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SUMMARY

Nonlinear static procedures, whicglate the seismic demand of a structure to that of an equivalent-deuyieeof-
freedom (SDOF) oscillator, are walktablished tools in the performardzased earthquakengineeringparadigm
Initially, such procedures made recourse to inelastic speetieed for simple elastiplastic bilinear oscillators, but the
request for demand estimatibst delve deeper into the inelastic rangmtivatedinvestigating the seismic demand of
oscillators with more complex backbone curves. Meanwhile,-s@ance NS) pulselike ground motionshave been
receiving increased attention, sinteey can induce a distinctive type of inelastic demand. FlikeeNS ground
motions are usually the result of rupture directivity, where seismic waves generated at diffetsralpomthe rupture
front arrive at a site at the same time, leading to a desibbél velocity pulse, which delivers most of the seismic
energy. Recent research has led to a methodology for incorporating this NS effect in the implementation of nonlinear
static procedures. Both of the aforementioned lines of research motivate the preseonhshelyuctility demands
imposed by pulséike NS ground motions on oscillatotkat feature pinching hysteretic behavior with trilinear
backbone curvesncrementadynamic analysis (IDA)s usedconsidering one hundred and thirty pule-identified
ground motions. Median, 16% and 84% fractile IDA curves are calcutatdditted byan analytical model. Least
squares estimates are obtained for the model parameteich importantly include pulse period,. TThe resulting
equations effectively constitute &- mT T; relation for pulsdike NS motionsPotential applicatiosof this result

towardsestimationof NS seismic demanakrealsobriefly discussed
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1. INTRODUCTION

One of the key issues in performance based earthquake emgin€PBEE e.g., [1]) is the
assessmerdf seismic demand for structures expected to respond inelastically to future earthquakes
attaining a certain intensitjNearsource (NS) seismic inpumerits speciahttention, becausdS
ground motions often contaiprominentwave pulses. In fact, the engineering relevance of NS
pulselike ground motions has been the riseduring the past decades, since it has been recognized
that such ground motions can induce atidctive type of inelastic demarahd can bemore
damagingthan motions not displaying similar impulsive features Perhaps the most important
although not uniquegphenomenorthat can causdlS strong ground motioto exhibit suchpulse

like characteristicss rupture forward directivity (FD)Directivity can occur becauseudng fault
rupturethe propagation velocity aghear dislocatiomlong the faultwill typically be nearshear
wave velocity. As aonsequencehere is a probality for sheamwave frontsemitted fromdifferent
points along the faulib arrivealmost simultaneousliat sites aligned along the direction of rupture
propagation This phenomenon can give rise to a constructive wave interference effech is
typically observablan the velocity recordings a single doubleided earlyarriving pulse that
containsmost of the seismic enerd], [3]. One such example of pulike ground motion
registered during the009L 6 A q earthqaake (Italy) is given in Figure 1, where the impulsive
waveform extracted from the velocity tinméstory by means of the algorithm proposed by Baker
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[4] and he associated pulse peridd areshown, along with the corresponding score assigned by
said algorithm to various horizontal orientations of the record.
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Figurel. (a) Originalvelocity timehistory of theValle Aterno- Centro Vallerecording (fauknormal component) from
the2009M6.3L 0 A q eartHquake (Italy), (b) velocity pulséth pulse periodTl, extracted byhe methodologyin

[4], (c) residual velocity signal after extraction of the aforementioned puat@) polar plot of pulse indiator score
per azimuth for alhorizontalorientations of the sanground motion

On the other hand, procedures relating the structural seismic demand to that of an equivalent single
degreeof-freedom(SDOF)oscillator, collectively known as nbinear static procedurgs],[6] have
gradually found their way intBBEE andnodern codes for seismic design and assess@efitst,

static nonlinear procedurdmsed onnelasticspectra(e.g.,[7]), employed spectra obtained from
simple elastigerfectlyplastic or bilinear oscillatorsThe adaptation of ree such proceduréor
applicahlity in NS conditions has beearready suggestef8]. However, the request for demand
estimates thatnvolve larger inelastic deforationsand arrive at quantifying collse capacity
(definition to folow), led researchers to also investigate the seismic demand of oscillators with
more complex backbone curves such as the trilioeain Figure 2.
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Figure2. Representation of trilinear backbone curve in nor
factor R in the ordinate) and defining parameters:-piedtl hardening slope,, softening branch negative slope

and capping ductilityrn,, which separates the hardening and softening branches.

For the complete analytical descriptiontbfs backbone curvehree paramets are required
First isthe slope ofa hardeningor perfectly plasticprancha,, , that simulates postield ductility.

Second and third artheficappi ng p om rarddnegativestoge ki thay define the
softening branchlhe latterintersects the zerstrength axis at ductilityn,,, given by Equation (1).



m, = m& +m Od | (1)

The presence of suchsaftening (negative stiffness) branihtypical of the behavior of most
structures, either brittle or ductile, that reach a maximum strength and then exktapden
degradation thatn turn leads to strength loss. The phenomena that actually lead to negative
stiffness in a real structurercanclude P ef f ect s and materi al strer
Negative stiffnesss thusencountered on the static pushover curvediftérenttypes of structures,

such as braced steel frames, monresisting steel framef9]), concrete frame§10]) and any

type of structure that exhilsisensitivity to secondrder effects([11]). In general, only systems
susceptible to brittle failures that abruptly leadgtobal collapse may exbit pushover curves

ending without dinite-slopenegative stiffness segment.

This study employs incremental dynamic analysis (ID22]) in order to investigate the
seismic demand dfi-linear backbone@scillators, when subjected to NF® ground motionsThe
ultimate goalis thatof developing an analytical modfgr median NS pulséke demandand the
associated dispersiohDA can be a computationally intensive procedure. This faotivated
Vamvatsikos and Cornell to develop a software tool, which provides a shortcut, at the cost of
introducing some approximation in the procfs3. Having doserved that summary IDA curves of
SDOF systems with muitinear backbone curves exhibit a consistent behavior in correspondence
with each segment of the backbone (elastic,-piedtl hardeningandpostcap softening segments),
they used IDA to investiga the response of a large population of oscillators with varying backbone
parameters. Having thus mapped the behavior of many backbone shapes against arsliritzry
ground motions, not affected by directivir soft soi] they proposed a tool, aptlgamed
SPO2IDA, capable or reproducing the IDA curves of these SDOF systems without having to run
any analysis. Essentially SPO2IDA is nothing less than a coniplexn T relation applicable to

ordinary ground motionfl4]. The objetive of this study is to adapt the methodolafy13] to the
NS caseand employ IDA on trilinear backbone SDOF systems using afsehehundred and
thirty pulselike ground motiongsin order to develop the equivalent of Bz m7¥ T; relationfor

NS-FD ground motions.

The remainder of this article is structured as follows: after a brief note on the ground motion
suite employed, the methodology is laid out in des#ding with the various considerations that
contributed towardthe formulation of the analytical model. This is follow®da description of the
parametefitting procedureand techniques that were employed for the development of the principal
analytical componentsf the model. Finally some key observations on NSlgmiike response
stemming from the proposed equations are madetlamépplicability of the models briefly
discussed

2. METHODOLOGY

2.1Record set of NS puldé&e ground motiongnd definition of pulse period

The present study employs a dataset of-tmmedred and thirty pulsike NS ground motions,
whose impulsive nature Islieved to beelated to rupture directivitythe methodologies for pulse
identification adopted while assembling this dataset were thaggested if4] and[15]. The NS

FD ground motion dataset employed [it6] served as a starting point and was subsequently
enriched by records from more recent seismic eysuath as the Parkfield 2004 (California) event,
the Darfield 2010 and Christchurch 2011 (N&ealand) events and the South Napa 2014
(California) event. A more detailed account of the considerations that went into the compilation of



this NS pulsdike ground motion dataset can be foundii] along with acomplete list of the
records and relevant metadé&thapter four and appendix B [df7]).

Given thatthe objective of the present study idtimatdy, to characterize\NS structural
responsédy means of an analytical modehtincludespulse durationT , it may be worthwhile to

briefly discuss he definition and identificationof T . Both pulse identification algorithms

mentioned above employ the same definition of pulse period, which is the gseuetb of the
highestcoefficient wavelet returned by wavelet transform of the velocity signal. This defomit
has been found to be efficient, but it is far from unique in the litergfeug, [18], [19]).

Furthermore, both algorithmare known to be occasionallytriggered by impulsive waveforms
attributed to sofsoil site effects or other causes unrelated to FD.

From the inelastic structural response point of view, one htkéointo consideration the fact
that velocity pulses significantly deviating from the characteristic desidld, earlyarriving
waveform associated with directivity, may not exhibit the same type of correlation between
displacement demand and pulse peras FDBrelated pulses d¢e.g.,[20]). For this reasonn this
work, some effort was made to discern those velocity pulses most likely to have been the result of
directivity for eventual inclusion in this investigatidn.fact Shahi and Bakeeporttheir opinion
on whetheror notthe impulsive characteristics of trground motions analyzed [45] are due to
directivity; their assessant was alsdaken into accouniThe leastsquares linear regression line of
InT, against magnitude of the causal event for this dataset, shown in Figuiie B@)ar off those

reported by other researchers (d18])).

10

p=0.703 b .
b RE0495 E%D -] 8t R=0.70 " I
6,p =0.628 »B 2 #* i”@
N 3 by B> b s~ 6 . N Srorat
) 1 E gﬂ BB 4\0’5 > D] VIM + +'t|-+ i— '1%40’
) il = BT
> - > <
BTl L e R 2 et E;I - '
: @] LT T L0
5 6 7 8 0 2 4 6 8 10 12
M T, ()

Figure3. (a) Linear regression of lggulse period against magnitude and (b) datercept linear regression of pulse
period (T,) against period of maximum spectral psewetocity (or predominant periodgl

Finally, as already mentioned, more than one definitions ofappear in the literature. For

example, [19] employed the period which exhibits the maximum spectral pseeldaity
(previously termed the predominant peridg in [21]) to characterize inelastic spectra of NS

ground motions. One advantage of the wavikésted definition of pulse period is that it is not
sensitive to competing peak$ local maxima orthe pseudeelocity spectrum (see for example
[4]). However, the two definitiondo produce strongly correlated pulse duration estimates. This can
be seen in Figure 3(b), from whichalso becomes obvious thaj displays a consistent trend of

corresponding to a duration aroun@ of T,. This leads to the conclusion that, while no definition

of pulse period can be said to be demonsgrabperior to all others, some care must be exercised
when combining pulse duration information from NS haz4§2®]( [23]) with inelastic spectra
referring to specificT/T ratios (e.g., as ir{16],[19]) in order to ascertain that the two are

compatible.

2.2Incremental dynamic analysis for SDOF systems using {ikls&S records



Incremental dynamic analysis agpowerful semiempiricalmethodfor the probabilisticestimaion
of seismic structural demand and capacity. This-esfablished procedure, typically entails a-non
linear numerical model of the structutteatis subjectedo a suite of ground motion records, all
scaled at a common seismic intensity measure (IM) level. This IM iexgrhdually icreased by
applyingscalingto all the records, in order to reveal the entire range ofyelst response of the
structure, coditional to several IM values, up to global dynamic instability ementualcollapse.
During IDA, structural response &achsingle records represented by plotting two scalars against
each other: an IM characterizing the various scaled incarnatiaihe eécord and an engineering
demand parameter (EDP) representing the amplitude of respessking in asinglerecord IDA
curve. Once a set of IDA curves has been collected, representing the entire suite of ground motions,
it is an efficient practicestsummarize the curves into samsiatistics e.g.,medians, 16% and 84%
fractiles[24].

The present study entails performing IDA for a large population of SDOF systems,
characterized by various bilinear or trilinear backbones. As already indicated, pulse fersod

considered a key explanatory varights virtue ofits demonstrable value as a predictor for the
inelastic response for this type of ground mofid8], [26]. In fact, pulse period is included as the
denominator of the normalized period rafigT, , in a manner analogous [b6],[19] (the merit of

this decision will see extensive discussion in the following)
Consequently, the computation of IDdurves for the purposes of this work is performed for
given values of theT /T ratio. Since each record in the suite of NS piilee ground motions

considered is associated with a different pulse period, this effectively meamsathaindividual
IDA curve will correspond to ra SDOF oscillator with different period of natural vibration,
determined by the requisite of maintaining a consT, ratio within that particular IDA set. This

leads to the IM of choicéor these IDAs beinghe strength reduction factor R, defined as per
Equation ).

R=S(T = KO SWES(T.5% . T Eo010RD )

On the other hand, EDP of choice for the SDOF systems is ductility, g, /
ratio of maximum displacement to displacement at yield).

fd (defined as the
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Figure4. Thirty individual IDA curves of trilinearbackboneSDOFoscillatos subjected to puldéke records. Each
curve corresponds tdistinct SDOF system witldifferentvibration periodchosen in order tmaintain a constant



T/Tp ratio for all pulselDAs. The IDA curves are plotteaver the oscillates 6 ( ¢ dobatkbore furvewhich is
only possibldan normalized dimensionlessoordinategductility m i reduction factor R)

Therefore, these SDOF IDA curves obtained by scaling a suite of impulsive réatidh
shall be occasionally referred to as ptil3As for brevity in the remainder ahis work) will result
in summary fractile curves thabllect the responses diverse oscillatorplotted indimensionless

{mR} coordinates An example of such puls®As can be seen in Figure 4, where §mR}

coordinateslso permit plding the curves superimposed against the backbone of the corresponding
oscillator. Strictly speaking, there is a subtle difference in the definitiosti@gthreduction factor

and ductilityusedfor the representation d@he tackbone andhose used to pldhe IDAs In the
caseof a monotonic loading backbone curve (e.g., Figureréjuction factor and ductility are

defined using thenstantaneousalues of force and displacement on the numer&to?:F/ F.. and
m =/d,g. On the other hand, in the case of IDA curves, the numerator be¢beneaximum

absolute valuef forceor displacementecordedover the entire timéaistory of response to a scaled
record: R=F, . /Fqe =S/ andm = d./ 6. However,for the sake of brevitywhenever

backbones and IDAs are plotted together (e.g., Figure 4) and hence both definitionsrdphge
definitions corresponding to the ID&ll be reportedon thegraphaxes.

One final corment to be made about this type of ptiBAs concerns the actual scaling of the
impulsive ground motions. Although scaling is conceptuallynsic to IDA, some ground motion
classification algorithms[4], [15]) proposemaximum ground velocity thresholds, which a record
should surpass in order to be identifiedpasselike. This implies that a given puldike record,
when scaled downwards with pest to its registered amplitude, could cease to satistyh a
classification criterion.However any evaluation of pulse identification procedures and their
implications is certainly beyond the scope of the present work.

2.3 Hysteretic rule

For the present study, a peakented, moderately pinching hysteresis rule developed by Ibarra and
Krawinkler [27] was adoptedfor all SDOF systems subjected to IDAo cyclic strength
degradatiorhas been includeceventualloss of strength only occurs whéine response crosses

capping ductilitym, into the softening (negativetiffness) branch (Figure 2pPne of the reasons

behind this choice is thathen oscillators featuring a descending branch are concered, liteen
established thakinematic hardening hystesis is not entirely representatie of how actual
structures have been obsertedehave during experimer8]. Furthermorethe issue of strength
degradationis considered to be of secondarypantancein this case Strength degradation only
tends to supersede the shape of the backbone in anpertvhen severe degradatioerEountered

in low-period structures. However, given the range of ppes#ods associated with the N®
record suite employed in this stufsee for example Figure® [17]), the model is more oriented
towards moderate to long period structufese next paragraph for the treatment of low period
oscillators)and cyclic degradation is not included in the hysteretic rule used in the analyses.

2.4 Analytical model for NS pulséke seismic demand
2.4.1.Medianandscatterof pulselike seismic demand

For the development ain analyticalmodelfor the pediction of a central value S pulselike
seismic demange.g., mediarof EDP given IM)and the associated dispersion around this central
value, the methodology ¢13] is followed. In this approach, the parameters of analytical functions



are fitted aginst the 16%, 50%median)and 84%fractile IDA curvesof pulselike FD ground
motions In the case of random variables following a normal distribution, whichubiguitous
assumption in earthquake engineering for the logarithms of seismic demand quantities, the 16% and
84% fractiles correspond to the meamnus/plusone standard deviatiomterval boundaries
respectively

In the literature, the question of which measurec@ftral value (mean or median) is most
convenient for the development of predictive equations for inelastic seismic demand will
sporadically emerge (e,d29], [30]). For this particularcase the sample median is chosen due to
its characteristic of robust estimatdie presence of a descending branch on the backbone of the
oscillators examinedmeans that the model will have to tackle the issueprefdicting the
distribution of collapse capacityR defined as the intensity level which causes dynamic

cap’
instability of the SDOF systenY.et with the appearance abllapse points on the individual IDA
curves (see Figure 4), tsamplemeanof EDP given IM (EDP|IM) can be no longer defined. On
the otherhand,the counted median is not subject to such restricti®ig§. Furthermore, it was

shownin [12] that the x% fractile IDA curvesof EDP,,|IM and (100- x%)IDA fractiles of

IM 100 x[EDP are almost identical, witkollapse capacityractile pointsR_.; 4, 9 P€lONGiING to

both the m,,

R and R 100 0%

mfractile IDA curves It was observed during the present study that

the same properties hold for pulé®As. Therefore, thause of the three fractiles to capture central
value and dispersioprovides somdilexibility, which in turnallows for theefficient modeling of
seismic demand in terms of both EDP|IM and IM levels causing dynamic instability.

A final point to address regarding thitisticalaspects of thenodelis that of preferring a triple
curvefitting operationof the three fractilesatherthanregression analysi©rdinary leassquares
regressiorworks under the typical assumption®éussianindependenandidentically distributed
(i.i.d.) residuals[32]. Although the Gaussian distribution dlfie residuals carsometimesbe
achieved bysometransformation of the independent varialieeeting the i.i.d. conditionsf an
oscillatords responses acr oss aante of SMOH irelasgcl s i
response is known to increase at higher IM le\8&] (identical distributions imply constant
variance). Furthermoréhe probabilistic ttribution of the responseas disruptedwhen reduction
factor tends to unity, or when very long period oscillators are considered, or when dynamic
instability occurs. It is thereforanconvincing tomake a priori assumptions on the probability
distributions underlying the model for the purposes of regression anatysipreferable tsimply
fit parametric curves to thegamplefractiles. Assumptions on the nature of these distributions can
then be made in due time, as dictated by the necessitiegmtiual applications of the modee
also[17]).

2.4.2Predictor variables anéxplanatoryvalueof the T/T  ratio

An analytical model o$eismic demand fd8DOF oscillators featuring a generic trilinear kizane

will necessarily includall the parameters that uniquely define the geometry of the backbone curve.
Therefore,a, , m anda, (see Figur&) should be included avariatesn the model. The effect

of varying these parameters on the seismic response tolielggound motions has already been
the object opreviousinvestigation[34]. The additionalvariables that will be included in the model
arepulse period, by virtue of its demonstrable value as a preditioelastic respons®r NS-FD
ground motios thatwas confirmed nuerous times in past studigb], [26], [16] and the period of
natural vibration TIn fact, these two variables are combined into tbenmalized period ratid,/T, ,



in a manner analogous [d6], [17], [19]. The decision to base the model on e ratio was
alluded to during the definition of puldBA curves. Nevertheless, in a preliminary version of the
model by the same authdi35], a concern had @ady been raisedboutmixing the response of
very low-period oscillatorswith that of longperiod systems within a singl€/T, crosssection of

data. In factin that work, it was suggested that eachT/T  ratio, responses from oscillators with

natural periodT ¢ 0.30s be omitted from the model. That decision was based on engineering
judgementwhich dictated that it is prudent to keep the responses ofplerod oscillators, which
are characterized by high ductility demands even when ordinary records are consepeadied
from the responseof moderateo-long period oscillators sydcted to long duration pulses.

In the present studyhe intention is to evaluate the explanatory gatii the ratid/T, with
respect to NS pulskke inelastic demand in a systematic way. More specifically, it will be
examined whether or not there istatistically significaneffect of the period of natural vibration in
the predidbn of said inelastic response, which is not captured in its entirety by/heratio. The
methodology chosen for this investigation of the role of period T, employs stattsfpathesis
testing. The first step of this procedurs to obtain, for a specific SDOF system, the sample of
ductility demand responses of a specific SDOF
T/T, ratio. These original samples of responses fomehundred and thirtyD records are then
divided into smaller subsets, each subset consisting of responses corresponding to oscillators with
period T contained within a predefined intervigl <T €I, (nonoverlapping period intervals are
always employed)The second step consists of comparing the central values of these new subsets
among one another for systematic differend@se to the dispersion of each stripe, a direct
comparison between sample means or medians is not meaningful; instead, a staimpeaison

must be performed by each time testing th#l hypothesigdenotedH,) t h ahe twd sets of

responses have been sampled from normal distributions with equal medians (but possibly unequal
variancesp .

The practical endesult of this procedure is to identify subbundariesT,, T, as to observe

systematic rejection ofi,among the corresponding intervals, thus hinting at the need for separate

analytical modelling of N&D seism¢ demand for each interval. Note, however, that due to the
probabilistic nature of these tests it is possible to encounter some rejections Elyémwlds true

and viceversa.ln order to perform the tesine shouldiefinewhat can be considered as acceptable

risk,a, of rejecting the null hypothesis, when it is actually correct (which is also known in
statistical literature as a type | err@86]). This concept is represented as a conditional probability
in Equation (3). In this cas@, =0.05is considered.

a = Pagreject H| H correct (3)

For the purposes of this investigatidi, was subjected to the AspiWelchtest([37]) for the
cases of three bilinear oscillators with hardening stiffness ratms £0.00,0.10,0.3(, five
normalized period ratiosT/T, ={0.20,0.30,0.40,0.80,1.2, three levels of strength reduction
factor R={2.4,4.0,5.}3 and a noroverlappingtri-interval partitoning of the period domain

T¢T,, T, T € and T>T. Thus, each time the interval limif§,, T, were shifted in order to
explorethe period domain for statistically significant differences in median ductility demanih with



a T/T, crosssection, a maximum afnehundred and eightlystatistics and correspondipevalues

were calculatedat times less as some combinationsTgfl and T,, T, leave some stripes devoid

of records.

Note that the analytical model for the bilinear hardening case also serves as a component of the
complete trilinear model (both presented in the following). Therefore, examining bilinear hardening
oscillators for eventual statistically sign#ict effects ofT will eventually reflect upon the entire
model.Some characteristic results are given in Table laag@phical representation in Figuse

Table 1. Some illustrative test statistich (denotes standard deviation of 4dgctility) andrejectior nonrejection

results for the null hypothesis that the pairs of ductility demand stripes have been sampled from normal distributions
with equal medians but different variances.

sample | Sample Do ot
cha?ei:rpepr:gtics i S,ilz_e Stqul?e Inm b st;?izttic DZF vsfl-ue rejeﬁf o
' factor U=0

—
EE e EEe
T-020 [ 030s< T¢080 | 2| 34 | ©°*0 2122 0830| 2243 74| REfEE
e e e ) O e
T m e S ]
T 0% 0 TH20 21 99 | Rego 222 2221 5 0804| 100| 00400 Reject
= onE e D TR
R W L o L S oo B
T 0w 080 T80 L 3 R0 o0 025 31615| 101] 00021 Reject
p 03(& OT_S%S'SO ; gg R=5.5 ;ggg 8:3;2 3.4474| 105| 0.0008| Reject

The choice of test type can be explained by the factthigatwo stripego be compare@éach
time contain responses from oscillators witifferent periods and thus heteroscedasticity (unequal
variances) was assumddue to the assumption of sampling normally distributed populations, the
test is performed on the logarithms of ductility demamfdsardening bilinear systenfigr each pair
of stripes.This is consistent with the methodology followed[&8] and[39] (in the latter case
equal yet unknown,varianceswere amore logical assumption leading to a simplest being
adopted) The degrees of freedom of the distribution of the test statistic in the presence of the
heterosedastiity assumption were approximated accordinfdj.

Generally speaking, rejecting the null hypothesis or not was dominat gtiol /T, and

theinterval boundarie§,, Ty . In other words, give/T ,T,, T, the tendency to rejedt, or not

at a =0.05 was more or less uniform across the three bilinear oscillators and the three reduction
factors consideredMost cases of statistically significamtifferences in the median ductility
demands (i.e., cases whef) was rejected) were encountered fbfT, ratios between 0.20 and

0.40. These hypothesis tests emphatically confirmed the premise already njd8g that NS
seismic demand is systematically different for oscillators WittDs< T ¢0.30.compared to that of
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SDOF systems witfT >0.30s. Less pronouncesystematic differences were detected between low
to moderateperiod oscillators and long to velyng-period oscillators, wheit/T, <0.50.
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Figure5. Graphical representation for some of the stripes ofllagfility demand given reduction facto'F/Tp ratio

and period range, whose medmave beemstatistically tested for equality (detailed results of the corresponding tests are
among those provided in Table I$tripes in pansl(a) and (b) correspond hilinear systems with, =0 (elastic

perfectly-plastic oscillatory which maintain a ratio o1|'/Tp =0.20. Panel (a) refers to oscillators within the

0.10s< T ¢0.30interval, while panel (b) to those within.30s< T ¢0.80. Sampledetween (a) and (bt each
level of reduction factashown,have been used to test the null hypothégjsat a =0.05. The same is true for the

response samples between panels (c) andfal(fc;i):(O,T/Tp =0.30, test betwee0.30s< T ¢1.20 andT >1.20s
intervals) as well as (e) and (f( :0.10,T/Tp =0.40, test betweerD.30s< T ¢0.80andT >0.80s intervals).

Another interesting observation is that when long period values were seleclgafat stripes
at T>T, and T/T, =1.200r higher were teste(torresponding to veriiigh-period systems) H,

was consistently rejected across all parameters considered. In order to interpret this behavior, one
has to look at the entire logical complementHyf and deduce that rejection does not only come

from existence of a statistically significant difference between the logarithmic means but it can also
result from not sampling a Gaussian distribution. In fact, when very long period oscillators are
considered, inelastic displacements tend to clustamdrthe peak ground displacement even at
high levels of inelasticity (for an explanation of this phenomesem Chopra and Chintanapakdee
[41]) in a quasideterminstic mannerthusdeparting from the empirical distributions encountered
for lower period systems.

Because of the above observations, it was decided to develop the analytical model by providing
separate pulstDA curve fits forcertaini s p e c t r a(i.e., pegod intervalsaind T/T, ratios.

Therefore, in what follows, parameter estimation for the analyficadtionsis always performed
by fitting the model against the data for the following distinct cases:
T Systems with0.10s< T ¢0.30:when0.10¢ T/ T, ¢0.3C

T Systems with0.30s< T ¢0.80:when0.10¢ T/ T, ¢0.5(.
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T Systems withT >0.80s when 0.15¢ T/ T, ¢0.5C.

1 Systems of all periods not falling into one of the above categories are covered by a single
model valid for0.10¢ T/ T, ¢2.0C.

In overview of the salient points pertaining to the methodology adopted for this study, it can be said
that IDA is performed for a population of moderately pinching SDOF systems with bilinear and
trilinear backbones, using a suite of RB ground motionsMedian and 16%34% sample fractile
IDA curves are obtained for each oscillator at various constaf ratios and are subsequently
modelled analytically by means of leasfuares curve fitting. The model distinguishes between
specific spectral regions in order to better capture the combined effect of Tl @mdNS pulsdike

seismic demandDetails on the functional forms and the actual cdittemg procedures are
provided in the following sections.

3. BILINEAR HARDENING SDOF SYSTEMS

The analytical functional form selected to model the plikeeIDA curves for bilinear oscillators
with hardeningbehavior(positive postyield slope) is given by Equatiod)( It is a rational function
(in log-space) of ductility given reduction factoraétiles, containingfour parameters to be
determined by fitting the model to the dafa.total of fourhundredsets of IDA curves were

obtained for this purpose, correspondingaoonbinations opostyield stiffness ratiosa,, spanning
the interval[0,0.9 and T/T, ratios belongingvithin [0.1,2.G.

a,0nR B, INR __ . ’
| . — , X=116,50,84 , R &1, . ! 1,15
nm,,  OnR o x={ ¥ & LRo gl oM@ . 10 1]

85 Bos 1 Gos 0= 4 3. T T.T . @ [[0,000, T T[10.10, T>0.1

The termR o, X)%(mc) appearing in the domain definition of reduction factor R in Equadny

(4)

the reduction factor corresponding to the capping point of a trilinear backbone oscillator. The
implication is that, up to the point of capping ductility, this equation is also valid for the general

trilinear casddetailed treatmenb follow).
The curvefitting procedure entails obtainingonlinear leastsquares estimates for the model

parametersa,,, , B, , G, and d,,, for each distinct combinatioof a,,T/T and each fractile
x%={16%,50%,84%. As elaboratedduring the preceding discussiam methodology, these
fractiles are also calculatemmongsubsets of theemployedrecord suite. This means that for
T/Tpi [0.1,0.:} the three fractiles are also calculated among phlselike records which
correspond to oscillator periods within the interval (0.103,0.30]5 and this is repeated for
T/T,i [0.1,0.9 ,Ti( 0.30s,0.8¢ and for T/T,i [0.15,0.5 ,T>0.80. Thus, separatsets of

parametersare derived forsuch period intervals (or spectral regions) have beendeemed
statistically meaningful by prior analysis.

Overall, this curvditting procedure lads to groups omodel parametersy,,, B, , G, and
d,,, that given period T, arémplicit functionsof postyield stiffness rati@, (which uniquely
characteries the shape dhis type ofbackbong normalized periodl/T, andthe x%fractile IDA

of interesti hence the notatiorg(ah,T/Tp,T) in Equation 4). In a peliminary version of the
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model[17] and also if13], a second stage of fitting was conducted, in order to render the model
parametersxplicit analytical functions ofa, and T/T, (in [17]) or T (in the case of ordinary

records[13]). However, these past endeavors also showed that thendence of the model
parameters on a, and 7 T, orTis quite complex and can lead to very elaborate equations.

These additional analytical functions have the advantage of lending elegance to the solution but also
the disadvantages of lackingaghtforward physical interpretation and adding a second source of
misfit of the model to the data.

In the present studyt was decidedo obtain results for a finer grid clefth,T/Tp values and

subsequentlyabulate the single stage fit results imanner that lends itself to linear interpolation.

I n fact, these results have been gathered i
MATLAB scripted functions that handle the necessary interpolationsséltools are availabbes
electonic supplements to this padd2]. In Figure6, several examples of the fitted model against
the original pulsdDA fractile poirts are presented, highlighting the efficiency of the chosen
functional form of Equation4) in capturing theshifting trendsof the dataamong variations in

spectral regionjl'/Tp anda, .

10

5
@, =0.10 ?»o&}:\?g 9 o= 0.:)020 a, =0.10 ]
s T/TP =020 @'o@' e 0 / »=0. '(_r¢ g T/TP =0.50 %’xo;r
0.10s < T<0.30s 3#° 0305 <T<0.80s * T>0380s §
4 Q\L\Y” +o16% + Vol -t -9
Fad »C ° #* (36 oS
s #5250 6 O 50% PR & 6 gt o
< Fa w5 0% R« '}4* AW
w' o7 -7 v 84% ;g A 34 ¥
i Pl -
o 2 20V DA 4 4 D < e Y
2% =0 p o
TV 75 :%A‘\/o
1 2 2 &
a
. @] ®] , ©
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Figure6. Comparison of the fitted model of Equatieh With the underlying data for SDOF systems (a) with
a, 0% atT/T, =0.20 when 0.10s< T ¢0.30 , (b) @, =10% atT/T, =0.20 when0.30s< T ¢0.80, (c)

a, =10% atT/T, =0.50 when T >0.80s, (d) &, =0 atT/T, =0.40 when0.30s< T ¢0.80 ,(e) &, =20% at
T/T, =0.60 for all periods T and (fr,, =50% atT/T, =0.80 for all periods T.

4. NEGATIVE POST-YIELD STIFFNESS BILINEAR SDOF SYSTEMS

The modeffitting procedurein the case of bilinear SDOF oscillators with softening behavior
(negative posyield stiffness ratio) is in principle similar to what has been already presented for the
hardening case. Theaindifference stems from the fact thaethppearancef a negatie-stiffness
branchon the backbone currequires the introduction abllapse capacitfractiles R, ,, into the
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model(i.e., strength reduction factor that causes dynamic instabilityotn of the ground motions
as defined previous)yThisimportant additional consideration, led to the adoption of the functional

form of Equation %), which models reduction factor given ductility (fractle,,|m), as opposed to

the m given R fractiles n,,
according to24], the m,|R and R,,,

typical IDA properties of continuity and monotonicity are slightly violatBae reasorfior invoking
this fireversab propertyis relatedto the analytical treatment implemented for the inclusion of
collapse capacityr_,_into the model and shall become apparent shortly

R) of Equation 4) fitted against the hardening caskss recalled that

m fractile IDA curves are almost identical, even when the

cap

InR,,, :MT m (1, Moo xe@: X={ 16,50,84
Inm +b,,, 5)

abo=dla. 7T, a i 40, 0dt, 17 [ oi1d0, T>0:

As in the hardening case, Equatioh) fepresents a neimear model with respect to its
parametersa,,, and b,,,. Weightedleastsquares estimates are obtained by fitting the relevant

fractiles (for the same period intervals as before) againgdiwsidred and twenty combinations of
T/T,i [0.1,2.4 and postap stiffness ratica, [ 4.0, 0.0]. The fractile ductility M, 00 we
appearing in Equatiord) is the ductility at capacity (not to be confused with capping ductility

i.e., ductility wheredynamic instability occurs and therefarellapse capacityR is reached.

cap,x%

While dynamic instaltity is strictly expected athe point of crossing the zero capacity axisnay

0 see Equation () issues of numerical accuracy may often cause its earlier appearance, thus
necessitating the introduction af,,,,, . t0 reconcilethe practical with the ideal’he weighting

scheme implemented into the fitting procedisréntended to garantee good local fit of Equation
(5) at the capacity poir{trrlap(100 o R Cap,XO} . Then, theractiles of ductility at capacity are included
into the model byalsofitting Equation 6) against the results of tlsamebilinear softening systems

Mapxoe = MCH, & O, (+ a0 nl.- , [009 a [[ 40 Qs , = 1650  (6)

The notation in Equation6) corresponds to the general trilinear case and its purpose will be
revealed in the following section. In fact, for a purely bilinear softening case, Equ@jtiad(ces

tO rT]:ap,x% 4 6-x%/ J
Recalling that theveighted leassquares fitting of Equatiorb) practically forces it to pass
through the capacity point, we can calculate an analytical prediction for capacity fRagfilesby

merely substituting the result of Equatid@) {nto Equation §) and thus obtain
_ &y On JJB(lOG X)%

cap,x%
P In rrlap(lOG X)% -lb X%
Note that the domain gbostcappingslope a, for Equation §) is [-4.0, -0.01 while that of

Equation 6) is [-4.0, -0.0§. The reason behind this is that systems vait1¢ | a| ©.0¢ will

experience dynamic instability at very high ductility anthy exhibit highlyirregular non
monotonic Rg,,,/m(or mg,|R) fractiles.In fact, it was deemed countproductive to model this

behavior up to the point of collapse when said point corresponds to unrealistic ductility demands.

InR , x={16,50,8% (7)
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Thus, oscillators with a softergrbranch falling in the0.01¢| a| ©.0f range were modelled via

Equation ) up to a ductility of fifteen and were excluded from &g, ,,, part of the model.
Similar to the hardening case, model parameteys b, , G, are treated as implicit functions

of a,T/T, for each period range and fractil& and are available within a MATLAB function

provided among the electronic supplements to this gdggrFigure? offers a representation of the
curvefitting results for bilinear softening SDOF systems, for a variety of casesnteresting
observationstemmingfrom the figureis that since Equations) tends towards flatter slopes near
the capacity pointeventual misfit of the modeh terms ofm,, ,,, will produce amuch lesser

variation inR_,, 100 4 THiS is advantageousince the latter is the more important statistic.

Figure7. Comparison of the fitted model of EquatioBs7) with the underlying data for bilinear softening systems with
a, = 30% atT/T, =0.25 when (a)0.10s< T ¢0.30 and when (b)0.30s< T ¢0.80, (c) a, = 50% at

T/T,=0.40whenT >0.80s, (d) a, = 0% atT/T, =0.40 when0.30s< T ¢0.80, (e) @, = X00% at
T/T, =0.80 for all periods T and (fp, = 80% atT/T, = 0.60 for all periods T.

5. MODEL FOR THE COMPLETE TRILINEAR BACKBONE

5.1Equivalent ductilityconcept

A straightforward if somewhat impracticalvay of tackling the problem of modelling pulklee
IDAs for systems boasting a complete trilinear backbmnéd be tosimply run a large number of
analyses in an attempt to span the entire parameteg s;b{aah, m gT,Tp} , as was done for the

two bilinear cases already covereHlowever, stuctural responses exhibit a cpicated
interdependency with respect to skd¢ive parameterswhich cannobe studiedindependently one



























