to refine the a estimate of the power-law model, thus aESDOF is substituted by 584 

aMDOF while the other two parameters are maintained constant. This is equivalent to shifting 585 

the linear fit of Eq. (2) in log-log space to match the median value implied by the MDOF while 586 

keeping the same intercept and variability. Consequently, the 3 parameters that describe the 587 

power-law-based approximation of the mixed model are aMDOF, bESDOF, and σlnε–ESDOF. On the 588 

contrary, if more than 16% of collapses appear in the MDOF model, then the parameters of the 589 

power-law approximation are directly derived from SPO/ESDOF, thus being aESDOF, bESDOF, 590 

and σlnε–ESDOF. 591 

Regarding collapse fragility, if no collapses appear in the MDOF stripe, the collapse 592 

fragility curve of the mixed model is directly obtained from the SPO/ESDOF. If, instead, 593 

MDOF collapse data is available, the point-estimate of the collapse probability, i.e., 594 

Pstripe−IMstripe, can be used to refine the collapse fragility curve obtained from SPO/ESDOF. If, 595 

say, 0.20 ≤ Pstripe ≤ 0.80 then the median value of the collapse fragility can be modified so that 596 

the fragility curve passes from the point estimate, while maintaining the same dispersion, β, as 597 

schematically presented in Fig. 13a. The median value of the modified distribution, ΙΜ50,m, can 598 

be computed as: 599 

 ( )1

50,ln lnm stripe stripeIM IM P −= −   (8) 

where Φ-1(∙) is the inverse of the standard normal cumulative distribution function. Obviously, 600 

the further away the point estimate is from the median (e.g. Pstripe < 0.2 or Pstripe > 0.8), the 601 

more haphazard such an approach becomes, as a tail-point would be used to bias correct a 602 

central value. In such cases, using the stripe information to bias correct the variability may 603 

become a more prudent choice, essentially rotating the initial lognormal curve around its 604 

median, IM50, as shown in Fig. 13b. The modified dispersion, βm, of the lognormal fragility 605 

curve in this case can be computed as:  606 
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 607 

For the case-study building, the stripe analysis is performed on the MDOF model at the IM 608 

level with 10% probability of exceedance in 50 years, estimated at 0.62g via site-specific 609 

seismic hazard analysis. The 7 ground motion records that are used for the analyses are 610 

randomly selected from the FEMA P695 far-field ground motion set. The obtained EDP | IM 611 

response of the MDOF model is presented in Fig. 14a. To allow fitting Eq. (2) and (3) the IDA 612 

analysis results of the ESDOF model are interpolated to produce multiple stripes of 44 points 613 

each, as shown in Fig. 14a where light grey color is used for the non-collapse points of stripes 614 

having more than 16% collapses and dark grey color for the lower ones.  615 

  

(a) updating the median (b) updating the dispersion 

Fig. 13 Two options for updating the probability of collapse of the SPO/ESDOF approach to match the 616 

point estimate of the MDOF stripe: (a) The median of the lognormal fragility curve (grey triangle) is 617 

shifted to allow matching the point estimate (green bullet point) while the dispersion is kept constant, 618 

or (b) the dispersion of the lognormal fragility curve is modified to allow matching the point estimate 619 

(green bullet point) while the median value (grey triangle) is kept constant. 620 
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(a) non-collapse points from the stripe analyses 

of the SPO/ESDOF and the MDOF.  

(b)  power-law fit of the SPO/ESDOF and 

mixed models  

Fig. 14 (a) Stripe analysis results of the SPO/ESDOF and the MDOF models and (b) power-law fit on 621 

the non-collapse data. The stripe analysis results shown by the rhombi and the crosses are performed at 622 

the same IM level, but they appear shifted for illustrative purposes. 623 

The power-law based approximation is fitted on the stripes of the SPO/ESDOF model with 624 

less than 16% collapses, i.e., P[C | IM] < 0.16, to derive the pure pushover-based 625 

approximation, and then shifted to the right to predict higher EDP responses for any given IM 626 

per the MDOF stripe results, as aESDOF is substituted by aMDOF to determine the mixed power-627 

law fit of the non-collapse data (Fig. 14b). Since collapse data is not available in the MDOF 628 

stripe, the collapse fragility curve is directly derived from the SPO/ESDOF.  629 

The fragility curves resulting from fitting the 5-parameter model on the SPO/ESDOF stripe 630 

results are presented in Fig. 15a−c for three indicative limit states defined at θmax,C = 0.01, 0.02 631 

and 0.03. Note that the estimated ESDOF response distribution is practically identical to the 632 

predictions of the Ruiz-Garcia and Miranda (2007) relationships. In other words, we could 633 

achieve similar results by recreating stripes via sampling the distributions of response implied 634 

from published R-μ-T relationships, rather than performing IDA of the ESDOF system. The 635 

fragility curves of the mixed 5-parmeter surrogate as well as the lognormally fitted fragility 636 

curves computed by the full IDA results are also presented for both SPO/ESDOF and MDOF; 637 

obviously, running IDA on the latter is not required by the aforementioned procedure, only 638 

done for comparing. In all cases, the median and dispersion parameters of the lognormal fit of 639 

the fragilities are reported in Table 3. 640 

First of all, to understand the limitations of the 5-parameter surrogate we should critically 641 

evaluate its fitting of the SPO/ESDOF results (denoted as SPO/ESDOF 5-parameter fit) against 642 

the underlying data (denoted as SPO/ESDOF IDA). As Fig. 15a–c show, these are fairly close 643 
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at lower intensities but not as well matched higher up. Still, a fair matching can be claimed if 644 

one considers the simplification involved with using only 5 parameters. A better matching can 645 

be achieved if a more flexible parametric form is fitted, such as a smoothing spline or an 646 

elaborated fitted expression, but this is outside our present scope. Overall, though, this inability 647 

of the 5-parameter model to “perfectly” capture the underlying data is expected to propagate 648 

itself to the mixed-model results. 649 

When pitting the SPO/ESDOF against the MDOF IDAs, it becomes clear that the fragilities 650 

of the former appear on the right of the MDOF fragilities, indicating an underestimation of 651 

response, as the ESDOF is clearly introducing bias in the assessment. Attempting to remove 652 

this bias via the model mixing comes with, admittedly, mixed results when only 7 records are 653 

employed. The 5-parameter surrogate does indeed shift the actual SPO/ESDOF fragility curves 654 

to the left, but it tends to overcorrect as the median of the 7 records led it slightly astray. Still, 655 

it can be claimed that it adequately corrects the bias for θmax,C = 0.01 and 0.03, but not as well 656 

for θmax,C
 = 0.02. Given the low number of records, there is some non-negligible sensitivity to 657 

the actual records selected for the MDOF stripe, here manifesting itself as an overcorrection of 658 

all fragility medians, and in other cases as undercorrection. When 44 records (or in general 659 

more than the minimalistic 7) are used in the stripe (see the 44 rhombi versus 7 crosses in Fig. 660 

14a−b), the resulting fragility curves of the mixed model are closer to the ones computed from 661 

IDA on the MDOF model, thus offering an improved estimate of the structure’s behavior.  662 

 Additional inherent limitations lie within this approach: Shooting for EDPC values outside 663 

the EDP range obtained from the MDOF stripe, where not enough data is available, requires 664 

extrapolating the data and potentially increases the error. Nevertheless, data sparsity is a 665 

problem of its own and cannot be magically solved by a surrogate. Given the initial conditions 666 

and the limited data at hand, it is hard to argue that a better fragility estimate can be found 667 

without adding more MDOF dynamic analyses.  668 

Table 3 Fragility curve median and dispersion values, in terms of Sa(T1,5%) assuming lognormality, 669 
for all approaches and limit states. 670 

Approach 

 

 

Limit State     

MDOF  

44 records 

IDA 

SPO/ESDOF  

44 records 

IDA 

SPO/ESDOF  

44 records  

(5-param 

model fit) 

Mixed  

7-record 

MDOF 

stripe 

Mixed  

44-record 

MDOF 

stripe 

θmax,C = 1.0% 0.38 (18%) 0.43 (12%) 0.45 (19%) 0.31 (19%) 0.38 (19%) 

θmax,C = 2.0% 0.84 (25%) 0.97 (30%) 0.90 (19%) 0.64 (18%) 0.79 (18%) 

θmax,C = 3.0% 1.07 (27%) 1.29 (33%) 1.21 (25%) 0.95 (19%) 1.11 (22%) 
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(a) fragility curves for θmax,C = 1.0% (b) fragility curves for θmax,C = 2.0%  

  

(c) fragility curves for θmax,C = 3.0% 

Fig. 15 Fragility curves for all examined limit states.  672 

5 Conclusions 673 

Mixed probabilistic demand models can combine different analysis options of multiple 674 

fidelities into a single surrogate that is suitable for fragility assessment. The examples shown 675 

use as a vehicle the 5-parameter power-law-based surrogate and they enable us to obtain 676 

reliable estimates of the fragility curves even in regions where inadequate data is available. 677 

When it comes to combining structural models of different fidelities, the selection of relative 678 

weights depends on the user’s own preferences and beliefs about the validity of each model in 679 

each region: By modifying the relative weights, the mixed probabilistic seismic demand model 680 

is capable of capturing the response of each single source model and any combination in 681 

between. In contrast, when mixing different analysis methods, there is an undeniable 682 

superiority of the nonlinear dynamic versus the nonlinear static results. Still, the 5-parameter 683 

surrogate can be employed to update the full-range static pushover results via a single sparse 684 

stripe analysis of the MDOF model. The value of this approach becomes more apparent when 685 
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considering highly complex models where each response history analysis comes at a 686 

considerable cost, and taking advantage of every single point estimate available is of paramount 687 

importance. All in all, it can be claimed that the mixing of two or more seismic-demand models 688 

even via simplified surrogates is a useful tool, yielding results that are much more than a sum 689 

of their parts. 690 
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