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SUMMARY 

Nonlinear static procedures, which relate the seismic demand of a structure to that of an equivalent single-degree-of-

freedom (SDOF) oscillator, are well-established tools in the performance-based earthquake engineering paradigm. 

Initially, such procedures made recourse to inelastic spectra derived for simple elastic-plastic bilinear oscillators, but the 

request for demand estimates that delve deeper into the inelastic range, motivated investigating the seismic demand of 

oscillators with more complex backbone curves. Meanwhile, near-source (NS) pulse-like ground motions have been 

receiving increased attention, since they can induce a distinctive type of inelastic demand. Pulse-like NS ground 

motions are usually the result of rupture directivity, where seismic waves generated at different points along the rupture 

front arrive at a site at the same time, leading to a double-sided velocity pulse, which delivers most of the seismic 

energy. Recent research has led to a methodology for incorporating this NS effect in the implementation of nonlinear 

static procedures. Both of the aforementioned lines of research motivate the present study on the ductility demands 

imposed by pulse-like NS ground motions on oscillators that feature pinching hysteretic behavior with trilinear 

backbone curves. Incremental dynamic analysis (IDA) is used considering one hundred and thirty pulse-like-identified 

ground motions. Median, 16% and 84% fractile IDA curves are calculated and fitted by an analytical model. Least-

squares estimates are obtained for the model parameters, which importantly include pulse period Tp. The resulting 

equations effectively constitute an pR T T-m- - relation for pulse-like NS motions. Potential applications of this result 

towards estimation of NS seismic demand are also briefly discussed. 
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1. INTRODUCTION  

One of the key issues in performance based earthquake engineering (PBEE; e.g., [1]) is the 

assessment of seismic demand for structures expected to respond inelastically to future earthquakes 

attaining a certain intensity. Near-source (NS) seismic input merits special attention, because NS 

ground motions often contain prominent wave pulses. In fact, the engineering relevance of NS 

pulse-like ground motions has been on the rise during the past decades, since it has been recognized 

that such ground motions can induce a distinctive type of inelastic demand and can be more 

damaging than motions not displaying similar impulsive features. Perhaps the most important, 

although not unique, phenomenon that can cause NS strong ground motion to exhibit such pulse-

like characteristics is rupture forward directivity (FD). Directivity can occur because during fault 

rupture the propagation velocity of shear dislocation along the fault will typically be near shear 

wave velocity. As a consequence, there is a probability for shear wave fronts emitted from different 

points along the fault to arrive almost simultaneously at sites aligned along the direction of rupture 

propagation. This phenomenon can give rise to a constructive wave interference effect, which is 

typically observable in the velocity recording as a single double-sided, early-arriving pulse that 

contains most of the seismic energy [2], [3]. One such example of pulse-like ground motion 

registered during the 2009 LôAquila earthquake (Italy) is given in Figure 1, where the impulsive 

waveform extracted from the velocity time-history by means of the algorithm proposed by Baker 
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[4] and the associated pulse period 
pT  are shown, along with the corresponding score assigned by 

said algorithm to various horizontal orientations of the record. 

 

Figure 1. (a) Original velocity time-history of the Valle Aterno - Centro Valle recording (fault-normal component) from 

the 2009 M6.3 LôAquila earthquake (Italy), (b) velocity pulse with pulse period pT   extracted by the methodology in 

[4], (c) residual velocity signal after extraction of the aforementioned pulse and (d) polar plot of pulse indicator score  

per azimuth for all horizontal orientations of the same ground motion. 

On the other hand, procedures relating the structural seismic demand to that of an equivalent single-

degree-of-freedom (SDOF) oscillator, collectively known as nonlinear static procedures [5],[6] have 

gradually found their way into PBEE and modern codes for seismic design and assessment. At first, 

static nonlinear procedures based on inelastic spectra (e.g., [7]), employed spectra obtained from 

simple elastic-perfectly-plastic or bilinear oscillators. The adaptation of one such procedure for 

applicability  in NS conditions has been already suggested [8]. However, the request for demand 

estimates that involve larger inelastic deformations and arrive at quantifying collapse capacity 

(definition to follow), led researchers to also investigate the seismic demand of oscillators with 

more complex backbone curves such as the trilinear one in Figure 2. 

 

Figure 2. Representation of trilinear backbone curve in normalized coordinates (ductility ɛ in the abscissa and reduction 

factor R in the ordinate) and defining parameters: post-yield hardening slope ha , softening branch negative slope ca  

and capping ductility cm , which separates the hardening and softening branches. 

For the complete analytical description of this backbone curve, three parameters are required. 

First is the slope of a hardening (or perfectly plastic) branch, ha  , that simulates post-yield ductility. 

Second and third are the ñcapping pointò ductility cm  and (negative) slope ca  that define the 

softening branch. The latter intersects the zero-strength axis at ductility endm  given by Equation (1). 
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 The presence of such a softening (negative stiffness) branch is typical of the behavior of most 

structures, either brittle or ductile, that reach a maximum strength and then exhibit in-cycle 

degradation that in turn leads to strength loss. The phenomena that actually lead to negative 

stiffness in a real structure can include P-æ effects and material strength degradation (often both). 

Negative stiffness is thus encountered on the static pushover curves of different types of structures, 

such as braced steel frames, moment-resisting steel frames ([9]), concrete frames ([10]) and any 

type of structure that exhibits sensitivity to second-order effects ([11]). In general, only systems 

susceptible to brittle failures that abruptly lead to global collapse may exhibit pushover curves 

ending without a finite-slope negative stiffness segment.  

This study employs incremental dynamic analysis (IDA, [12]) in order to investigate the 

seismic demand of tri-linear backbone oscillators, when subjected to NS-FD ground motions. The 

ultimate goal is that of developing an analytical model for median NS pulse-like demand and the 

associated dispersion. IDA can be a computationally intensive procedure. This fact motivated 

Vamvatsikos and Cornell to develop a software tool, which provides a shortcut, at the cost of 

introducing some approximation in the process [13]. Having observed that summary IDA curves of 

SDOF systems with multi-linear backbone curves exhibit a consistent behavior in correspondence 

with each segment of the backbone (elastic, post-yield hardening, and post-cap softening segments), 

they used IDA to investigate the response of a large population of oscillators with varying backbone 

parameters. Having thus mapped the behavior of many backbone shapes against a suite of ordinary 

ground motions, not affected by directivity or soft soil, they proposed a tool, aptly named 

SPO2IDA, capable or reproducing the IDA curves of these SDOF systems without having to run 

any analysis. Essentially SPO2IDA is nothing less than a complex R T-m- relation applicable to 

ordinary ground motions [14]. The objective of this study is to adapt the methodology of [13] to the 

NS case and employ IDA on trilinear backbone SDOF systems using a set of one-hundred and 

thirty pulse-like ground motions, in order to develop the equivalent of an pR T T-m- -  relation for 

NS-FD ground motions. 

The remainder of this article is structured as follows: after a brief note on the ground motion 

suite employed, the methodology is laid out in detail along with the various considerations that 

contributed towards the formulation of the analytical model. This is followed by a description of the 

parameter-fitting procedure and techniques that were employed for the development of the principal 

analytical components of the model. Finally, some key observations on NS pulse-like response 

stemming from the proposed equations are made and the applicability of the model is briefly 

discussed. 

 

2. METHODOLOGY  

 

2.1 Record set of NS pulse-like ground motions and definition of pulse period 

The present study employs a dataset of one-hundred and thirty pulse-like NS ground motions, 

whose impulsive nature is believed to be related to rupture directivity. The methodologies for pulse 

identification adopted while assembling this dataset were those suggested in [4] and [15]. The NS-

FD ground motion dataset employed in [16] served as a starting point and was subsequently 

enriched by records from more recent seismic events, such as the Parkfield 2004 (California) event, 

the Darfield 2010 and Christchurch 2011 (New Zealand) events and the South Napa 2014 

(California) event. A more detailed account of the considerations that went into the compilation of 



4 
 

this NS pulse-like ground motion dataset can be found in [17] along with a complete list of the 

records and relevant metadata (chapter four and appendix B of [17]). 

Given that the objective of the present study is, ultimately, to characterize NS structural 

response by means of an analytical model that includes pulse duration pT , it may be worthwhile to 

briefly discuss the definition and identification of pT . Both pulse identification algorithms 

mentioned above employ the same definition of pulse period, which is the pseudo-period of the 

highest-coefficient wavelet returned by a wavelet transform of the velocity signal. This definition 

has been found to be efficient, but it is far from unique in the literature (e.g., [18], [19]). 

Furthermore, both algorithms are known to be occasionally triggered by impulsive waveforms 

attributed to soft-soil site effects or other causes unrelated to FD.  

From the inelastic structural response point of view, one has to take into consideration the fact 

that velocity pulses significantly deviating from the characteristic double-sided, early-arriving 

waveform associated with directivity, may not exhibit the same type of correlation between 

displacement demand and pulse period as FD-related pulses do (e.g., [20]). For this reason, in this 

work, some effort was made to discern those velocity pulses most likely to have been the result of 

directivity for eventual inclusion in this investigation. In fact, Shahi and Baker report their opinion 

on whether or not the impulsive characteristics of the ground motions analyzed in [15] are due to 

directivity; their assessment was also taken into account. The least-squares linear regression line of 

pln T  against magnitude of the causal event for this dataset, shown in Figure 3(a), is not far off those 

reported by other researchers (e.g., [18]). 

 

Figure 3. (a) Linear regression of log-pulse period against magnitude and (b) zero-intercept linear regression of pulse 

period (Tp) against period of maximum spectral pseudo-velocity (or predominant period Tg).  

Finally, as already mentioned, more than one definitions of pT  appear in the literature. For 

example, [19] employed the period which exhibits the maximum spectral pseudo-velocity 

(previously termed the predominant period gT  in [21]) to characterize inelastic spectra of NS 

ground motions. One advantage of the wavelet-based definition of pulse period is that it is not 

sensitive to competing peaks of local maxima on the pseudo-velocity spectrum (see for example 

[4]). However, the two definitions do produce strongly correlated pulse duration estimates. This can 

be seen in Figure 3(b), from which it also becomes obvious that gT  displays a consistent trend of 

corresponding to a duration around 70% of pT . This leads to the conclusion that, while no definition 

of pulse period can be said to be demonstrably superior to all others, some care must be exercised 

when combining pulse duration information from NS hazard ([22], [23]) with inelastic spectra 

referring to specific pT T ratios (e.g., as in [16],[19]) in order to ascertain that the two are 

compatible. 

 

2.2 Incremental dynamic analysis for SDOF systems using pulse-like NS records 
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Incremental dynamic analysis is a powerful semi-empirical method for the probabilistic estimation 

of seismic structural demand and capacity. This well-established procedure, typically entails a non-

linear numerical model of the structure that is subjected to a suite of ground motion records, all 

scaled at a common seismic intensity measure (IM) level. This IM level is gradually increased by 

applying scaling to all the records, in order to reveal the entire range of post-yield response of the 

structure, conditional to several IM values, up to global dynamic instability and eventual collapse. 

During IDA, structural response to each single record is represented by plotting two scalars against 

each other: an IM characterizing the various scaled incarnations of the record and an engineering 

demand parameter (EDP) representing the amplitude of response, resulting in a single-record IDA 

curve. Once a set of IDA curves has been collected, representing the entire suite of ground motions, 

it is an efficient practice to summarize the curves into sample statistics; e.g., medians, 16% and 84% 

fractiles [24]. 

The present study entails performing IDA for a large population of SDOF systems, 

characterized by various bilinear or trilinear backbones. As already indicated, pulse period pT  is 

considered a key explanatory variable, by virtue of its demonstrable value as a predictor for the 

inelastic response for this type of ground motion [25], [26]. In fact, pulse period is included as the 

denominator of the normalized period ratio pT T , in a manner analogous to [16],[19] (the merit of 

this decision will see extensive discussion in the following). 

Consequently, the computation of IDA curves for the purposes of this work is performed for 

given values of the pT T  ratio. Since each record in the suite of NS pulse-like ground motions 

considered is associated with a different pulse period, this effectively means that each individual 

IDA curve will correspond to an SDOF oscillator with different period of natural vibration, 

determined by the requisite of maintaining a constant pT T ratio within that particular IDA set. This 

leads to the IM of choice for these IDAs being the strength reduction factor R, defined as per 

Equation (2). 

( ) ( ) [ ]yield

a i p,i a i pR S T T , 5% S T ,5% ,    T T 0.10,2.00= =kÖ x= k= Í  (2) 

On the other hand, EDP of choice for the SDOF systems is ductility max yieldm=d d (defined as the 

ratio of maximum displacement to displacement at yield). 

 

Figure 4. Thirty individual IDA curves of trilinear-backbone SDOF oscillators subjected to pulse-like records. Each 

curve corresponds to a distinct SDOF system with different vibration period, chosen in order to maintain a constant 
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pT T  ratio for all pulse-IDAs. The IDA curves are plotted over the oscillatorsô (common) backbone curve, which is 

only possible in normalized, dimensionless coordinates (ductility m ï reduction factor R). 

Therefore, these SDOF IDA curves obtained by scaling a suite of impulsive records (which 

shall be occasionally referred to as pulse-IDAs for brevity in the remainder of this work) will result 

in summary fractile curves that collect the responses of diverse oscillators plotted in dimensionless 

{ },Rm coordinates. An example of such pulse-IDAs can be seen in Figure 4, where the { },Rm

coordinates also permit plotting the curves superimposed against the backbone of the corresponding 

oscillator. Strictly speaking, there is a subtle difference in the definition of strength reduction factor 

and ductility used for the representation of the backbone and those used to plot the IDAs.  In the 

case of a monotonic loading backbone curve (e.g., Figure 2), reduction factor and ductility are 

defined using the instantaneous values of force and displacement on the numerator: yieldR F F=  and 

yieldm=d d. On the other hand, in the case of IDA curves, the numerator becomes the maximum 

absolute value of force or displacement recorded over the entire time-history of response to a scaled 

record: 
yield

max yield a aR F F S S= =  and max yieldm=d d. However, for the sake of brevity, whenever 

backbones and IDAs are plotted together (e.g., Figure 4) and hence both definitions apply, only the 

definitions corresponding to the IDA will be reported on the graph axes. 

One final comment to be made about this type of pulse-IDAs concerns the actual scaling of the 

impulsive ground motions. Although scaling is conceptually intrinsic to IDA, some ground motion 

classification algorithms ([4], [15]) propose maximum ground velocity thresholds, which a record 

should surpass in order to be identified as pulse-like. This implies that a given pulse-like record, 

when scaled downwards with respect to its registered amplitude, could cease to satisfy such a 

classification criterion. However, any evaluation of pulse identification procedures and their 

implications is certainly beyond the scope of the present work. 

 

2.3 Hysteretic rule 

For the present study, a peak-oriented, moderately pinching hysteresis rule developed by Ibarra and 

Krawinkler [27] was adopted for all SDOF systems subjected to IDA. No cyclic strength 

degradation has been included; eventual loss of strength only occurs when the response crosses 

capping ductility cm into the softening (negative-stiffness) branch (Figure 2). One of the reasons 

behind this choice is that when oscillators featuring a descending branch are concerned, it has been 

established that kinematic hardening hysteresis is not entirely representative of how actual 

structures have been observed to behave during experiments [28]. Furthermore, the issue of strength 

degradation is considered to be of secondary importance in this case. Strength degradation only 

tends to supersede the shape of the backbone in importance when severe degradation is encountered 

in low-period structures. However, given the range of pulse-periods associated with the NS-FD 

record suite employed in this study (see for example Figure 3 or [17]), the model is more oriented 

towards moderate to long period structures (see next paragraph for the treatment of low period 

oscillators) and cyclic degradation is not included in the hysteretic rule used in the analyses. 

2.4 Analytical model for NS pulse-like seismic demand 

2.4.1. Median and scatter of pulse-like seismic demand 

For the development of an analytical model for the prediction of a central value of NS pulse-like 

seismic demand (e.g., median of EDP given IM) and the associated dispersion around this central 

value, the methodology of [13] is followed. In this approach, the parameters of analytical functions 
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are fitted against the 16%, 50% (median) and 84% fractile IDA curves of pulse-like FD ground 

motions. In the case of random variables following a normal distribution, which is a ubiquitous 

assumption in earthquake engineering for the logarithms of seismic demand quantities, the 16% and 

84% fractiles correspond to the mean minus/plus one standard deviation interval boundaries, 

respectively. 

In the literature, the question of which measure of central value (mean or median) is most 

convenient for the development of predictive equations for inelastic seismic demand will 

sporadically emerge (e.g., [29], [30]). For this particular case, the sample median is chosen due to 

its characteristic of robust estimator. The presence of a descending branch on the backbone of the 

oscillators examined, means that the model will have to tackle the issue of predicting the 

distribution of collapse capacity capR , defined as the intensity level which causes dynamic 

instability of the SDOF system. Yet with the appearance of collapse points on the individual IDA 

curves (see Figure 4), the sample mean of EDP given IM (EDP|IM) can be no longer defined. On 

the other hand, the counted median is not subject to such restrictions [31]. Furthermore, it was 

shown in [12] that the x%  fractile IDA curves of x%EDP IM  and ( )100 x%- IDA fractiles of 

(100 x)%IM EDP- are almost identical, with collapse capacity fractile points cap,(100 x)%R -  belonging to 

both the x% Rm and (100 x)%R - mfractile IDA curves. It was observed during the present study that 

the same properties hold for pulse-IDAs. Therefore, the use of the three fractiles to capture central 

value and dispersion provides some flexibility , which in turn allows for the efficient modeling of 

seismic demand in terms of both EDP|IM and IM levels causing dynamic instability. 

A final point to address regarding the statistical aspects of the model is that of preferring a triple 

curve-fitting operation of the three fractiles rather than regression analysis. Ordinary least-squares 

regression works under the typical assumption of Gaussian, independent and identically distributed 

(i.i.d.) residuals [32]. Although the Gaussian distribution of the residuals can sometimes be 

achieved by some transformation of the independent variable, meeting the i.i.d. conditions of an 

oscillatorôs responses across all IM levels is problematic. First of all, the variance of SDOF inelastic 

response is known to increase at higher IM levels [33] (identical distributions imply constant 

variance). Furthermore, the probabilistic distribution of the responses is disrupted when reduction 

factor tends to unity, or when very long period oscillators are considered, or when dynamic 

instability occurs. It is therefore unconvincing to make a priori assumptions on the probability 

distributions underlying the model for the purposes of regression analysis; it is preferable to simply 

fit parametric curves to their sample fractiles. Assumptions on the nature of these distributions can 

then be made in due time, as dictated by the necessities of eventual applications of the model (see 

also [17]). 

 

2.4.2 Predictor variables and explanatory value of the pT T  ratio 

An analytical model of seismic demand for SDOF oscillators featuring a generic trilinear backbone 

will necessarily include all the parameters that uniquely define the geometry of the backbone curve. 

Therefore, ha , cm and ca  (see Figure 2) should be included as covariates in the model. The effect 

of varying these parameters on the seismic response to pulse-like ground motions has already been 

the object of previous investigation [34]. The additional variables that will be included in the model 

are pulse period, by virtue of its demonstrable value as a predictor of inelastic response for NS-FD 

ground motions that was confirmed numerous times in past studies [25], [26], [16] and the period of 

natural vibration T. In fact, these two variables are combined into the normalized period ratio pT T , 
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in a manner analogous to [16], [17], [19].  The decision to base the model on the 
pT T ratio was 

alluded to during the definition of pulse-IDA curves. Nevertheless, in a preliminary version of the 

model by the same authors [35], a concern had already been raised  about mixing the response of 

very low-period oscillators with that of long-period systems within a single pT T cross-section of 

data. In fact, in that work, it was suggested that, at each pT T  ratio, responses from oscillators with 

natural period T 0.30s¢  be omitted from the model. That decision was based on engineering 

judgement, which dictated that it is prudent to keep the responses of low-period oscillators, which 

are characterized by high ductility demands even when ordinary records are concerned, separated 

from the responses of moderate-to-long period oscillators subjected to long duration pulses. 

In the present study, the intention is to evaluate the explanatory value of the ratio pT T  with 

respect to NS pulse-like inelastic demand in a systematic way. More specifically, it will be 

examined whether or not there is a statistically significant effect of the period of natural vibration in 

the prediction of said inelastic response, which is not captured in its entirety by the pT T  ratio. The 

methodology chosen for this investigation of the role of period T, employs statistical hypothesis 

testing. The first step of this procedure is to obtain, for a specific SDOF system, the sample of 

ductility demand responses of a specific SDOF system at a ñstripeò of given reduction factor R and 

pT T  ratio. These original samples of responses from one-hundred and thirty FD records are then 

divided into smaller subsets, each subset consisting of responses corresponding to oscillators with 

period T contained within a predefined interval A BT T T< ¢  (non-overlapping period intervals are 

always employed). The second step consists of comparing the central values of these new subsets 

among one another for systematic differences. Due to the dispersion of each stripe, a direct 

comparison between sample means or medians is not meaningful; instead, a statistical comparison 

must be performed by each time testing the null hypothesis (denoted oH ) that ñthe two sets of 

responses have been sampled from normal distributions with equal medians (but possibly unequal 

variances)ò.  

The practical end result of this procedure is to identify such boundaries A BT ,T  as to observe 

systematic rejection of oH among the corresponding intervals, thus hinting at the need for separate 

analytical modelling of NS-FD seismic demand for each interval. Note, however, that due to the 

probabilistic nature of these tests it is possible to encounter some rejections even if oH holds true 

and vice-versa. In order to perform the test, one should define what can be considered as acceptable 

risk,a, of rejecting the null hypothesis, when it is actually correct (which is also known in 

statistical literature as a type I error, [36]). This concept is represented as a conditional probability 

in Equation (3). In this case, 0.05a=  is considered. 

o o = P reject H H  correcta è øê ú (3) 

For the purposes of this investigation, oH was subjected to the Aspin-Welch test ([37]) for the 

cases of  three bilinear oscillators with hardening stiffness ratios { }h 0.00,0.10,0.30a = , five 

normalized period ratios { }pT T 0.20,0.30,0.40,0.80,1.20= , three levels of strength reduction 

factor { }R 2.4,4.0,5.5=  and a non-overlapping tri-interval partitioning of the period domain 

A A B BT T ,  T T T  and T>T¢ < ¢ . Thus, each time the interval limits A BT ,T  were shifted in order to 

explore the period domain for statistically significant differences in median ductility demand within 
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a 
pT T cross-section, a maximum of one-hundred and eighty t-statistics and corresponding p-values 

were calculated (at times less as some combinations of pT T and A BT ,T  leave some stripes devoid 

of records).  

Note that the analytical model for the bilinear hardening case also serves as a component of the 

complete trilinear model (both presented in the following). Therefore, examining bilinear hardening 

oscillators for eventual statistically significant effects of T will eventually reflect upon the entire 

model. Some characteristic results are given in Table 1 and a graphical representation in Figure 5. 

Table 1.  Some illustrative test statistics (b denotes standard deviation of log-ductility) and rejection/ non-rejection 

results for the null hypothesis that the pairs of ductility demand stripes have been sampled from normal distributions 

with equal medians but different variances.  

Sample  

characteristics 
i 

sample 

size  

iN  

sample 

stripe 

R-

factor 

ilnm  ib  test 

statistic 
ɜ 

DoF 

p-

value 

Reject/ 

Do not 

reject Ho 

at 

Ŭ=0.05  

h

p

0

T
0.20

T

a =

=
 

0.10s T 0.30s< ¢  1 49 
R=2.4 

1.999 0.871 
4.5477 80 

51.9 10-Ö

  
Reject 

0.30s T 0.80s< ¢  2 34 1.280 0.568 

0.10s T 0.30s< ¢  1 49 
R=4.0 

3.117 0.888 
5.2431 74 

61.4 10-Ö

 
Reject 

0.30s T 0.80s< ¢  2 34 2.122 0.830 

0.10s T 0.30s< ¢  1 49 
R=5.5 

3.635 0.769 
5.2734 66 

61.6 10-Ö

 
Reject 

0.30s T 0.80s< ¢  2 34 2.677 0.843 

h

p

0

T
0.30

T

a =

=
  

0.30s T 1.20s< ¢  1 56 
R=2.4 

1.287 0.555 
1.6147 100 0.1095 

Do not 

reject T 1.20s>  2 47 1.127 0.455 

0.30s T 1.20s< ¢  1 56 
R=4.0 

2.201 0.712 
2.0804 100 0.0400 Reject 

T 1.20s>  2 47 1.931 0.604 

0.30s T 1.20s< ¢  1 56 
R=5.5 

2.640 0.685 
1.9209 99 0.0576 

Do not 

reject T 1.20s>  2 47 2.387 0.651 

h

p

0.10

T
0.40

T

a =

=
 

0.30s T 0.80s< ¢  1 50 
R=2.4 

1.284 0.413 
1.9700 98 0.0516 

Do not 

reject T 0.80s>  2 66 1.138 0.368 

0.30s T 0.80s< ¢  1 50 
R=4.0 

2.110 0.475 
3.1615 101 0.0021 Reject 

T 0.80s>  2 66 1.836 0.443 

0.30s T 0.80s< ¢  1 50 
R=5.5 

2.530 0.476 
3.4474 105 0.0008 Reject 

T 0.80s>  2 66 2.223 0.472 

The choice of test type can be explained by the fact that the two stripes to be compared each 

time contain responses from oscillators with different periods and thus heteroscedasticity (unequal 

variances) was assumed. Due to the assumption of sampling normally distributed populations, the 

test is performed on the logarithms of ductility demands of hardening bilinear systems for each pair 

of stripes. This is consistent with the methodology followed in [38] and [39]  (in the latter case 

equal, yet unknown, variances were a more logical assumption leading to a simple t-test being 

adopted). The degrees of freedom of the distribution of the test statistic in the presence of the 

heteroscedasticity assumption were approximated according to [40].  

Generally speaking, rejecting the null hypothesis or not was dominated by the ratio pT T  and 

the interval boundaries A BT ,T . In other words, given p A BT T ,T ,T , the tendency to reject oH  or not 

at 0.05a=  was more or less uniform across the three bilinear oscillators and the three reduction 

factors considered. Most cases of statistically significant differences in the median ductility 

demands (i.e., cases when oH  was rejected) were encountered for pT T ratios between 0.20 and 

0.40. These hypothesis tests emphatically confirmed the premise already made in [35], that NS 

seismic demand is systematically different for oscillators with 0.10s T 0.30s< ¢ compared to that of 
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SDOF systems with T 0.30s> . Less pronounced systematic differences were detected between low 

to moderate-period oscillators and long to very-long-period oscillators, when pT T 0.50< . 

 

 
Figure 5. Graphical representation for some of the stripes of log-ductility demand given reduction factor, pT T ratio 

and period range, whose means have been statistically tested for equality (detailed results of the corresponding tests are 

among those provided in Table 1) . Stripes in panels (a) and (b) correspond to bilinear systems with h 0a =  (elastic-

perfectly-plastic oscillators), which maintain a ratio of pT T 0.20= . Panel (a) refers to oscillators within the

0.10s T 0.30s< ¢ interval, while panel (b) to those within 0.30s T 0.80s< ¢ . Samples between (a) and (b), at each 

level of reduction factor shown, have been used to test the null hypothesis oH  at 0.05a= . The same is true for the 

response samples between panels (c) and (d) (h 0a = , pT T 0.30= , test between0.30s T 1.20s< ¢  andT 1.20s>  

intervals) as well as (e) and (f) (h 0.10a = , pT T 0.40= , test between 0.30s T 0.80s< ¢ andT 0.80s>  intervals). 

Another interesting observation is that when long period values were selected for BT and stripes 

at 
BT>T  and pT T 1.20= or higher were tested (corresponding to very-high-period systems), oH

was consistently rejected across all parameters considered. In order to interpret this behavior, one 

has to look at the entire logical complement of oH  and deduce that rejection does not only come 

from existence of a statistically significant difference between the logarithmic means but it can also 

result from not sampling a Gaussian distribution. In fact, when very long period oscillators are 

considered, inelastic displacements tend to cluster around the peak ground displacement even at 

high levels of inelasticity (for an explanation of this phenomenon see Chopra and Chintanapakdee 

[41]) in a quasi-deterministic manner, thus departing from the empirical distributions encountered 

for lower period systems. 

Because of the above observations, it was decided to develop the analytical model by providing 

separate pulse-IDA curve fits for certain ñspectral regionsò (i.e., period intervals) and pT T  ratios. 

Therefore, in what follows, parameter estimation for the analytical functions is always performed 

by fitting the model against the data for the following distinct cases: 

¶ Systems with 0.10s T 0.30s< ¢  when p0.10 T T 0.30¢ ¢ . 

¶ Systems with 0.30s T 0.80s< ¢  when p0.10 T T 0.50¢ ¢ . 
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¶ Systems with T 0.80s>  when p0.15 T T 0.50¢ ¢ . 

¶ Systems of all periods not falling into one of the above categories are covered by a single 

model valid for p0.10 T T 2.00¢ ¢ . 

In overview of the salient points pertaining to the methodology adopted for this study, it can be said 

that IDA is performed for a population of moderately pinching SDOF systems with bilinear and 

trilinear backbones, using a suite of NS-FD ground motions. Median and 16%, 84% sample fractile 

IDA curves are obtained for each oscillator at various constant pT T  ratios and are subsequently 

modelled analytically by means of least-squares curve fitting. The model distinguishes between 

specific spectral regions in order to better capture the combined effect of T and pT  on NS pulse-like 

seismic demand. Details on the functional forms and the actual curve-fitting procedures are 

provided in the following sections.  

3. BILINEAR HARDENING SDOF SYSTEMS  

The analytical functional form selected to model the pulse-like IDA curves for bilinear oscillators 

with hardening behavior (positive post-yield slope) is given by Equation (4). It is a rational function 

(in log-space) of ductility given reduction factor fractiles, containing four parameters to be 

determined by fitting the model to the data. A total of four-hundred sets of IDA curves were 

obtained for this purpose, corresponding to combinations of post-yield stiffness ratios ha  spanning 

the interval [ ]0,0.9  and pT T  ratios belonging within [ ]0.1,2.0 .  

{ } ( ) ( ]
2

x% x%
x% (100 x)% c c

x% x%

a ln R b ln R
ln , x 16,50,84 R 1,R , 1,15 ,

c ln R d
 =  ,  -

Ö + Ö
è øm = Í m m Íê úÖ +

( ) [ ] [ ]x% x% x% x% h p h pa ,b ,c ,d g ,T T ,T ,  0,0.9 ,  T T 0.1,2.0 ,  T>0.10s= a a Í Í  

(4) 

The term ( )(100 x)% cR - m  appearing in the domain definition of reduction factor R in Equation (4), is 

the reduction factor corresponding to the capping point of a trilinear backbone oscillator. The 

implication is that, up to the point of capping ductility cm, this equation is also valid for the general 

trilinear case (detailed treatment to follow). 

The curve-fitting procedure entails obtaining non-linear least-squares estimates for the model 

parameters x% x% x%a ,  b ,  c  and x%d  for each distinct combination of ha , pT T and each fractile 

{ }x%= 16%,50%,84%. As elaborated during the preceding discussion on methodology, these 

fractiles are also calculated among sub-sets of the employed record suite. This means that for 

[ ]pT T 0.1,0.3Í  the three fractiles are also calculated among the pulse-like records which 

correspond to oscillator periods within the interval ( ]T 0.10s,0.30sÍ  and this is repeated for 

[ ] ( ]pT T 0.1,0.5 ,T 0.30s,0.80sÍ Í  and for [ ]pT T 0.15,0.5 ,T 0.80sÍ > . Thus, separate sets of 

parameters are derived for such period intervals (or spectral regions) as have been deemed 

statistically meaningful by prior analysis.  

Overall, this curve-fitting procedure leads to groups of model parameters x% x% x%a ,  b ,  c  and 

x%d  that, given period T, are implicit functions of post-yield stiffness ratio ha  (which uniquely 

characterizes the shape of this type of backbone), normalized period pT T  and the x% fractile IDA 

of interest ï hence the notation ( )h pg ,T T ,Ta  in Equation (4). In a preliminary version of the 
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model [17] and also in [13], a second stage of fitting was conducted, in order to render the model 

parameters explicit analytical functions of ha  and pT T (in [17]) or T (in the case of ordinary 

records [13]). However, these past endeavors also showed that the dependence of the model 

parameters on  h p and T T  or Ta  is quite complex and can lead to very elaborate equations. 

These additional analytical functions have the advantage of lending elegance to the solution but also 

the disadvantages of lacking straightforward physical interpretation and adding a second source of 

misfit of the model to the data. 

In the present study, it was decided to obtain results for a finer grid of h p,T Ta values and 

subsequently tabulate the single stage fit results in a manner that lends itself to linear interpolation. 

In fact, these results have been gathered into MATLABÈ data structures and incorporated into 

MATLAB scripted functions that handle the necessary interpolations. These tools are available as 

electronic supplements to this paper [42]. In Figure 6, several examples of the fitted model against 

the original pulse-IDA fractile points are presented, highlighting the efficiency of the chosen 

functional form of Equation (4) in capturing the shifting trends of the data among variations in 

spectral region, pT T and ha . 

 

Figure 6. Comparison of the fitted model of Equation (4) with the underlying data for SDOF systems (a) with 

h 10%a =  at pT T 0.20=  when 0.10s T 0.30s< ¢   , (b) h 10%a =  at pT T 0.20=  when0.30s T 0.80s< ¢ , (c) 

h 10%a =  at pT T 0.50=  when T 0.80s> , (d) h 0a =  at pT T 0.40=  when 0.30s T 0.80s< ¢  ,(e) h 20%a =  at

pT T 0.60=  for all periods T and (f) h 50%a =  at pT T 0.80=  for all periods T. 

 

4. NEGATIVE POST -YIELD STIFFNESS BILINEAR SDOF SYSTEMS 

 

The model-fitting procedure in the case of bilinear SDOF oscillators with softening behavior 

(negative post-yield stiffness ratio) is in principle similar to what has been already presented for the 

hardening case. The main difference stems from the fact that the appearance of a negative-stiffness 

branch on the backbone curve requires the introduction of collapse capacity fractiles cap,x%R  into the 
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model (i.e., strength reduction factor that causes dynamic instability in x%  of the ground motions, 

as defined previously). This important additional consideration, led to the adoption of the functional 

form of Equation (5), which models reduction factor given ductility (fractile x%R m), as opposed to 

the m given R fractiles ( x% Rm ) of Equation (4) fitted against the hardening cases. It is recalled that 

according to [24], the 
x% Rm and 

x%R m  fractile IDA curves are almost identical, even when the 

typical IDA properties of continuity and monotonicity are slightly violated. The reason for invoking 

this ñreversalò property is related to the analytical treatment implemented for the inclusion of 

collapse capacity capR into the model and shall become apparent shortly. 

( { }x%
x% cap(100 x)%

x%

a ln
ln R , 1, , x 16,50,84 ,

ln b
    =-

Ö m
ø= mÍ m úm+

( ) [ ] [ ]x% x% c p c pa ,b g ,T T ,T ,  4.0, 0.01 ,  T T 0.1,2.0 ,  T>0.10s= a a Í - - Í  

(5) 

As in the hardening case, Equation (5) represents a non-linear model with respect to its 

parameters x%a  and x%b . Weighted least-squares estimates are obtained by fitting the relevant 

fractiles (for the same period intervals as before) against six-hundred and twenty combinations of 

[ ]pT T 0.1,2.0Í  and post-cap stiffness ratio [ ]c 4.0, 0.01a Í - - . The fractile ductility cap(100 x)%-m  

appearing in Equation (5) is the ductility at capacity (not to be confused with capping ductility cm); 

i.e., ductility where dynamic instability occurs and therefore collapse capacity cap,x%R  is reached. 

While dynamic instability is strictly expected at the point of crossing the zero capacity axis at endm

ðsee Equation (1)ð issues of numerical accuracy may often cause its earlier appearance, thus 

necessitating the introduction of cap(100 x)%-m  to reconcile the practical with the ideal. The weighting 

scheme implemented into the fitting procedure is intended to guarantee good local fit of Equation 

(5) at the capacity point { }cap(100 x)% cap,x%,R-m . Then, the fractiles of ductility at capacity are included 

into the model by also fitting Equation (6) against the results of the same bilinear softening systems: 

( ) [ ) [ ) { }cap,x% c x% h c c h cc 1 1 ,  0,0.9 ,  4.0, 0.05 ,  x= 16,50,84m =m + Ö +a Ö m - a a Í a Í - -è øê ú  (6) 

The notation in Equation (6) corresponds to the general trilinear case and its purpose will be 

revealed in the following section. In fact, for a purely bilinear softening case, Equation (6) reduces 

to cap,x% x% c1 cm = + a. 

Recalling that the weighted least squares fitting of Equation (5) practically forces it to pass 

through the capacity point, we can calculate an analytical prediction for capacity fractilescap,x%R  by 

merely substituting the result of Equation (6) into Equation (5) and thus obtain: 

{ }x% cap(100 x)%

cap,x%

cap(100 x)% x%

a ln
ln R , x 16,50,84

ln b
 =

-

-

Ö m
=
m +

 (7) 

Note that the domain of post-capping slope ca  for Equation (5) is [ ]4.0, 0.01- -  while that of 

Equation (6) is [ )4.0, 0.05- - . The reason behind this is that systems with c0.01 0.05¢ a <  will 

experience dynamic instability at very high ductility and may exhibit highly-irregular non-

monotonic 84%R m(or 16% Rm ) fractiles. In fact, it was deemed counter-productive to model this 

behavior up to the point of collapse when said point corresponds to unrealistic ductility demands. 
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Thus, oscillators with a softening branch falling in the  
c0.01 0.05¢ a <  range were modelled via 

Equation (5) up to a ductility of fifteen and were excluded from the cap,x%R  part of the model. 

Similar to the hardening case, model parameters x% x% x%a ,b ,c  are treated as implicit functions 

of c p,T Ta for each period range and fractile x%  and are available within a MATLAB function 

provided among the electronic supplements to this paper [42]. Figure 7 offers a representation of the 

curve-fitting results for bilinear softening SDOF systems, for a variety of cases. An interesting 

observation stemming from the figure is that, since Equation (5) tends towards flatter slopes near 

the capacity point, eventual misfit of the model in terms of cap,x %m  will produce a much lesser 

variation in cap,(100 x)%R - . This is advantageous, since the latter is the more important statistic. 

 

Figure 7. Comparison of the fitted model of Equations (5-7) with the underlying data for bilinear softening systems with   

c 30%a =-  at pT T 0.25=  when (a) 0.10s T 0.30s< ¢  and  when (b) 0.30s T 0.80s< ¢ , (c) c 50%a =-  at

pT T 0.40=  when T 0.80s> , (d) c 10%a =-  at pT T 0.40=  when 0.30s T 0.80s< ¢  , (e) c 100%a =-  at

pT T 0.80=  for all periods T and (f) c 80%a =-  at pT T 0.60=  for all periods T. 

 

5. MODEL FOR THE COMPLETE  TRILINEAR BACKBONE  

 

5.1 Equivalent ductility concept 

A straightforward, if somewhat impractical, way of tackling the problem of modelling pulse-like 

IDAs for systems boasting a complete trilinear backbone could be to simply run a large number of 

analyses in an attempt to span the entire parameter space of { }h c c p, , ,T,Ta m a , as was done for the 

two bilinear cases already covered. However, structural responses exhibit a complicated 

interdependency with respect to these five parameters, which cannot be studied independently one 


















