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Introduction 20 

Fragility is a versatile term employed throughout earthquake engineering to describe the 21 

susceptibility of a structure (or part of a structure) to seismic damage. Its estimation can be 22 

based on a variety of empirical (Rossetto et al. 2014), numerical (D’Ayala et al. 2015) or expert 23 

opinion data (Jaiswal et al. 2011), and their combinations, using various methodologies that 24 

range from pure statistical processing of existing data (Lallemant et al. 2015; Noh et al. 2015) 25 

to computational static and dynamic procedures that generate new data from scratch (D’Ayala 26 

et al. 2015; Rossetto and Elnashai 2005; Shinozuka et al. 2000). The first type features the 27 

generation of “empirical fragility curves” (ATC 1985), typically for classes of structures, and 28 

will not be dealt with herein, whereas the second refers to the so-called “analytical fragility 29 

curves”, derived either for a class of similar structures (Silva et al. 2014), or for a specific one 30 

for which a custom structural model has been formulated. The latter case, i.e., the analytical 31 

derivation of structure-specific fragilities is the main subject of this study. Note that the 32 

analytical designation may seem misleading, given that they are a product of numerical analysis 33 

rather than some analytical equation; yet, the connection to “analysis” compared to “statistical 34 

fitting” is a more apt distinction to understand the term. The field of application for fragility is 35 

so wide that one should begin by attempting to narrow it down and focus on a very specific 36 

(yet widely applicable) definition. Henceforth, a building fragility is defined as a probability-37 

valued function of a building’s seismic demand (D, i.e. a response parameter of interest, as 38 

determined by numerical analysis) at a given level of seismic intensity, exceeding an associated 39 

capacity threshold (C, e.g. defined by pertinent assessment guidelines such as ASCE41-06 40 

(ASCE 2007)) that signals violation of a limit state (LS) of interest. A fragility function is thus 41 

parametrised by one or more scalar intensity measures (IMs) that characterise the seismic 42 

intensity (e.g. peak ground acceleration (PGA), first-mode spectral acceleration (Sa(T1), etc.). 43 



Of particular interest, hereafter, is the case of a single IM, for the so-called fragility curves 44 

(versus e.g. surfaces for two IMs).  45 

Although a fragility curve corresponds to a single limit state, it actually splits the entire 46 

event space into two complementary events, namely “LS exceeded” and “LS not exceeded”, 47 

often associated with specific (distinct) damage states (i.e. DSi, DSi+1) in the literature (e.g. 48 

light versus moderate damage). Be aware that “exceeding” a state may sometimes be 49 

linguistically construed as being better to it; still, in the fragility context “exceedance” and 50 

“violation” of a limit state are considered interchangeable. Traditionally, the “fragility” term 51 

has been used to describe conceptually different entities, such as component damage 52 

conditioned on engineering demand parameters (EDPs, e.g. inter-story drift or peak floor 53 

acceleration) and building/system damage conditioned on seismic intensity (FEMA 2012; 54 

Nielson and DesRoches 2007a; b; Porter et al. 2006). There are advantages to be had when 55 

looking at limit states of specific components (rather than aggregating to the whole structure), 56 

especially when looking at the estimation of repair cost, downtime (Goulet et al. 2007; Miranda 57 

and Aslani 2003; Mitrani-Reiser 2007), or even casualties. In this paper, however, the 58 

“fragility” term is strictly associated with the system (building) fragility conditioned on the 59 

seismic intensity.  60 

The reason why fragility is such an important step in almost every seismic-related study 61 

is uncertainty (Gidaris et al. 2017). There is uncertainty on the structural capacity as well as on 62 

the associated demand. A good way to understand the significance of fragility is to think of a 63 

purely deterministic scenario, where a simple comparison between capacity and demand would 64 

provide a probability of violating (or exceeding) the limit state under investigation equal to “1” 65 

for the case that the event [D > C] is satisfied, and “0” otherwise. Inevitably, the fragility curve 66 

given the IM becomes a step function, changing from “0” to “1” at the LS capacity. To 67 

incorporate uncertainty on a code-basis, traditional design or assessment, safety checks are 68 



performed using pertinent safety factors that are calibrated to correspond to a given probability 69 

level, for both capacity and demand. The problem is that they provide a single “yes or no” 70 

answer, while the inclusion of safety factors only means that the “yes or no” answer is valid at 71 

the single pre-calibrated safety factor probability level. Instead, when uncertainty is fully taken 72 

into account for demand and/or capacity, the well-known S-shaped fragility curve is attained. 73 

The latter provides the probability that demand exceeds capacity (i.e. D > C) at all possible 74 

intensity levels, or in other words summarises the results of all possible single-level safety 75 

checks into a continuous function.  76 

A good way to look at the estimation of fragilities is by realising that it is simply a method 77 

to propagate uncertainty from the intensity measure to the limit state check/assessment of the 78 

structure (Ellingwood and Kinali 2009). In general, as Bazzurro et al. (2006) correctly 79 

observed, fragilities are actually characterised by a central (median) IM capacity value and an 80 

associated dispersion. They can be thought and used exactly as the cumulative distribution 81 

function (CDF) of the building-specific limit state IM capacity. For instance, if a future 82 

earthquake event reaches a certain IM value, information on the probability of pushing the 83 

structure to a limit state is immediately provided. Most telling, if the seismic intensity equals 84 

the median IM capacity, there is a 50% chance that the earthquake violates the associated limit 85 

state. 86 

Herein, the derivation of seismic fragility using nonlinear response history analysis 87 

methods is discussed. Due to the delicate nature of the topic under discussion, the authors feel 88 

inclined to state that this manuscript does not attempt to offer new results. Instead, it aims to 89 

provide a carefully structured discussion of how fragility can/should be estimated via several 90 

acceptable approaches so as to provide consistent results with any and all of them. 91 



Formal Definitions 92 

The notion of fragility is intimately tied to the idea of the intensity measure. An intensity 93 

measure is a quantity indicative of the severity of the ground motion at a given site and is meant 94 

to act as an interface between seismology and structural engineering. Typically, IM is a scalar 95 

variable, usually the Sa(T1) or even the PGA, for which there are ground motion prediction 96 

equations available, such that the hazard curve generation is possible. In this view of the 97 

performance-based assessment problem, seismologists would model any faults causing 98 

earthquakes that may affect the site under investigation, and summarise all information into a 99 

single hazard curve (or hazard surface in the case of a vector, Bazzurro and Cornell (2002)) 100 

representing the mean annual frequency (MAF) λ of exceeding certain levels of seismic 101 

intensity. Hazard curves are computed via probabilistic seismic hazard assessment (PSHA), 102 

whereby the myriads of possible earthquake scenarios are aggregated to achieve what is 103 

essentially a probabilistic IM distribution for the site under investigation. Structural engineers 104 

are typically expected to pick up the work at this point, functioning independently from 105 

seismologists, by estimating the distribution of structural response (typically characterised by 106 

pertinent EDPs, Bazzurro et al. (1998)), damage or loss that the structure of interest may 107 

experience, should it be subjected to given values of the IM. Ultimately, the IM becomes the 108 

single conduit to circulate information between seismologists and engineers, easing (although 109 

sometimes oversimplifying) communication considerably.  110 

In an attempt to fully characterise a structure, engineers go one step further setting up limit 111 

states that allow discretising the continuous level of damage into discrete damage states, each 112 

with distinct consequences to the structure, its components or inhabitants. Associating each DS 113 

(or LS) with a desired (maximum acceptable) MAF of exceedance forms pairs known as 114 

performance objectives/targets that have an actual meaning for the operability of the structure 115 

itself, thus translating the engineering aspect of EDPs to something that actually makes sense 116 



even to non-engineers. Definition of each LS is achieved by assigning threshold (limiting or 117 

capacity) values for one or more EDPs whose exceedance triggers the limit state violation and 118 

brings the structure into a higher DS. In sight of the above, the fragility curve can be viewed as 119 

the summary of all structural analysis results, conditioned on the IM. Formally, it is defined as 120 

the probability function of violating a certain limit state given the value of the earthquake 121 

intensity measure. It is essentially a function of the intensity measure that may be expressed as   122 

 ( )    IMCDIMLSIMFLS ||  violated == , (1) 123 

where the second form assumes that LS violation is defined through a single EDP with demand 124 

D and limit state capacity C. In this case, fragility may be evaluated using either EDP or IM 125 

demand ordinates versus their associated capacities EDPC and IMC, respectively.  Thus, 126 

equivalently to Eq. (1) the following expressions apply:  127 

 ( )  IMEDPEDPIMF CLS |=  (2) 128 

 ( )  CLS IMIMIMF >=  (3) 129 

Note that there are cases in the literature where fragility is expressed as [D ≥ C | IM] rather 130 

than [D > C | IM], thus implying that in the rare case where capacity and demand are identical, 131 

the first signals violation while the second does not. This is mainly a matter of definition with 132 

respect to “exceedance” and “violation”, and is generally not a real issue with continuous 133 

distributions, since P[D=C |  IM] either equals zero or tends to zero, as the number of data 134 

points grows. 135 

Customarily, a fragility curve is associated with two basic properties. First, at zero 136 

intensity, the probability of exceedance is zero. This is intuitive and needs no further 137 

explanation. Second, as IM approaches infinity, the very same probability should approach one. 138 

This seems natural as well and should be assured for any IM that properly corresponds to 139 

seismic intensity, although it is conceivable that some particularly bad IM choices would not 140 

possess this basic property. Take for instance the bracketed duration (e.g., D5-75); quite often 141 



records of large duration are recorded at very large distances to subduction zones; then, higher 142 

duration correlates with lower intensities and thus a negative correlation coefficient between 143 

Sa(T1) and D5-75 is often proposed (Bradley 2011). A third property is often assumed, namely 144 

that of monotonicity, or, in other words, that the function FLS is strictly increasing. This is not 145 

a strict requirement according to the general definition via Eq. (1) or (2), although it is plausible 146 

that there may be a range of intensities where a structure may experience lower probabilities 147 

of limit state exceedance, compared to a lower intensity level. For example, Vamvatsikos and 148 

Cornell (2004) have observed such ranges of response, but for specific ground motions only; 149 

never for entire sets of records. Such occurrences in the entire set of analysis may be a sign of 150 

an insufficient IM or of inadequate ground motion sampling. Therefore, they should be 151 

carefully investigated whenever they appear. Nevertheless, as we expand our experiences with 152 

engineering structures, the possibility of such valid occurrences happening should not be 153 

discounted. In the general case though, it is safe to take monotonicity for granted, which enables 154 

the definition of fragility as the CDF F(∙) of the structure’s limit state capacity in terms of IM 155 

as implied by Eq. (3).  156 

Definition via the Total  Probability Theorem 157 

A reader well-versed in Performance-Based Earthquake Engineering (PBEE) would recognise 158 

the central use of fragility in almost every aspect of analysis or design (Deierlein et al. 2003; 159 

Moehle and Deierlein 2004; Wen and Ellingwood 2005). The PBEE framework, originally 160 

developed by Cornell and Krawinkler (2000) for the Pacific Earthquake Engineering Research 161 

(PEER) Centre, serves as an alternative to the well-established Load and Resistance Factor 162 

Design, where the former can assess performance based on the MAF of decision variables (DV) 163 

similar to casualties, monetary loss and down time. To perform such an estimation, continuous 164 

damage measures (DM, e.g. concrete cracking and spalling), or usually discrete damage states, 165 



must be defined based on appropriate EDPs (e.g. roof displacement, drift), associated with 166 

ground motions at a range of IM levels [in terms of, e.g., PGA or Sa(T1)] whose MAF is 167 

determined by the seismic hazard function λ(ΙΜ). The entire PBEE methodology is summarised 168 

as an application of the total probability theorem as 169 

 ( ) ( ) ( ) ( ) ( )IMIMEDPGEDPDMGDMDVGDV
DM EDP IM

 d |d |d |  = , (4) 170 

where G(x| y)=P(X>x | Y=y) is the conditional complementary cumulative distribution 171 

function (CCDF) of a random variable X given the value y of another random variable Y.  172 

Changing the order of integrations on Eq. (4) provides interesting intermediate results, as 173 

nicely put by Miranda and Aslani (2003). Integrating the IM first, provides the MAF of the 174 

remaining variables, i.e. “hazard curves”. For instance, integrating the last two terms over IM 175 

provides λ(EDP), or EDP-hazard (e.g. the drift hazard of Jalayer (2003)). On the other hand, if 176 

the IM conditioning is preserved, what we get is fragility or vulnerability curves. Integrating 177 

out EDP, considering that DM is discretised into multiple DSi, provides fragility curves G(DSi 178 

| IM). Integrating out DM (or DSi) provides the vulnerability function G(DV | IM). Generally, 179 

“vulnerability” refers to measurements of loss (i.e. casualties, monetary loss, downtime) and 180 

should by no means be considered interchangeable to “fragility” that is strictly a measurement 181 

of probability (Porter 2015). Thus, equivalently to Eq. (4) λ(DV) may also be expressed as:  182 

 ( ) ( ) ( ) ( ) =
DM IM

IMIMDMGDMDVGDV  d |d |  (5) 183 

 ( ) ( ) ( )=
IM

IMIMDVGDV  d |  (6) 184 

In some sense, although they appeared much earlier (e.g. in the nuclear industry, Kennedy and 185 

Ravindra (1984)), fragility curves can be viewed as an intermediate product of a PEER-like 186 

framework to estimate the probability of violating a certain limit state or damage state given 187 

the level of ground motion intensity. 188 



Fragility may also be formulated in an alternative, yet more explicit, way through an 189 

alternative application of the total probability theorem. Bearing in mind that the LS term now 190 

refers to the associated LS violation, fragility can be expressed in the domain of a continuous 191 

EDP variable as 192 

 ( )   ( )  ( ) EDPIMEDPfIMEDPLSIMLSIMF
EDP

LS d | |P| == , (7) 193 

where f(x | y) is the probability density function (PDF) of a random variable X given the value 194 

y of another random variable Y. Applying the total probability theorem one more time to 195 

incorporate an additional level of integration over the intensity measure in order to account for 196 

the probability of occurrence for earthquakes of varying intensity, the MAF of LS violation is 197 

recovered as:  198 

 ( )   ( )
( )

IM
IM

IM
EDPIMEDPfEDPLSLS

IM EDP

d
d

d
 d | |P

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






=  (8) 199 

Eq. (8) is essentially identical to the PEER equation (Eq. (4)) provided that DV and DM are 200 

treated as index functions, which means that either of those variables becomes “1” when a 201 

certain DM or LS is exceeded, and “0” otherwise. Note that ( ) IMIM dd is the mean annual 202 

rate density of seismic intensity, or in other words the equivalent of PDF for rates. Applying 203 

any of the aforementioned equations may seem rather complex at first glance; however, such 204 

expressions are often evaluated numerically by discretising. For instance, partitioning the entire 205 

EDP range into Nbin bins of equal width ΔEDP, Eq. (7) can be realised through the sum of the 206 

individual probability products for the [LS|EDPi(IM)] and [EDPi|IM] events:  207 

 ( )   ( )   
=

==
Nbin

i

iiLS EDPIMEDPIMEDPLSIMLSIMF
1

 |P |P|  (9) 208 

While this integration (or summation) seems straightforward, there are many ways to 209 

estimate this deceptively tricky quantity. They are mostly affected by (a) the EDP|IM 210 

estimation methodology, (b) the uncertainties included, (c) whether the estimation is direct 211 



(EDP-based, Eq. (2)) or indirect (IM-based, Eq. (3)), and (d) the integration approach, namely 212 

numerical or analytical via the typical lognormal assumptions on the various random 213 

parameters. The next few sections discuss these issues. 214 

EDP-IM relationship 215 

In the structural analysis context, each dynamic analysis provides a single pair of IM and 216 

(demand) EDP values. In view of the uncertainties involved, multiple analyses on a 217 

considerable number of ground motion records are required for every level of seismic intensity 218 

considered. There are many ways to group the aforementioned pairs in order to adequately 219 

characterise the EDP-IM space and estimate seismic demand, e.g. single-stripe (Jalayer 2003), 220 

multi-stripe (Jalayer 2003; Jalayer and Cornell 2009), cloud (with or without record selection 221 

and scaling, Jalayer 2003; Mackie and Stojadinovic 2001; Padgett and DesRoches 2008), or 222 

IDA (Vamvatsikos and Cornell 2002).  223 

Since all analysis results are conditioned on values of the IM, it is mandatory that the IM 224 

contains all necessary information to make the analysis results insensitive to any other 225 

seismological variables, such as magnitude, distance or epsilon. This implies that when 226 

structural analysis is performed under a suite of ground motion records scaled to a given IM 227 

level, the estimated probabilistic distribution of the response does not depend on any 228 

seismological parameter. This is the well-known requirement of IM sufficiency (Luco and 229 

Cornell 2007). For example, PGA is known to be a relatively insufficient IM, unless short 230 

period structures subject to low levels of intensity are concerned. Sa(T1) has been shown to be 231 

an adequate choice for assessing first-mode dominated structures subject to far-field 232 

earthquakes (Shome et al. 1998) as long as excessive scale factors are not employed (Luco and 233 

Bazzurro 2007). Accounting for higher and/or elongated mode contributions has been shown 234 

to provide IMs with adequate sufficiency for near-field excitations, tall structures, collapse and 235 



loss assessment (Cordova et al. 2001; Eads et al. 2016; Kazantzi and Vamvatsikos 2015; 236 

Kohrangi et al. 2016; Tothong and Cornell 2008; Tsantaki et al. 2017). Alternatively, one may 237 

choose to employ sets of ground motions that account for the anticipated effect of seismological 238 

parameters at each level of an insufficient IM, rather than a single set across all intensities, at 239 

the cost of forfeiting independence from lower-level seismological information. For example, 240 

accounting for the distribution of epsilon at each level of IM has been shown to significantly 241 

improve the ability of Sa to lower/remove bias with respect to spectral shape in the prediction 242 

of structural response (Baker and Cornell 2006). 243 

Without avoiding a bit of an authors’ bias, fragility can best be understood in the realm of 244 

IDA (Vamvatsikos and Cornell 2002), where “failure” can easily be  traced on a record-to-245 

record basis. In brief, this procedure subjects a structural model to a set of records scaled to 246 

multiple levels of IM, in order to obtain the recorded EDPs, and thus the resulting (EDP, IM) 247 

points that are interpolated to form continuous IDA curves in the EDP-IM space. Fig. 1(a) 248 

presents the associated IDA curves (maximum inter-storey drift ratio θmax versus Sa(T1)) for a 249 

12-storey reinforced concrete frame building (see Kazantzi and Vamvatsikos (2015) for 250 

details), using the FEMA P-695 far field ground motion set (FEMA 2009). This is a modern, 251 

code-conforming, symmetric-plan, perimeter moment-resisting-frame, corresponding to 252 

seismic design category ‘D’ (FEMA 2009), modelled as a two-dimensional frame with 253 

fundamental period T1=2.14s having both material and geometric nonlinearities. The PDFs 254 

(EDP|IM and IM|EDP) for an arbitrarily chosen EDP and IM level, are also provided to 255 

illustrate the inherent variability of the demand/capacity estimation problem. Both the 256 

horizontal (EDP|IM) and the vertical (IM|EDP) stripes are a direct result of the record-to-257 

record randomness only, under the assumption that a fixed (i.e. deterministic) value of EDP 258 

capacity governs a certain damage state on the structure. For the case of IDA, the probability 259 



of exceeding a prescribed EDP limitation may thus be evaluated on the entire EDP-IM plane, 260 

using either of the respective ordinates (EDP, IM). 261 

Other options to IDA are, for example, the cloud analysis, whereby a set of (scaled or 262 

unscaled) records appearing at arbitrary non-identical IM levels is used to obtain the EDP-IM 263 

relationship, and the stripe analysis that employs records scaled to various degrees to match 264 

the desired IM level(s) as shown in Fig. 1(b). Whenever a sufficient number of stripes is 265 

available, a multi-stripe analysis can be treated in more or less the same way as IDA. For cloud 266 

analysis, or in cases of few stripes, some form of regression is typically required to achieve a 267 

continuous representation of the distribution of EDP|IM for all IM levels of interest, which is 268 

normally performed through the well-known power-law approximation, as presented by 269 

Cornell et al. (2002) 270 

 ( ) ( )  baIMIMPDEIMEDP == ˆ , (10) 271 

where b is the slope in log-space, ln(a) the intercept, while ε is a lognormal random variable 272 

with unit median and a logarithmic standard deviation σlnε. The latter is interpreted as the 273 

constant dispersion of EDP|IM, which can be applied locally or globally, depending on how 274 

the fitting of Eq. (10) is performed. Often enough, assuming adequate points are available, 275 

local fitting provides higher fidelity as Eq. (10) is hardly capable of globally representing the 276 

richness of dynamic response shown in Fig. 1(a). 277 

Sources of Fragility Uncertainty 278 

Fragility is an inherently uncertain quantity subject to multiple sources of both aleatory and 279 

epistemic uncertainty (Ellingwood and Kinali 2009; Der Kiureghian and Ditlevsen 2009). They 280 

may be summarised as: (a) Record-to-record variability in the IM-EDP relationship, due to 281 

natural randomness of ground motions. This is directly related to the choice of the IM, in the 282 

sense that a more efficient IM would by definition produce lower variability, thus requiring 283 



fewer records to provide the same level of confidence on the prediction of the EDP-IM 284 

distribution. (b) Model-type uncertainty (e.g. Zeris et al. (2007)), referring to our imperfect 285 

modelling capabilities especially considering that simplified models are typically employed for 286 

computational efficiency reasons. (c) Model-parameter uncertainty (e.g. Dolsek 2009; Liel et 287 

al. 2009; Schotanus et al. 2004; Vamvatsikos and Fragiadakis 2009), due to incomplete 288 

knowledge or actual randomness in the model properties (e.g. strength, ductility, mass, 289 

stiffness). (d) Method-related uncertainty, due to imperfect methodology (e.g. a bad regression, 290 

an insufficient IM, or a deficient analysis approach, such as using nonlinear static analysis for 291 

a tall building (Fragiadakis et al. 2014). This should be avoided as much as possible. (e) Limit 292 

state capacity uncertainty, due to unknown or random EDP thresholds resulting from 293 

experiments or expert judgement. Of the above, (a) is purely aleatory, (b) and (d) are epistemic, 294 

while (c) and (e) may be either one or (usually) both leaning towards aleatory when a new (and 295 

yet unbuilt) structure is concerned, versus a combination of both when an existing structure is 296 

assessed. 297 

In general, (a) is well captured by any of the aforementioned methods of analysis if an 298 

adequate number of records is employed. All other sources of uncertainty may invariably 299 

introduce both variability (i.e. increased dispersion) and bias (i.e. a shift in the central value). 300 

While the former is unavoidable, and guidelines have attempted to offer some standard  or 301 

placeholder values for associated additional dispersions (FEMA 2012), the latter should be 302 

avoided as much as practically possible. Its effect is simply detrimental to the quality of 303 

assessment itself. This assumption of zero bias, but only added variance due to uncertainty, is 304 

referred to as the “first-order” assumption (Cornell et al. 2002). 305 



Single-EDP Limit States 306 

A single EDP is often employed to capture the functional state of a structure. This is the classic 307 

scenario encountered in the literature whereby estimation can be performed following 308 

strategies that rely either on EDP or IM ordinates, using either a deterministic or a probabilistic 309 

(i.e. uncertain) EDP capacity, and employing approximate closed-form solutions or the 310 

numerical integration of Eq. (9) via a Monte Carlo Simulation (MCS). Note that although IDA 311 

is hereafter invoked to outline the aforementioned fragility estimation procedures, fragility 312 

should by no means be tied to IDA, as alternative strategies (e.g. “cloud” and “stripe”) may 313 

also be used to define the EDP-IM relationship. IDA is just a very convenient and thorough 314 

way of taking us there. 315 

Deterministic EDP capacity 316 

EDP-basis estimation  317 

A general expression on the probability of violating a limit state for a given earthquake intensity 318 

is already given through Eq. (1). The aforementioned equation takes its simplest form when a 319 

single limiting EDPC value is considered, i.e. assuming that there is no uncertainty in its 320 

definition. This is a very popular procedure among research and practicing engineers due to 321 

the simplicity it offers, as we are essentially looking for earthquake events that overcome the 322 

aforementioned capacity at the given seismic intensity. Hence, for any given (horizontal) stripe 323 

of analysis results (Fig. 1(a)), the probability of exceedance can be estimated through the sum 324 

of those events over the number of records (Nrec) used for the nonlinear dynamic analyses. In 325 

other words, to evaluate the formal integral of Eq. (7), or the sum of Eq. (9), instead of having 326 

to discretise the EDP space into bins of equal width, MCS is performed using a sample of Nrec 327 

equiprobable records: 328 



 ( )  
 

rec

Nrec

j

C

j

CLS
N

IMEDPEDP

IMEDPEDPIMF


=



==
1

|

|

>

>  (11) 329 

I(∙) is an index function that becomes “1” when the argument is true and “0” otherwise. 330 

This is the so-called EDP-basis or given-IM seismic fragility estimation, also known as 331 

horizontal statistics procedure (kudos to H. Krawinkler for the term (Zareian et al. 2004)). 332 

These definitions stem from the fact that the probability of exceedance estimation is performed 333 

on a stripe-basis, conditioned on the seismic intensity. Fig. 2(a) presents the entire set of IDA 334 

curves featuring the stripes at 0.2g, 0.4g and 0.6g of first mode spectral acceleration. A median 335 

limiting capacity (i.e. EDPC) of θmax=2% is chosen to illustrate the sequence of steps for the 336 

probability estimation. Considering the capacity of the EDP deterministic makes the seismic 337 

fragility estimation a rather trivial task. Take for instance the 0.2g IM level, where 3 out of the 338 

44 records considered overcome the prescribed EDP capacity, thus resulting to a probability of 339 

exceedance equal to 3/44= 0.068. The probability of exceedance estimation for a number of 340 

IM levels spanning the entire IM space of interest is depicted on Fig. 2(b). The triangular data 341 

points are the direct result of Eq. (11), with the filled markers referring to the IM levels shown 342 

in Fig. 2(a). It is also customary that the discrete (in terms of IM) probability data points are 343 

summarised back to a continuous lognormal CDF (a fact that will be exploited extensively in 344 

later sections), or simply connected by linear segments to form an empirical distribution 345 

estimate. For a lognormal fit, the median (μ) as well as the dispersion (β, Fig. 2(b)) can be 346 

estimated using the 16%, 50% and 84% IM percentiles, the moment method or a maximum 347 

likelihood approach (Baker 2015). In other words, considering the EDP capacity as 348 

deterministic implies that the dispersion (and thus the slope) of the fragility curve is affected 349 

by the aleatory randomness only.  350 



IM-basis estimation  351 

An alternative to the EDP-basis procedure is the so-called IM-basis methodology, also known 352 

as given-EDP or vertical statistics (again an H. Krawinkler term (Zareian et al. 2004)) 353 

approach. This approach attains its simplest expression through Eq. (3), and may also be 354 

translated into the following empirical estimate of a CDF when a finite number (Nrec) of 355 

dynamic time history analyses has been employed each scaled to the level of IMC
j (j=1…Nrec) 356 

to produce response equal to EDPC: 357 
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In this case, the IM ordinates are employed to derive the associated seismic fragility curve. 359 

Under the assumption that the EDP capacity is represented by a single discrete value (i.e. 360 

deterministic approach), a vertical cut on the θmax of interest provides the single-record IM 361 

capacities. Bearing in mind that IMC is an inherently probabilistic quantity, several records and 362 

IMC
j values are required to obtain the entire fragility curve. The algorithm is pretty similar to 363 

the deterministic EDP-basis approach, only this time the probability of exceedance is estimated 364 

through the number of records that do not overcome the prescribed IM level (see also the 365 

vertical stripe on Fig. 1(a)). The latter remark is customarily harder to digest since the points 366 

of interest are found below the prescribed IM level. This is probably a visual orientation 367 

problem, as one would try to figure out values (i.e. demands) that exceed a limiting capacity, 368 

while in this case there is a single demand (i.e. a horizontal line at the prescribed IM level) to 369 

compare against multiple capacities along the vertical stripe: IMC
j values found below the 370 

horizontal line signal exceedance of the limit state. Fig. 3(a) presents the IM capacities 371 

conditioned on the 2% inter-storey drift limit on the associated IDA curves.  In a similar manner 372 

to the EDP-basis methodology, three IM levels, namely 0.2g, 0.4g and 0.6g of Sa(T1), are used 373 

to illustrate the probability of exceedance estimation. For the 0.2g of seismic intensity, only 374 



three records fail to deliver a better capacity, thus resulting to a 3/44=0.068 probability, which 375 

is fully consistent with the EDP-basis estimation (see also the discussion from Vamvatsikos & 376 

Cornell (Vamvatsikos and Cornell 2004) on the “equivalency” of x% EDP|IM and (1-x)% 377 

IM|EDP distributions). The discrete probabilities are illustrated on Fig. 3(b) for every seismic 378 

intensity considered, along with the associated fitted lognormal curve.  379 

Global Instability 380 

As much as the EDP and IM-basis approaches seem to agree for limit state capacities found on 381 

the ascending non-flat branch of IDA curves, there is an interesting discussion regarding their 382 

applicability for limit points that fall within the global instability region. This region is meant 383 

to characterise a structural system subject to global collapse. Traditionally, it refers to the side-384 

sway mode of collapse, which can be captured via numerical non-convergence on a rigorous 385 

mathematical model that takes into account both material and geometric nonlinearities (i.e. it 386 

properly simulates collapse Chandramohan et al. (2015)). Numerical non-convergence implies 387 

practically infinite EDP demand (i.e. EDP=∞), which on the IDA plane is expressed through a 388 

characteristic flattening of the IDA curves (Fig. 4(a)). Since demand is practically infinite, 389 

seismic fragility can also be obtained by considering an arbitrarily large deterministic EDP 390 

capacity, i.e. well beyond the last non-collapsing EDP value observed in the analysis (e.g. 391 

θmax=10%), as shown in Fig. 4(a). The estimation is straightforward and can be performed 392 

either on an EDP or an IM-basis. The conceptual difference of the two approaches appears on 393 

Fig. 4(b), where the EDP|IM as well as the IM|EDP capacities are presented on four arbitrarily 394 

selected single-record IDAs.  395 

A possible complication appears whenever (dense) stripes of EDP|IM are not available 396 

and some form of regression may be required, as often happens with cloud or 2-stripe analysis. 397 

Infinite (or just overly large) EDP values would make this regression impossible, and the total 398 

probability theorem should be invoked to evaluate seismic fragility. This approach combines 399 



the event that “the structural capacity is less than the associated seismic demand” with the 400 

mutually exclusive events of “Collapse” (Col) and “No Collapse” (NCol): 401 

 ( )    ( )  IMColIMColIMNColEDPEDPIMF CLS | 1|1 ,| +−= >  (13) 402 

Apparently, the term P[EDP > EDPC | Col, IM] is always going to be equal to “1” for any 403 

EDP value in the above. Actually, this estimation relies on the definition of two functions 404 

(Shome 1999), namely the fragilities of collapsing and non-collapsing data, which can be 405 

estimated using a logistic regression or the maximum likelihood method (Baker 2015) to handle 406 

the sparse collapse data of cloud or few-stripe analysis.  407 

Uncertain EDP capacity 408 

An accurate estimation of the probability of exceedance can only be achieved when capacity is 409 

treated as an uncertain variable. At this point one may argue that an elegant estimation of the 410 

EDPC distribution is not possible without a series of large-scale experiments, and thus the 411 

uncertain capacity approach should not be adopted in case such information is missing. 412 

Obviously, despite the number of laboratory tests performed to estimate various EDP capacities 413 

of different structural systems (e.g. Lignos et al. (2011)), there is always going to be lack of 414 

information as specific setups only have/can be tested. In absence of test data, one could 415 

employ, for example, the FEMA P-58 (FEMA 2012) approach to assign a dispersion to an 416 

assumed normal or lognormal EDPC distribution. Either way, the analysis task is complicated 417 

as the index (i.e. binary result) functions I[EDPj > EDPC] and I[IM > IMC
j] now become full 418 

distributions (i.e. P[EDPj > EDPC] and P[IM > IMC
j]), thus requiring one more level of 419 

integration (or summation for discrete results) to determine fragility. 420 

EDP-basis estimation  421 

Undoubtedly, inflating EDPC with a certain amount of variability provides the full picture of 422 

the fragility assessment problem. In this case, a sample of equiprobable EDPC data points is 423 



generated (i.e. EDPC
k, k=1... NC) via stratified sampling to achieve good resolution/fidelity with 424 

only a few (10-20) points, as shown in Fig. 5(a). Therein, the stratified sample of size NC=10 425 

follows a lognormal distribution that has a median of θmax=2% and dispersion βEDPc=0.3. The 426 

probability of exceedance for the uncertain capacity EDP-basis approach is also estimated 427 

using Eq. (11), only now a MCS is required to take into account the EDPC distribution effect. 428 

The nested “for-loop” presented below provides the probability of exceedance for every given 429 

IM: 430 

1 for every IM level  431 

2 estimate demand EDPj for each record j 432 

3  for every EDPC
k
 433 

4   estimate FLS
k(IM) via Eq. (14) 434 

5  end for 435 

6 end for 436 

7 optionally, combine FLS
k(IM) to derive FLS (IM) via Eq. (15) 437 

FLS
k(IM) is the fragility of LS for a deterministic EDPC

k capacity. 438 

 ( )
 

rec

Nrec

j

k

C

j

k

LS
N

IMEDPEDP

IMF


=



=
1

|>

 (14) 439 

 ( )
( )  

recC

Nc

k

Nrec

j

k

C

j

C

Nc

k

k

LS

LS
NN

IMEDPEDP

N

IMF

IMF


= ==



==
1 11

|

 (15) 440 

The output of this rather simple algorithm is summarised in Fig. 5(b), where k=1…NC 441 

equally probable fragility curves are formed based on discrete probability data points 442 

corresponding to the kth value of EDP capacity, EDPC
k. Those individual fragility curves FLS

k 443 

(IM) (with median IM capacity IMk
C,50%) offer the ability to properly propagate uncertainty to 444 

the remaining components of the PBEE framework. In particular, for the assessment of 445 

different groups of buildings built to similar standards/materials or by the same contractor or 446 



during the same era, same degree of correlation in their EDPC is to be expected. Correlation 447 

among them is very important and must be preserved throughout the limit state MAF/loss 448 

estimation.  Alternatively, the individual fragility curves can be summarised back into a single 449 

CDF by performing an additional summation over the number of the capacities considered via 450 

Eq. . This approach is considerably simpler with respect to the MAF estimation, on the offset 451 

that provides a rather “smeared” representation of dispersion that contains both the record-to-452 

record and the uncertain capacity component. Selecting between the “discrete” and the 453 

“smeared” fragility representation of Eq. (14) and  respectively, wholly depends on the needs 454 

of the respective user. In most cases, it is the smeared approach that is used, sometimes simply 455 

due to lack of correlation information. Other sources of uncertainty, e.g. in the model itself, 456 

can be treated in the very same manner by simply differentiating more equiprobable 457 

realisations/scenarios than just the k=1…NC needed for capacity.  458 

IM-basis estimation 459 

The notion of the probabilistic capacity also requires a similar modification/extension for the 460 

IM-basis methodology. As with the case of the EDP-basis procedure, the equiprobable EDP 461 

capacity data points generated via a stratified sampling are considered. Fig. 6(a) presents the 462 

entire set of IM capacities for the aforementioned EDPC sample, and Fig. 6(b) the associated 463 

fragility curves. The fragility estimation procedure is nearly identical to the EDP-basis 464 

approach. The sole difference lies in the MCS procedure, where Eq. (12) is used instead to 465 

estimate the discrete probabilities of exceedance:  466 

1 for every EDPC
k 467 

2  estimate capacities IMC
jk for each record j 468 

3 for every IM level 469 

4   estimate FLS
k(IM) via Eq. (16) 470 

5  end for  471 



6 end for 472 

7 optionally, combine FLS
k(IM) to derive FLS(IM) via Eq. (17) 473 
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 (17) 475 

In essence, this is the empirical CDF of all the NC∙Nrec points that appear in Fig. 6(a). Although 476 

a comparison between the EDP (Fig. 5(b)) and IM-basis (Fig. 6(b)) strategies provides identical 477 

results for all practical purposes, there are certain advantages when the latter is employed, 478 

mostly for limit states very close to the global instability region (see previous discussion).   479 

Analytical approximations through lognormality 480 

How to incorporate uncertainty under lognormality  481 

Customarily, the discrete probability data points are conveniently summarised back into a 482 

single continuous CDF. Experience has shown that the capacity as well as the demand of a 483 

structural system can be adequately approximated through the lognormal distribution (Cornell 484 

et al. 2002; Jalayer 2003; Romão et al. 2011; Shome 1999). It should be noted that the 485 

lognormal (or any other) distribution assumption is essentially another source of epistemic 486 

uncertainty, the consequence of which can only be determined in comparison with the 487 

empirical data, ideally in terms of MAF of LS exceedance. In that sense, under the reasonable 488 

assumption that all “NC” discrete fragilities are lognormal, the “smeared” fragility can also be 489 

considered lognormal. Obtaining the median (
IM ) for the ”smeared” lognormal CDF is fairly 490 

straightforward, as it makes perfect sense to place it on the mean of the corresponding FLS
k (IM) 491 

median IM capacities, due to the equiprobable sample considered:  492 



 
C

N

k

k

C

IM
N

IM
C


== 1

%50,ln

  (18) 493 

On the other hand, dispersion is slightly trickier to determine. The total dispersion (β) is 494 

estimated through the law of total variance, which can be summarised using the square root 495 

sum of squares (SRSS) rule for the βIM,intra and βIM,inter terms. βIM,intra is the mean intra-fragility 496 

dispersion, or the mean of the “NC” discrete fragility dispersions (βIM 
k), while βIM,inter is the 497 

inter-fragility dispersion, i.e. the dispersion of the IMk
C,50% median capacities:  498 
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 (19) 499 

It is important to keep in mind that although the sample fragility curves may reasonably 500 

be individually lognormal, a robust prediction regarding the distribution of the entire discrete 501 

probability data points is not possible. Eq. (18) and (19) are valid regardless the distribution of 502 

the underlying fragilities, yet the assumption that the overall mean and dispersion also define 503 

a lognormal distribution cannot be guaranteed. In fact, whenever the dispersion of EDPC is 504 

large enough and the median IDA is distinctly nonlinear (i.e. curved) in shape, there is a good 505 

chance that the overall fragility is not strictly lognormal. 506 

Closed-form solutions  507 

As much as the MCS-based non-parametric approaches offer the full picture of the seismic 508 

fragility problem, there are several cases where the MCS output is not available, mostly related 509 

to its high computational cost. For such cases, seismic fragility can be evaluated based on data 510 

that come from cloud or even a few-stripe analysis, where some form of regression is going to 511 



be necessary, and thus response is obtained though the well-known power-law fit of Eq. (10). 512 

A well-known misconception is that Eq. (10) must apply to the entire range. Instead, one should 513 

only fit it in the region of interest around the median EDPC (Fig. 7). Of course, getting started 514 

with regression implies that lognormality becomes sine-qua-non.  515 

EDP-basis estimation 516 

Under the lognormality assumption for both capacity and demand (and thus their ratio), Eq. (2) 517 

can be modified to allow for a simpler way of evaluating seismic fragility, where the analysis 518 

results can be directly applied without further post-processing: 519 
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 (20) 520 

Although from a mathematical point of view Eq. (20) is not strictly a “closed-form 521 

solution”, in the sense that the CDF cannot be directly obtained through a single formula in its 522 

entirety unless several IM levels are separately examined, it still presents the closest 523 

relationship one may derive through the EDP-basis methodology. Its final output suggests that 524 

in order to construct a fragility curve, the median capacity and demand estimates are required 525 

along with their associated dispersion (βEDP(IM),tot), for every IM level considered. The latter is 526 

essentially the ratio of two lognormal distributions which may be obtained through the SRSS 527 

rule of their individual (aleatory βEDP(IM) and epistemic βEDPc) dispersions, provided that 528 

demand and capacity are assumed uncorrelated (see also Cornell et al. (2002); Kazantzi et al. 529 

(2014) for additional discussion on capacity-demand correlation):  530 

 ( ) ( )
22

, EDPcIMEDPtotIMEDP  +=  (21) 531 

Where negative correlation between demand and capacity exists, implying that easily 532 

damageable components will increase structural demand, means that a term of twice the 533 



covariance needs to be included under the root, increasing the uncertainty effect (Cornell et al. 534 

2002). The same effect can be accurately incorporated via appropriate sampling and additional 535 

dynamic analyses for the earlier parametric approaches (Kazantzi et al. 2014). The aleatory 536 

variability around the median demand is clearly a function of the seismic intensity, as denoted 537 

through the βEDP(IM) term, and as a result it can only be explicitly estimated though IDA (or 538 

multi-stripe analysis). For other cases, where a power-law fit is required to define the EDP-IM 539 

relationship (e.g. cloud, few stripes), the homoscedasticity assumption (i.e. βEDP(IM) = σlnε, Eq. 540 

(10)) is necessary, at least in the local region of EDPC, to define the entire fragility curve.  541 

Fig. 8(a) provides a comparison of the EDP-basis methods presented so far for the 542 

“smeared” fragility. An excellent agreement is observed between all approaches, namely the 543 

(a) pure MCS approach of Eq. , (b) its lognormal fit via Eq. (18) and (19), (c) the direct 544 

application of Eq. (20) and (21) on the raw IDA data, and (d) on  the power-law fit. The only 545 

problem appears for the latter two cases when IM exceeds 0.3g, where the first collapsing 546 

record appears. Strictly speaking, βEDP(IM) becomes undefined and the distribution of EDP|IM 547 

is no longer lognormal. There is a number of tricks one may employ to extend the fragility 548 

curves to higher IM levels. For instance, case (d) employs the power-law fit to artificially 549 

extend the validity of lognormality, by assuming constant dispersion. Regarding case (c), one 550 

may extend the fragility up to the IM where 16% of ground motion records collapse, employing 551 

the EDP84% and EDP16% percentiles to estimate the dispersion. By the same logic, one may 552 

even use the EDP84%- EDP50% percentiles, which is valid for cases where the number of 553 

collapsing records does not exceed 50% of the ground motions considered. Still, there is a point 554 

where all such tricks will fail as EDP|IM is no longer lognormal. At this point, one can employ 555 

lognormality only for the non-collapsing records and introduce collapse via Eq. (13), even 556 

though, strictly speaking, the non-collapsing points are not exactly lognormal. Maximum 557 

likelihood may also be employed to fit a “best-guess” lognormal fragility at higher IM levels 558 



based on lower IM results. In general, employing Eq. (20) on an EDP-basis can become 559 

challenging due to collapse; yet, it allows to offer the simplest expression of fragility on an IM-560 

basis later on. 561 

IM-basis estimation 562 

Combining Eq. (10) and (20) results in the IM-basis closed-form solution. This approach finds 563 

great application in practice as the probability of exceedance estimation is directly related to 564 

the seismic intensity and the prescribed median EDP capacity:  565 

 

( )
( )

( ) ( )

( )












 −
=













































−

=













 −+
=













 −
=

totIM

C

totIMEDP

b

C

totIMEDP

C

totIMEDP

C

b

LS

IMIM

b

a

EDP
IM

EDPIMbaEDPaIM
IMF

,

%50,

,

/1

%50,

,

%50,

,

%50,

lnln
lnln

lnlnlnlnln





 (22) 566 

The associated dispersion (βIM,tot) is also estimated according to Eq. (21), only this time it 567 

incorporates the slope of the underlying power-law approximation:  568 

 ( ) 2

2
2

|

22

,

1

bb

EDPc
EDPIMEDPcIMEDPtotIM


 +=+=  (23) 569 

Note that the influence of “b” is often neglected in many simplifying approaches that silently 570 

assume b=1. As much as this assumption may be valid for moderate-to-long period structures, 571 

it is clearly not the case for limit states in the proximity of the global instability region. Yet, it 572 

is offset by the fact that little information might be available on each β to begin with. 573 

A comparison of the IM-basis closed-form solution versus the “smeared” fragility curve 574 

(Eq. (17)), its corresponding lognormal fit (Eq. (18) and (19)) and the empirical CDF obtained 575 

for the MCS raw data is presented on Fig. 8(b). The good agreement among those curves not 576 

only confirms the results obtained from the IM-basis closed-form solution, but also highlights 577 

the robustness of the IM-basis over the EDP-basis approach. This is mainly due to the 578 



application of Eq. (22) on the raw IDA data, where the aleatory dispersion is now conditioned 579 

on the EDP capacity (i.e. βIM|EDP) rather than the IM (i.e. βEDP(IM)), and thus the infinite EDP of 580 

collapsing records does not cause any issues.   581 

Limitations regarding the applicability of the aforementioned closed-form solutions exist, 582 

and are mostly related to the extent that the power-law approximation is valid for the nonlinear 583 

response of a structure. In the general case, the limit state under investigation should be away 584 

from the global instability region, as the regression parameters (a, b) cannot be accurately 585 

estimated. Eq. (22) may also be adopted for higher states of structural damage where only a 586 

certain low percentage of collapsing records (≤ 10%) is observed, however, the latter 587 

constitutes a “grey-zone” (due to the “allowable” number of collapsing records) and should be 588 

avoided unless special care on estimating the median capacity and the corresponding dispersion 589 

is exercised. 590 

General remarks on the lognormality assumption 591 

The lognormal representation of fragility forms a two-parameter model with respect to the 592 

median IMC and its associated dispersion. Various techniques such as the maximum likelihood 593 

estimation and the moment-matching approach may be adopted to define the aforementioned 594 

parameters. Empirical evidence has shown that the lognormality assumption presents a good 595 

fit on the associated data, although one may find cases where other distributions may be equally 596 

good or sometimes even better.  597 

Regardless of the LS being fit, lognormality means that there is always a non-zero 598 

probability that LS is violated for an arbitrarily low IM > 0. In general, this is not a problem 599 

when discussing a structural system on its own, as this is probably negligible (and 600 

monotonically decreases very quickly with decreasing IM). It becomes quite important though, 601 

when applying this fragility to characterize a whole class or group of buildings, like in the case 602 

of regional or portfolio loss assessment. Then, when high-damage (e.g. “near Collapse” or 603 



“Collapse”) limit states are discussed, it is possible to find that due to this low probability, over 604 

a population of buildings some will collapse even at, say, a PGA=0.01g, which is obviously 605 

unrealistic. In such cases, one may adopt the empirical CDF that clearly does not suffer from 606 

such issues, or if a compact representation is still required, employ a 3-parameter shifted 607 

lognormal model, wherein a low IMo > 0 is identified, e.g. at/or below the first IM that is found 608 

to cause the LS violation in the discrete set of analysis runs. The lognormal fitting may then be 609 

performed on the shifted IM-IMo data, instead of just IM, where obviously non-positive values 610 

are discarded. Henceforth, when a lognormal approximation is discussed, either of the two or 611 

three-parameter models are implied as their use is interchangeable, by simply exchanging IM 612 

with IM-IMo (Stoica et al. 2007). 613 

Multi-EDP Limit States 614 

So far, the discussion regarding seismic fragility is well-confined under the assumption that the 615 

global response can be adequately represented through a single failure mode and EDP. 616 

Although this approach is valid for most limit states and structural systems of interest, there 617 

are several cases where multiple EDPs may be needed to determine the violation of a system 618 

limit state. For instance, global collapse may be triggered due to global  lateral instability, a 619 

“simulated” mode of collapse checked via θmax, or due to other modes of failure (e.g. column 620 

shear or axial failure) that are often not explicitly modelled (“non-simulated”), either for 621 

simplicity or due to the inability to accurately model their effect on the global behaviour 622 

(D’Ayala et al. 2015; FEMA 2009; Raghunandan et al. 2015). In such cases, the probability of 623 

exceedance should be estimated as 624 

 ( ) ( ) ( ) IMEDPEDPIMEDPEDPIMF CmmCLS |...| ,,11 =  , (24) 625 

where m is the number of EDPs and associated failure modes, each of which may individually 626 

trigger the limit state violation. EDPi denotes the demand and EDPi,C (i=1…m) the capacity. 627 



The case of multiple EDPs or failure modes may appear even in more mundane cases that 628 

one often associates with a single EDP. Perhaps, the most prominent is the case where θmax is 629 

used to determine any limit state exceedance for a building. Ideally, one should employ the 630 

individual storey drifts (θi, i=1…m), to check for exceedance at each storey. Using θmax instead, 631 

is a useful convention that speeds up computations; yet, is it accurate? Fig. 9(a) illustrates the 632 

potential component and system-level approaches that can be used for the seismic fragility 633 

evaluation of an m-storey moment resisting frame. The system-level approach is presented on 634 

the right side of the vertical dashed line, where the system EDP capacity and demand PDFs are 635 

shown in terms of θmax. For a given IM level, there is a distribution for each θi demand and a 636 

corresponding distribution for each storey-capacity, as shown by the relevant PDFs appearing 637 

on the “component” panels of  Fig. 9(a). The distribution of θmax demand is easy to derive in a 638 

MCS setting as ( )i
i

 maxmax = ; however, the distribution of capacity is not as obvious to 639 

estimate from the individual storeys, unless one assumes identical capacities along the height 640 

without any correlation. Ideally, both approaches should result in the same system fragility; yet 641 

this is not the case unless (a) a single storey dominates the θmax response or (b) all storey 642 

capacities are deterministic and of the same value. In the latter case, when capacities are not 643 

equal (but still deterministic), one may still employ the demand-to-capacity ratio (DCR, Jalayer 644 

et al. (2007)) and rewrite each term of Eq. (24) as P[EDPi/EDPi,C>1 | IM] to use the maximum 645 

demand-capacity ratio of all storeys (or components or failure modes) for simplicity. However, 646 

in the more general case where storey (or component)-level capacities are considered uncertain, 647 

an MCS should be employed, preferably using the following nested ‘for-loop’: 648 

1 for every IM level  649 

2  for every storey (or component) i and storey (or component)-level capacity EDPi,C
k
 650 

3   estimate FLS
k(IM) via Eq. (25) 651 

4  end for 652 



5 end for 653 

6 optionally, combine FLS
k(IM) to derive FLS (IM) via Eq. (26) 654 
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Fig. 10(a) presents a comparison between the component and system-level fragility curves for 657 

the 12-storey case study adopted. When the component-level approach is employed via Eq. 658 

(26) and storey capacities are considered uncorrelated, the fragility curve develops a significant 659 

shift towards smaller IM values compared to the corresponding system-level solution offered 660 

via Eq. (15). On the other hand, perfect correlation among different storey capacities results in 661 

a perfect match among the aforementioned approaches. Along these lines, it should be noted 662 

that when loss estimation via component (FEMA 2012) rather than building-level (D’Ayala et 663 

al. 2015) approaches is sought, one does not need to combine such component (or storey)-level 664 

fragilities into one, but use them individually to assess the loss of each component.  665 

Another good example to highlight the importance of the “multi-EDP” procedure is the 666 

case of some industrial structures. The complex response of such structural systems during 667 

earthquakes may result into several modes of failure that correspond to varying degrees of loss. 668 

The system damage state classification follows an increasing severity pattern that takes into 669 

account the leakage potential of the stored materials (Vathi et al. 2017), and requires careful 670 

combination of the component-level failure modes in order to assess the functional state of the 671 

system (Bakalis et al. 2017). For instance, leakage on a liquid storage tank could be triggered 672 

either due to the so-called elephant’s foot buckling or to extreme base plate plastic rotations. 673 

Similarly, severe structural damage without leakage could be developed both on the base plate 674 

due to uplift and the roof of the tank due to sloshing of the contained liquid (Fig. 9(b)). None 675 



of these limit states can be described by the same EDP, and therefore they are often combined 676 

to assess the system-level state of damage.  677 

Since multi-EDP fragilities may often be of such practical interest, the simplest scenario 678 

of two failure modes (e.g. A, B) controlling a single DS is further presented. In the general 679 

case, one needs to account for correlation of demands EDPA, EDPB and capacities EDPA,C, 680 

EDPB,C via MCS. Hence, Eq. (24) may be expanded accordingly:  681 
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 (27) 682 

Eventually, the only practical difficulty may lie in estimating the probability of the intersection 683 

of the events A and B. For the case that the two capacities are independent (demands are usually 684 

correlated), the intersection can be estimated for each ground motion record through the 685 

product of the individual probabilities as: 686 
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 (28) 687 

Fig. 10(b) depicts the fragility curves for events A and B, their intersection and the associated 688 

union based on Eq. (27) and (28). 689 



Conclusions 690 

A comprehensive overview on existing seismic fragility functions has been presented for 691 

methods that rely on nonlinear dynamic analysis. A 12-storey moment resisting frame has been 692 

adopted to illustrate the various methodologies that can be used to extract fragility curves. As 693 

expected, the EDP-basis results match the ones generated though the IM-basis approach, both 694 

under a deterministic and an uncertain EDP capacity framework. Although EDP-basis is easier 695 

to digest compared to the slightly trickier IM-basis, the latter presents a more robust probability 696 

of exceedance estimation approach, especially for limit states close to the global instability 697 

region. The aforementioned methodologies can be used to evaluate the system fragility of a 698 

structural system using a single global EDP, or take a step further and employ local EDPs and 699 

failure modes to allow for higher resolution in a complex system-fragility estimation. 700 

Undeniably, seismic assessment procedures based on system-level response parameters have 701 

dominated standard practice. Recent advances, however, point towards the use of component-702 

level approaches for the damage and loss estimation of single structures, delegating system-703 

level fragility only to the role of estimating collapse or demolition potential. Even so, regional 704 

and portfolio assessment remains grounded on system fragility estimates, leaving ample space 705 

for applications. 706 
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Figure Captions 875 

Fig. 1. (a) Single-record IDA curves and example of EDP|IM and IM|EDP distributions. The 876 

shaded areas represent the two alternative approaches in defining the seismic fragility for a 877 

deterministic EDP capacity θmax=2%. An IM|EDP vertical stripe at θmax=2% fully defines 878 

fragility, while multiple horizontal stripes (here shown at 0.4g) are needed for an equivalent 879 



result. (b) Stripe analysis for the 0.7g and 0.9g IM levels and cloud analysis for the unscaled 880 

FEMA P-695 (FEMA 2009) ground motion set, together with a power-law fit for the latter. 881 

Fig. 2. EDP-basis approach for deterministic EDP capacity: (a) Three illustrative IM stripes on 882 

the single-record IDA curves. (b) Discrete FLS(IM) results via Eq. (11) and continuous 883 

lognormal fit. The filled triangles refer to IM levels equal to 0.2g, 0.4g and 0.6g respectively. 884 

Fig. 3. IM-basis approach for a deterministic EDP capacity: (a) IMC points and three illustrative 885 

horizontal IM-demand levels on the single-record IDA curves. (b) Discrete FLS(IM) results via 886 

Eq. (12) and continuous lognormal fit. The filled triangles refer to IM levels equal to 0.2g, 0.4g 887 

and 0.6g respectively. 888 

Fig. 4. (a) Global instability data points on all 44 IDA curves. (b) EDP|IM and IM|EDP data 889 

points on 4 arbitrary IDA curves, featuring the EDP versus IM-basis probability of exceedance 890 

estimation for a limit state capacity that adequately represents global instability. 891 

Fig. 5. EDP-basis approach for uncertain EDP capacity: (a) A stratified sample of NC=10 892 

equiprobable EDP capacities and three illustrative IM stripes on the single-record IDA curves. 893 

(b) Discrete versus smeared fragility curve via Eq. (14) and , respectively. 894 

Fig. 6. IM-basis approach for uncertain EDP capacity: (a) A stratified sample of NC=10 895 

equiprobable EDP capacities and three illustrative IM stripes on the single-record IDA curves. 896 

(b) The NC=10 discrete versus the smeared fragility curve via Eq. (16) and (17), respectively. 897 

Each discrete fragility curve is the CDF of a single vertical stripe of IMC points. 898 

Fig. 7. Single-record, 16%, 50% and 84% IDA curves, featuring the corresponding local 899 

power-law fit for the (θmax=2%, Sa(T1)=0.4g) median capacity point. Elsewhere, the fit may not 900 

be valid. 901 



Fig. 8. (a) EDP-basis closed-form comparison to MCS “smeared” and lognormal fit fragility 902 

curves. (b) IM-basis closed-form comparison to MCS “smeared”, lognormal fit and empirical 903 

CDF fragility estimates. 904 

Fig. 9. (a) Component versus system-level demand and capacity distribution patterns for the 905 

seismic fragility estimation of an uncertain m-storey moment resisting frame. The PDFs of θi 906 

demand and capacity are presented vis-à-vis the ones of θmax conditioned on the IM. (b) 907 

Component-level demand and capacity distributions for various failure modes on an 908 

unanchored liquid storage tank. 909 

Fig. 10. (a) System versus component-level fragility estimation. The estimation has been 910 

performed based on Eq. (15) and (26). (b) Illustrative fragility curve generation example for 911 

damage states that depend on two failure modes (or EDPs). The estimation has been performed 912 

based on Eq. (27) and (28). 913 
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Fig. 2. EDP-basis approach for deterministic EDP capacity: (a) Three illustrative IM stripes on 923 

the single-record IDA curves. (b) Discrete FLS(IM) results via Eq. (11) and continuous 924 
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Fig. 3. IM-basis approach for a deterministic EDP capacity: (a) IMC points and three illustrative 927 
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Fig. 4. (a) Global instability data points on all 44 IDA curves. (b) EDP|IM and IM|EDP data 932 

points on 4 arbitrary IDA curves, featuring the EDP versus IM-basis probability of exceedance 933 

estimation for a limit state capacity that adequately represents global instability. 934 
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Fig. 5. EDP-basis approach for uncertain EDP capacity: (a) A stratified sample of NC=10 936 

equiprobable EDP capacities and three illustrative IM stripes on the single-record IDA curves. 937 

(b) Discrete versus smeared fragility curve via Eq. (14) and , respectively. 938 
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Fig. 6. IM-basis approach for uncertain EDP capacity: (a) A stratified sample of NC=10 940 

equiprobable EDP capacities and three illustrative IM stripes on the single-record IDA curves. 941 

(b) The NC=10 discrete versus the smeared fragility curve via Eq. (16) and (17), respectively. 942 

Each discrete fragility curve is the CDF of a single vertical stripe of IMC points. 943 
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Fig. 7. Single-record, 16%, 50% and 84% IDA curves, featuring the corresponding local 946 

power-law fit for the (θmax=2%, Sa(T1)=0.4g) median capacity point. Elsewhere, the fit may not 947 

be valid. 948 
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Fig. 8. (a) EDP-basis closed-form comparison to MCS “smeared” and lognormal fit fragility 950 

curves. (b) IM-basis closed-form comparison to MCS “smeared”, lognormal fit and empirical 951 

CDF fragility estimates. 952 
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Fig. 9. (a) Component versus system-level demand and capacity distribution patterns for the 954 

seismic fragility estimation of an uncertain m-storey moment resisting frame. The PDFs of θi 955 

demand and capacity are presented vis-à-vis the ones of θmax conditioned on the IM. (b) 956 

Component-level demand and capacity distributions for various failure modes on an 957 

unanchored liquid storage tank. 958 
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(a) (b) 

Fig. 10. (a) System versus component-level fragility estimation. The estimation has been 960 

performed based on Eq. (15) and (26). (b) Illustrative fragility curve generation example for 961 

damage states that depend on two failure modes (or EDPs). The estimation has been performed 962 

based on Eq. (27) and (28). 963 


