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Seismic Fragility Functions via Nonlinear Response

History Analysis

Konstantinos Bakalis® and Dimitrios Vamvatsikos 2

Abstract: The estimation of building fragility, i.e. the probability function of seismic demand
exceeding a certain limit state capacity given the seismic intensity, is a common process
inherent in any seismic assessment study. Despite this prolific nature, theahégractice
underlying the various approaches for fragility evaluation may be opaque to their users,
especially regarding the handling of demand and capacity uncertainty, or the generation of a
single fragility curve for multiple failure conditions, ing either an intensity measure or
engineering demand parameter basis. Hence, a comprehensives gualededthat compiles

all necessary information for generating fragility cureesingle structureased on the results

of nonlinear dynamic analysidlthough various analysis methods are discussed, Incremental
Dynamic Analysis is invoked to clearly outline different methodologies that rely either on
response parameter or intensity measure ordinatesb$t&pp examples are presented for
each case,dih under a deterministic and an uncertain limit state capacity framework, using

limit states that range from simple structural damage to the global collapse of the structure.
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Introduction

Fragility is a versatile term employed throughout earthquake engineeridgscribe the
susceptibility of a structure (or part of a structure) to seismic damage. Its estimation can be
based on a variety of empiriq®ossetto et al. 2014umerical D6 Ay al a aaéxpea| . 20
opinion data(Jaiswal et al. 2011pand their combinations, using various methodologies that

range from pure statistical processing of existing fladlemant et al. 2015; Noh et al. 2015)

to computational statiand dynamic procedures that generate new data from s¢rddah Ay a |l a

et al. 2015; Rossetto and Elnashai 2005; Shinozuka et al). 2008 first type features the
generation of fAe m@ATA1085)aypicallyrfoaaassesiot siructareamdyv e s 0

will not be dealt with herein, whereas the second referstotieassd | ed fAanal yti ca
c u r vderwed either for a class of similar structu®sva et al. 2014)or for a specific one

for which a custom structural model has been formulatkd.latter case, i.ethe analytical

derivation of structurspecific fragilitiesis the main subject of this study. Note that the
analytical designation may seem misleading, given that they are a product of numerical analysis
rather than some analytical equation; yet,theeoort i on t o fAanal ysi so con
fittingd is a more apt distinction to unders
so wide that one should begin by attempting to narrow it down and focus on a very specific

(yet widely appliable) definition. Henceforth, a building fragility is defined as a probability
valued function of aD,la adegponspgrdanetecs iatérestmasc dem
determined by numerical analysét a given level of seismic intensity, exceedingssociated

capacity threshold@, e.g. defined by pertinent assessment guidelines such as ASIBE41

(ASCE 2007) that signals violation of a limit state9) of interest. A fragility function is thus
parametrised by one or more scalar intensity measuves that characterise the seismic

intensity (e.g. peak ground accelerati®&Q), first-mode spectral acceleratio&(T1), etc.).
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Of particular interest, hereaftas the case of a singl#, for the secalled fragility curves
(versus e.g. surfaces for tuids).

Although a fragility curve corresponds to a single limit state, it actually splits the entire
event space into two cloSeyxded thé n BSmy i eewereted,e di

often associated with specific (distinct) damage statesOEe.DS+1) in the literature (e.g.

Il i ght ver sus moder ate damage). Be aware th
l inguistically construed as being better to
Aviolationo of a | imngeadakalte. aTrea cciotnisad rdeelrlewd,
has been used to describe conceptually different entities, suaonagonentdamage

conditioned on engineering demand parametBBP§ e.g.inter-story drift or peak floor
acceleratioh and building/systemdamage conditioned on seismic intens{tyfEMA 2012;
Nielson and DesRoches 2007a; b; Porter et al. 200@®re are advantageshie had when
looking at limit states of specific components (rather than aggregating to the whole structure),
especially when looking at the estimation of repair cost, dowr{tBoalet et al. 2007; Miranda
and Aslani 2003; MitranReiser 2007) or even casualties. In this paper, however, the
Afragilitydo term i s st r ildng)lfragilityceomitonad artteed wi t |
seismic intensity.

The reason why fragility is such an important step in almost every seiskaied study
is uncertainty{Gidaris et al. 2017)There is uncertainty on the structural capacity as well as on
the associated demand. A good way to understand the significance of fragility is to think of a
purely deterministic scenario, where a simple compati&ween capacity and demand would
provide a probability of violating (or excee
for the case thattheevelt$C] i s satisfied, and AO0O0 ot her wi
given thelM becomesa st ep functi on, ¢ h a nLg capagity.fTo om A0

incorporate uncertainty on a cebasis, traditional design or assessmeatety checks are
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performed using pertinent safety factors that are calibrated to correspond to a given probability

l evel, for both capacity and demand. The pr
answer, while the inclusion of safety factor
the single precalibrated safety factor probability level. Insteatien uncertainty is fully taken

into account for demand and/or capacity, the \skethwn Sshaped fragility curve is attained.
The latter provides the probability that demand exceeds capacitip (»eC) at all possible
intensity levels, or in other wordsimmarises the results of all possible sidglel safety
checks into a continuous function.

A good way to look at the estimation of fragilities is by realising that it is simply a method
to propagate uncertainty from the intensity measure to thedtatié check/assessment of the
structure (Ellingwood and Kinali 2009) In general, aBBazzurro et al.(2006) correctly
observé, fragilities are actually characterised by a central (medMrapacity value and an
associated dispersion. They can be thouwgtd used exactly as the cumulative distribution
function (CDF) of the buildingpecific limit statelM capacity. For instance, if a future
earthquake event reaches a certdnvalue, information on the probability of pushing the
structure to a limit sta is immediately provided. Most telling, if the seismic intensity equals
the mediarniM capacity, there is a 50% chance that the earthquake violates the associated limit
state.

Herein, the derivation ofseismic fragility using nonlinear response historyalgsis
methodss discussedDue to the delicate nature of the topic under discussion, the authors feel
inclined to state that this manuscript does not attempt to offer new results. Instead, it aims to
provide a carefully structured discussion of how figgcan/should be estimated via several

acceptable approaches so as to provide consistent results with any and all of them.
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Formal Definitions

The notion of fragility is intimately tied to the idea of timtensity measureAn intensity
measure is a quatytindicative of the severity of the ground motion at a given site and is meant
to act as an interface between seismology and structural engineering. Typitadlyg scalar
variable, usually th&(T1) or even thdPGA for which there are ground motigmediction
equations available, such that the hazard curve generation is possible. In this view of the
performancebased assessment problem, seismologists would model any faults causing
earthquakes that may affect the site under investigation, and swgarakinformation into a
single hazard curve (or hazard surface in the case of a vBetmurro and Corne({2002)
representinghte mean annual frequency (MABYof exceeding certain levels of seismic
intensity. Hazard curves are computed via probabilistic seismic hazard assessment (PSHA),
whereby the myriads of possible earthquake scenarios are aggregated to achieve what is
essentlly a probabilistidM distribution for the site under investigation. Structural engineers
are typically expected to pick up the work at this point, functioning independently from
seismologists, by estimating the distribution of structural responsedliypiharacterised by
pertinentEDPs Bazzurro et al(1998), damage or les that the structure of interest may
experience, should it be subjected to given values aMhéJltimately, thelM becomes the
single conduit to circulate information between seismologists and engineers, easing (although
sometimes oversimplifying) comumication considerably.

In an attempt to fully characterise a structure, engineers go one step further sditirity up
statesthat allow discretising the continuous level of damage into disdestege stateeach
with distinct consequences to the stwe, its components or inhabitants. Associating €&&h
(or LS with a desired (maximum acceptable) MAF of exceedance forms pairs known as
performance objectives/targets that have an actual meaning for the operability of the structure

itself, thus transking the engineering aspectBDPsto something that actually makes sense
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even to norengineers. Definition of eadbSis achieved by assigning threshold (limiting or
capacity) values for one or mae®Pswhose exceedance triggers the limit state viatadiond
brings the structure into a highet. In sight of the above, tHeagility curvecan be viewed as
the summary of all structural analysis results, conditioned omthEormally, it is defined as

the probability function of violating a certain limstate given the value of the earthquake

intensity measure. It is essentially a function of the intensity measure that may be expressed as

F.s(IM)=RLS violated|IM |=RD >C[1M], D

where the second form assumes tt&wiolation is defined through a singbP with demand
D and limit state capacit¢. In this case, fragility may be evaluated using eiteP or IM
demand ordinates versus their associated capaé&fd% and IMc, respectively. Thus,

equivalently to Eq(1) the following expressions apply:

F.s(IM)=REDP>EDP, | IM] 2)

F(M)=RIM > 1M _] ©)

Note that there are cases in therature where fragility is expressed & [ O Q rather | M
than D > C | IM], thus implying that in the rare case where capacity and demand are identical,
the first signals violation while the second does not. This is mainly a matter of definition with
respect to fAexceedanceod and fdAviolationo,
distributions, since BJ=C | IM] either equals zero or tends to zero, as the number of data
points grows.

Customarily, a fragility curve is associated with two ibgsroperties. First, at zero
intensity, the probability of exceedance is zero. This is intuitive and needs no further
explanation. Second, 84 approaches infinity, the very same probability should approach one.
This seems natural as well and should bgueed for anyM that properly corresponds to
seismic intensity, although it is conceivable that some particularlyNbvaxhoices would not

possess this basic properfyake forinstancethe bracketed duration (e.dPs-75); quite often

an
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records of largewration are recorded at very large distances to subduction; zbeeshigher
duration correlates witltower intensitiesand thusa negative correlation coefficient between
S(T1) andDs.7s is often propose@Bradley 2011) A third property is often assumed, namely
that of monotonicity, or, in other words, that the funckaesis strictly increasing. This is not

a strict requirement according to the general definition vidBgr (2), although it is plausible

that there may be a range of intensities where a structure may experience lower probabilities

of limit staie exceedance, compared to a lower intensity level. For exavgtejatsikosand

Cornell (2004) have observed such ranges of response, but for specific ground motions only;

never for entire sets of records. Such occurrences in the entire set of analysis may be a sign of

an insufficientIM or of inadequate ground motion sampling. Therefore, they should be

carefully investigated whenever they appear. Nevertheless, as we expand our experiences with

engineering structures, the possibility of such valid occurrences happening should not be

discaunted. In the general case though, it is safe to take monotonicity for granted, which enables

the definition of fragility asthe CDF( A) of the structureolmM | i

as implied by Eq(3).

Definition via the Total Probability Theorem

A reader wellversed in Performane®ased Earthquake Engineering (PBEE) would recognise
the central use of fragility in almost every aspect of analysis or dé3ejarlein et & 2003;
Moehle and Deierlein 2004; Wen and Ellingwood 2008)e PBEE framework, originally
developed by ornell and Krawinkle(2000)for the Pacific Earthquake Engineering Research
(PEER) Centre, serves as an alternative to the-egédiblished Load and Resistance Factor
Design, vhere the former can assess performance based on the MAF of decision vaddiples (
similar to casualties, monetary loss and down time. To perform such an esti@@tiimjous

damage measureBM, e.g. concrete cracking and spalling) usually discretdamage states,

mi t
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must be defined based on approprigi2Ps (e.g. roof displacement, driftassociatedavith
ground motions at a range V¥l levels [in terms of, e.gPGA or Si(T1)] whose MAF is
determined by theeismic hazard functiogt. 3. The entire PBE methodology is summarised

asan application of the total probability theorem as

/(DV)= i fi f5(DV | DM )|dG(DM | EDP)|dG(EDP]|IM ) [d/ (IM ), (4)

DM EDPIM

where G(x| y)=P(X>x | Y=y) is the conditional complementary cumulative distribution

function (CCDF) of a random variablegiven the valuegy of another random variablé
Changing the order of integrations on E4).provides interesting intermediate results, as

nicely put byMiranda and Aslan{(2003) Integrating thdM first, provides the MAF of the

remaining variabl es, . e. Ahazard curiIMeso.

providessEDP), or EDP-hazard (e.g. the drift hazard &dlaye(2003). On the other hand, if
the IM conditioning is preserved, what we get is fragility or vulnerability curves. Integrating
out EDP, considering thabM is discretised into muftle DS, provides fragility curves &S

| IM). Integrating ouDM (or DS) provides the vulnerability function G¥ | IM). Generally,

Avul nerabilityo refers to measurements of

(

should bynomeansbecond er ed i nterchangeable to Afragi/l

of probability(Porter 2015)Thus, equivalently to E4) &DV) may also be expressed as:

/(DV)= fj f{5(DV | DM)|dG(DM |IM ) |d/ (IM ) (5)
/(DV)= 3DV | IM)[d/ (IM) (6)

M
In some sense, although they appeared readier (e.g. in the nuclear industennedy and
Ravindra(1984), fragility curves can be viewed as an intermediate product of a FIEER
framework to estimate the probability of violating a certain limit state or damage state given

the level of ground motion intertgi
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Fragility may also be formulated in an alternative, yet more explicit, way thraogh
alternative application ahe total probability theorem. Bearing in mind that tfsterm now
refers to the associatédb violation, fragility can be expressed iretdomain of a continuous

EDP variable as

Fs(IM)=RLS|IM]= pP{LS|EDP(IM )] f (EDP|IM )dEDP, )

EDP

wheref(x | y) is the probability density function (PDF) of a random variabggven the value

y of another random variablé. Applying the total probability theorem one more time to
incorporate an additional level of integration over the intensity measure in order to account for
the probability of occurrence for earthquakes of varying intensity, the MAS giolation is

recowered as:

d/(Im)

/(LS)= ﬁg FPILS|EDP] f (EDP|IM )dEDPY
& 0

IM EEDP

‘dIM (8)

Eq. (8) is essentially identical to the PEER equation (@)). provided thaDV andDM are

treated as i ndex functions, whi ch means t

h a

certainDMorLSi s exceeded, and @/qm)/dmisteermeganameual Not e

rate density of seismic intensity, or in other words the equivalent of PDF for rates. Applying

any of the aforementioned equations may seem rather complex at first glance; however, such

expressions are often evaluated numerically by elising. For instance, partitioning the entire
EDPrange intd\hinb i ns of eHDR, &d.(7)wean betrdalisep through the sum of the

individual probability produdt for the LS|EDR(IM)] and [EDP}|IM] events:

F.(M)=RLS|IM]= %?”p[m EDR(IM )] P[EDR | IM | DEDP 9)

i=1
While this integration (or summation) seems straightforward, there are many ways to

estimate this deceptively tricky quantity. They are mostly affected byh@EDP|IM

estimation methodology, (b) the uncertainties included, (c) whether the estimation is direct
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(EDP-based, Eq(2)) or indirect (M-based, Eq(3)), and (d) the integration approach, namely
numerical or analytical via the typical lognormal assumptions on the various random

parameters. The next few sections discuss these issues.

EDP-IM relationship

In the structural analysis context, each dynamic analysis provides a singtd pdirand
(demandl EDP values In view of the uncertainties involved, multiple analyses on a
considerable number of ground motion records are required for evedyf seismic intensity
considered. There are many ways to group the aforementioned pairs in order to adequately
characterise thEDP-IM spaceand estimatseismicdemande.g. singlestripe(Jalayer 2003)
multi-stripe (Jalayer 2003; Jalayer and Cornell 2Q@99ud (with or without record selection
and scaling,Jalayer 2003; Mackie and Stojadinovic 2001; dedtdand DesRoches 2008y
IDA (Vamvatsikos and Cornell 20Q2)

Since all analysis results are conditioned on values dMhé is mandatory that thi
contairs all necessary information to make the analysis results insensitive to any other
seismological variables, such as magnitude, distance or epsilon. This implies that when
structural analysis is performed under a suite of ground motion records scaled¢a Qi
level, the estimated probabilistic distribution of the response does not depend on any
seismological parameter. This is the wealbwn requirement ofM sufficiency (Luco and
Cornell 2007) For examplePGA is known to be a relatively insufficieh, unless short
period structures subject to low levels of intensity are conce&@d) has been shown to be
an adequate choice for assessing -fitsde @minated structures subject to -faald
earthquakegShome et al. 199&)s long as excessive scale factorswateemployedLuco and
Bazzurro 2007)Accounting for higher and/or elongated mode contributions has been shown

to provide IMs with adequate sufficiency for nefield excitations, tall structures, collapse and
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loss assessmelf€Cordova et al. 2001; Eads et al. 2016; Kazantzi and Vamvatsikos 2015;
Kohrangi et al. 208; Tothong and Cornell 2008; Tsantaki et al. 20BARernatively, one may
choose to employ sets of ground motions that account for the anticipated effect of seismological
parameters at each level of an insufficigvt rather than a single set acroisraensities, at

the cost of forfeiting independence from lovlevel seismological information. For example,
accounting for the distribution of epsilon at each levdMhas been shown to significantly
improve the ability ofs: to lower/remove bias \h respect to spectral shape in the prediction

of structural respong@®aker and Cornell 2006)

Wit hout avoiding a bit of an authorsoé bias
IDA (Vamvatsikos and Cornell 2002) wher e Afailured canto-easily
record basis. In brief, this procedure subjects a structural model to a set of recledisosca
multiple levels ofiM, in order to obtain the record&DPs and thus the resultingeDP, IM)
points that are interpolated to form continuous IDA curves inEb&-IM space Fig. 1(a)
presents the associated IDA curves (maximum-sti@ey drift ratiodmax versusS(T1)) for a
12-storey reinforced concrete frame building (s&&zantzi and Vamvatsiko§015) for
details), using the FEMA-B95 far field ground motion séEEMA 2009) This is amodern,
codeconforming symmetrieplan perimeter momentesistingframe corresponding to
sei smic desi REMACZ2009k modellgd asdaDtérdimensional frame with
fundamental period1=2.14shaving both material and geometric nonlinearititise PDFs
(EDP|IM and IM|EDP) for an arbitrarily choseeDP and IM level, are also provided to
illustrate the inherent variability of the demand/capacity estimation problem. Both the
horizontal EDP|IM) and the verticalIM|EDP) stripes are a direct result of the rectod
record randomness only, under the assumption that a fixed (i.e. deterministic) vRDPE of

capacity governs a certain damage state on the structure. For the case of IDA, thiétprobab



260 of exceeding a prescribétDP limitation may thus be evaluated on the enif2P-IM plane,

261 using either of the respective ordinatE®P, IM).

262 Other options to IDA are, for example, the cloud analysis, whereby a set of (scaled or
263 unscaled) records pparing at arbitrary nementicallM levels is used to obtain tiEDP-IM

264 relationship, and the stripe analysis that employs records scaled to various degrees to match
265 the desiredM level(s) as shown irfrig. 1(b). Whenever a sufficient number of stripes is
266 available, a multstripe analysis can be treated in more or less the same way as IDA. For cloud
267 analysis, or in cases of few stripes, some form of regressiopitafly required to achieve a

268 continuous representation of the distributiore@fP|IM for all IM levels of interest, which is

269 normally performed through the wddhown powedaw approximation, as presented by
270 Cornell et al(2002)

271 EDP(IM ) = EBP(IM )e= alM e, (10)

272 whereb is the slope in logpace, Ir€) the intercept, whild)is a lognormal random variable

273  with unit median and a logarithmic standard deviatipn The latter is interpreted as the
274  constant dispersion @&DP|IM, which can be applied locally or globally, depending on how
275 the fitting of Eq.(10) is performed. Often enough, assuming adequate points are available,
276 local fitting provides higher fidelity as E€LO) is hardly capable of globally representing the

277 richness of dynamic response showifrig. 1(a).

278 Sources of Fragility Uncertainty

279 Fragility is an inherently uncertain quantity subject to multiple sources of both aleatory and
280 epistemic uncertaintfEllingwood and Kinali 2009; Der Kiureghian and Ditlevsen 2008gy

281 may be summarised as: (a) Rectrydecord variability in thdM-EDP relationship, due to

282 natural randomness of ground motions. This is directlyaeltd the choice of thid, in the

283 sense that a more efficiel would by definition produce lower variability, thus requiring
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fewer records to provide the same level of confidence on the prediction &DRdM
distribution. (b) Modetype uncertainty(e.g. Zeris et al. (2007) referring to our imperfect
modelling capabilities especially considering that simplified models are typically employed for
computational efficiencyeasons. (c) Modgbarameter uncertainig.g.Dolsek 2009; Liel et

al. 2009; Schotanus et al. 2004; Vamvatsikos and Fragiadakis, 2009)to incomplete
knowledge oractual randomness in the model properties (e.g. strength, ductility, mass,
stiffness). (d) Methodelated uncertainty, due to imperfect methodology (e.g. a bad regression
an insufficientiM, or a deficient analysis approach, such as using nonlinear static analysis for
a tall building(Fragiadakis et al. 20147 his should be avoided as much as possible. (e) Limit
state capacity uncertainty, due to unknown or randebP thresholds resulting from
experiments or expert judgemedf.the aboe, (a)is purelyaleatory, (b) and (d) are epistemic,
while (c) and(e) may be either one or (usually) both leaning towards aleatory wiem @nd

yet unbuilt) structure is concerned, versus a combination of both when an existing structure is
assessed.

In general, (a) is well captured by any of the aforementioned methods of analysis if an
adequate number of records is employed. All other sources of uncertainty may invariably
introduce both variability (i.e. increased dispersion) and bias (i.e. a sthft rentral value).
While the former is unavoidable, and guidelines have attempted to offer some standard or
placeholder values for associated additional dispergieBMA 2012) the latter should be
avoided as much as practically possible. Its effect is simply detrimental to the quality of
assessment itself. This assumption of zero bias, but only added variance due tmty)dsrta

referred too des o0t héEEasmnefinepat. 2002)
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Single-EDP Limit States

A singleEDPis often employed to capture the functional state of a structure. Thisiasse
scenario encountered in the literature whereby estimation can be performed following
strategies that rely either &@DP or IM ordinates, using either a deterministic or a probabilistic
(i.e. uncertain)EDP capacity, and employing approximate cld$erm solutions or the
numerical integration of Eq9) via a Monte Carlo Simulation (MCS). Note that although IDA

is hereafter invoked to outline the aforementioned fragility estimation procedures, fragility
should by no means be tied to IDA, as altert i ve strategies (e.g.
also be used to define tlEDP-IM relationship. IDA is just a very convenient and thorough

way of taking us there.

Deterministic EDP capacity

EDP-basis estimation

A general expression on the probabilityadlating a limit state for a given earthquake intensity

is already given through E{L). The aforementioned equation takes its simplest form when a
single limiting EDPc value is considered, i.e. assuming that there is no uncertainty in its
definition. This is a very popular procedure among research and practicing engineers due to
the simplicity it offers, as we are essentially looking for earthquake events that ovéneome
aforementioned capacity at the given seismic intensity. Hence, for any given (horizontal) stripe
of analysis results{g. 1(a)), the probability of exceedancendae estimated through the sum

of those events over the number of recoisc used for the nonlinear dynamic analyses. In
other words, to evaluate the formal integral of &9 or the sum of Eq9), instead of having

to discretise th&DP space into bins of equal width, MCS is performed using a samplecof

equiprobable records:

1]
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3 I[EDP' > EDP. [IM]

F..(IM)=REDP>EDP, |[IM]=-2 N (11)

rec

|l (A)i nsdexanfunction that becomes [i10 when
This is the secalled EDP-basis orgivenlIM seismic fragility estimation, also known as
horizontal statisticprocedure (kudos to H. Krawinkler for the te(@areian et al. 2004)
These definitions stem from the facatithe probability of exceedance estimation is performed
on a stripebasis, conditioned on the seismic intendtig. 2(a) presents the entire set of IDA
curves featuring the stripes at 0.2g, 0.4g and 0.6g of first mode spectral acceleration. A median
limiting capacity (i.e EDPc) of dnax=2% is chosen to illusate the sequence of steps for the
probability estimation. Considering the capacity of BigP deterministic makes the seismic
fragility estimation a rather trivial task. Take for instance the DVRevel, where 3 out of the
44 records considered ovenge the prescribeBDP capacity, thus resulting to a probability of
exceedance equal to 3/44= 0.068. The probability of exceedance estimation for a number of
IM levels spanning the entitl®l space of interest is depicted Biy. 2(b). The triangular data
points are the direct result of H§.1), with the filled markers referring to thiel levelsshown
in Fig. 2(a). It is also customary that the discrete (in termdvfprobability data points are
summarised back to a continuous lognormal CDF (a fact thidbevexploited extensively in
later sections), or simply connected by linear segments to form an empirical distribution
estimate. For a lognormal fit, the mediar) &s well as the dispersiob, (Fig. 2(b)) can be
estimated using the 16%, 50% and 8W%percentiles, the moment method or a maximum
likelihood approach(Baker 2015) In other words, considering thEDP capacity as
deterministic implies that the dispersion (and thus the sldptbedragility curve is affected

by the aleatory randomness only.
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IM-basis estimation

An alternative to th&DP-basis procedure is the-salledIM-basis methodology, also known
as givenEDP or vertical statistics(again an H. Krawinkler ternfZareian et al. 2004)
approach. This approaddttains its simplest expression through &), and may also be
translated into the following empirical estimate of a CDF when a finite nunibgj) 6f
dynamic time history analyses has been employed each scaled to the IBI(f 1 &lec)

to produce response equaBEDPc:

A1[M > ]
Fis(IM)=RIM >IM ] =-=— (12

rec

In this case, thiM ordinates are employed to derive the associated ®eiisyility curve.
Under the assumption that tlEDP capacity is represented by a single discrete value (i.e.
deterministic approach), a vertical cut on thex of interest provides the singtecordIM
capacities. Bearing in mind thidic is an inhereny probabilistic quantity, several records and
IMc values are required to obtain the entire fragility curve. The algorithm is pretty similar to
the deterministi€DP-basis approach, only this time the probability of exceedance is estimated
through the nuiper of records thatlo notovercome the prescribdil level (see also the
vertical stripe orFig. 1(a)). The latter remark is customarily harder to digest since the points
of interest are found below the prescrib®d level. This is probably a visual orientation
problem, as one would try fagure out values (i.e. demands) that exceed a limiting capacity,
while in this case there is a single demand (i.e. a horizontal line at the presigrileael) to
compare against multiple capacities along the vertical sthiype: values found below the
horizontal line signal exceedance of the limit stdigy. 3(a) presents théM capacities
conditioned on the 2% intestorey drift limit on the associated IDA curvds a similar manner
to theEDP-basismethodology, thre&M levels, namely 0.2g, 0.4g and 0.6gS(T1), are used

to illustrate the probability of exceedance estimation. For the 0.2g of seismic intensity, only
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three records fail to deliver a better caipg thus resulting to a 3/44=0.068 probability, which

is fully consistent with th&DP-basis estimation (see also the discussion from Vamvatsikos &
Cornell (Vamvatsikos and Cornell 200)n t he f e q u% BED®|IMeandc(¥x® o f
IM|EDP distributions). The discrete probabilities are illustratedrign 3(b) for every seismic

intensity considered, along with the associated fitted lognormal curve.

Global Instability

As much as th&DP andIM-basisapproaches seem to agree for limit state dapadound on
the ascending neftat branch of IDA curves, there is an interesting discussion regarding their
applicability for limit points that fall within the global instability region. This region is meant
to characterise a structural system subgldbal collapse. Traditionally, it refers to the side
sway mode of collapse, which can be captured via numericat@orergence on a rigorous
mathematical model that takes into account both material and geometric nonlinearities (i.e. it
properly simulags collaps€handramohan etl. (2015). Numerical norconvergence implies
practically infiniteEDPdemand (i.eEDP=B) , whi ch on the | DA pl ane
characteristic flattening of the IDA curveBig. 4(a)). Since demand is practically infinite,
seismic fragility can also be obtained by considering an arbitrarily large determiid®ic
capacity, i.e. well beyond the last noollapsingEDP value observed in the analysis (e.qg.
dma=10%), as shown ifrig. 4(a). The estimation is straightforward and can be performed
either on arEDP or anIM-basis. The conceptual difference of the two approaches appears on
Fig. 4(b), where th&DP|IM as well as th&M|EDP capacities are presented on four arbitrarily
selected singleecord IDASs.

A possible complication appears whenever (dense) stripE®BfIM are not availble
and some form of regression may be required, as often happens with clesitijpe 2nalysis.
Infinite (or just overly largelEDP values would make this regression impossible, and the total

probability theorem should be invoked to evaluate seismgilitsa This approach combines



400 t he event that Athe structur al capacity 1is
401 mut ual |l y exclIColapsey @) e \ahiauolEpse® NColj

402 F.s(IM)=REDP> EDR. | NCol,IM](1- RCol | IM ])+1&RCol | IM ] (13

403 Apparently the term FEDP>EDPc|Col,IM] i s al ways going to be
404 EDP value in the above. Actually, this estimation relies on the definition of two functions

405 (Shome 1999)namely the fragilities of collapsing and roollapsing data, which can be

406 estimated using a logistic regression or the maximum likelihood méBaser 2015jo handle

407 the sparse collapse data of cloud or-&vipe analysis.

408 Uncertain EDP capacity

409 An accurate estimation of the probability of exceedance can only be achieved when capacity is
410 treated as an uncertain variable. At this point one may argue that an elegant estimation of the
411 EDPc distribution is not possible without a series of lasgale expements, and thus the

412 uncertain capacity approach should not be adopted in case such information is missing.
413 Obviously, despite the number of laboratory tests performed to estimate \EDBgapacities

414  of different structural systems (elggnos et al.(2011), there is always going to be lack of

415 information as specific setups only have/can be tested. In absence of tesindatauld

416 employ, for example, the FEMA-B8 (FEMA 2012)approach to assign a dispersion to an
417 assumed normal or lognormaDPc distribution. Either way, the analysis task is complicated
418 as the index (i.e. binary result) functiongIjP > EDPc] and IIM > IM J] now become full

419 distributions (i.e. FEDP > EDPc] and P[M > IMJ]), thus requiring one more level of

420 integration (osummation for discrete results) to determine fragility.

421 EDP-basis estimation

422  Undoubtedly, inflatingeDPc with a certain amount of variability provides the full picture of

423 the fragility assessment problem. In this case, a sample of equipr@iaBledata points is
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generated (i.eEDPC, k=1...Nc) via stratified sampling to achieve good resolution/fidelity with

only a few (1620) points, as shown iRig. 5(a). Therein, the stratified sample of sike=10

follows a lognormal distribution that has a mediamief=2% and dispersiobepp=0.3. The

probability of exceedance for the uncertain capaEbP-basis approach is also estimated

using Eq.(11), only now a MCS is required to take into accountBBd>c distribution effect.

The n esldopwd pff esented bel ow provides the probeze
IM:

1 for everyiM level

2 estimate demanBDP for each recorgl

3 for everyEDPCK

4 estimateF &(IM) via Eq.(14)
5 end for
6 end for

7 optionally,combineF ¢(IM) to deriveF.s (IM) via Eq.(15)

FL(IM) is the fragility ofLSfor a deterministi€DPcK capacity.

5 I[EDP! > EDRY | IM]
Fi(IM)= = (14

rec

Ne Ne Nrec |
3 F(M) A & I[EDP' >EDR | IM]
k=1

Fs(iM)= === 1
LS( ) NC NCNrec ( 5)

The output of this rather simple algorithm is summariseBign 5(b), wherek= 1 &lc
equally probable fragility curves are formed based on discrete probability data points
corresponding to thk" value ofEDP capacity, EDPc*. Those individual fragility cunarF &

(IM) (with medianlM capacitylM¥c sos9) offer the ability to properly propagate uncertainty to
the remaining components of the PBEE framework. In particular, for the assessment of

different groups of buildings built to similar standards/materials or by the same contractor or
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during the same ar same degree of correlation in theDPc is to be expected. Correlation

among them is very important and must be preserved throughout the limit state MAF/loss
estimation. Alternatively, the individual fragility curves can be summarised back intde sing

CDF by performing an additional summation over the number of the capacities considered via
Eq.. This approach is considerably simpler with respect to the MAF estimatiahe offset

that provides a rather fAsmearedoO representat
record and the wuncertain capacity component
Asmearedo fragi | i(ldyand respectieet/,emhdiyadeperalsion thé nedgls .

of the respective user. In most essit is the smeared approach that is used, sometimes simply

due to lack of correlation information. Other sources of uncertainty, e.g. in the model itself,

can be treated in the very same manner by simply differentiating more equiprobable

realisations/senarios than just the= 1 &lc needed for capacity.

IM-basis estimation

The notion of the probabilistic capacity also requires a similar modification/extension for the
IM-basismethodology. As with the case of te®P-basis procedure, the equiprobaBBP
capacity data points generated via a stratified sampling are consiBage®{a) presents the
entire set ofM capacities for the aforementionB®Pc sample, andrig. 6(b) the assoiated
fragility curves. The fragility estimation procedure is nearly identical to EB¥-basis
approach. The sole difference lies in the MCS procedure, wher@dlBds used instad to
estimate the discrete probabilities of exceedance:

1 for everyEDPC

2 estimate capacitidd!® for each recorgl
3 for everyIM level
4 estimateF (IM) via Eq.(16)

5 end for
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6 end for

7 optionally, combiné& d(IM) to deriveF s(IM) via Eq.(17)

F1[M > x]
Fis'(IM)==— (16)

rec

Ne Ne e |
arsiv) aaim>me]
k=1

Fs(IM)= === 1
LS( ) NC NCNrec ( 7)

In essence, this is the empirical CDF of all k@ ¢ points that appear ifig. 6(a). Although
a comparison between tB®P (Fig. 5(b)) andiM-basis Fig. 6(b)) strategies provides identical
results for all practical purposes, there are certain advantages when the latter is employed,

mostly for limit states very close to the global instability oegisee previous discussion).

Analytical approximations through lognormality

How to incorporate uncertainty under lognormality

Customarily, the discrete probability data points are conveniently summarised back into a
single continuous CDF. Experienceshghown that the capacity as well as the demand of a
structural system can be adequately approximated through the lognormal dist(Gotioeil

et al. 2002; Jalayer 2003; Roméo et al. 2011; Shome 1898hould be notedhat the

lognormal (or any other) distribution assumption is essentially another source of epistemic
uncertainty, the consequence of which can only be determined in comparison with the
empirical data, ideally in terms of MAF @5 exceedane. In that sense, under the reasonable
assumpt i dNgd tdhastcreeltle fragilities are | ognor m

considered lognormal. Obtaining the median,() fortheo s mear ed o | ognor mal

straightfaward, as it makes perfect sense to place it on the mean of the correspast(iiv)

medianlM capacities, due to the equiprobable sample considered:
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INIM & 5606

lN—c (18)

=~
I

My =
On the other hand, dispersion is slightly trickierdetermine. The total dispersidn) (s
estimated through the law of total variance, which can be summarised using the square root
sum of squares (SRSS) rule for th@intra andbiv,inter terms.bim,intra is the mean intrdragility
dispersion, orthe man oNcOt ies d&r et e f rf@d)iwhiebwyinedthea per si

inter-fragility dispersion, i.e. the dispersion of hé“c sos median capacities:

b =B i+ OE

IM ,intra IM ,inter

P (19

IM ,intra
NC

.a'\!f [In IM (Ié,so% - My ]2
— .| k=1

bIM Jinter — N
C

It is important to keep in mind that although the sample fragility curves may reasonably
be individually lognormal, abustprediction regarding the distribution of the entire discrete
probability data points is not possible. Eb8) and(19) are valid regardless the distribution of
the underlying fragilities, yet the assumption that the overall meduliapersion also define
a lognormal distribution cannot be guaranteed. In fact, whenever the disper&diPofs
large enough and the median IDA is distinctly nonlinear (i.e. curved) in shape, there is a good

chance that the overall fragility is notistly lognormal.

Closed-form solutions

As much as the MG8ased nofparametric approaches offer the full picture of the seismic
fragility problem, there are several cases where the MCS output is not available, mostly related
to its high computational cost. For such cases, seismic fragilithecanaluated based on data

that come from cloud or even a festripe analysis, where some form of regression is going to
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be necessary, and thus response is obtained though tHenaweth powerlaw fit of Eq. (10).

A well-known misconception is that Hd.0) must apply to the entire range. Instead, one should
only fit it in the region of interestraund the media&DPc (Fig. 7). Of course, getting started
with regression implies that lognormality becomes-gsjnanon.

EDP-basis estimation

Under the lognormalitassumption for both capacity and demand (and thus their ratiqR)Eq.
can be modified to allow for a simpler way of evaluating seismic fragility, where the analysis

results ca be directly applied without further pgstocessing:

F..(M)=REDP> EDP. | IM]=REDP(IM )> EDR.] = Rén%EDP(“V' )§> 1
& o EDR. 2 "7y
(20)
e &In EDP(IM )y - INEDP. o, g
e b 0
o} EDP(IM ),tot =

Although from a mathematical point of view E€RO) i s n o't str-formt |l y a
solutiono, in the sense that the CDF cannot
entirety unless severdM levels are separately examiheit still presents the closest
relationship one may derive through tBBP-basis methodology. Its final output suggests that
in order to construct a fragility curve, the median capacity and demand estimates are required
along with their associated disp&m @eprqm).tot), fOr everylM level considered. The latter is
essentially the ratio of two lognormal distributions which may be obtained through the SRSS
rule of their individual (aleatoryeprgmy and epistemiddeppg) dispersions, provided that
demandand capacity are assumed uncorrelated (seeCalsmell et al(2002; Kazantzi et al.

(2014)for additional discussion on capacdgmand correlation):

bEDP(IM )tot = \/béDP(IM) + béDPc (21)

Where negative correlation between demand and capacity exists, implying that easily

damageable components will increase structural demand, rtiesina term of twice the
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covariance needs to be included under the root, increasing the uncertaint{Ceffaet! et al.

2002) The same effect can be accurately incorporated via appgeogaiapling and additional

dynamic analyses for the earlier parametric approagf&zantzi et al. 2014)The aleatory

variability around the median demand is clearly a function of the seismic intensity, as denoted

through thebeppgm) term, and as a result it can pride explicitly estimated though IDA (or

multi-stripe analysis). For other cases, where a pdavefit is required to define theEDP-IM

relationship (e.g. cloud, few stripes), the homoscedasticity assumptidiegik@s) = Cing Eq.

(10)) is necessary, at least in the local regioBDPc, to define the entire fragility curve.

Fig. 8(a) provides a comparison of teDP-basis methods presented so far for the

fismear edo

fragility. An excellent agreement

(a) pure MCS approach @q., (b) its lognormal fit via Eq(18) and (19), (c) the direct

application of Eq(20) and(21) on the raw IDA data, and (d) on the povaw fit. The only

problem appears for the latter two cases wiMrexceeds 0.3g, where the first collapsing

record appears. Strictly speakirfigprgvy becomes undefined and the distributiorE@fP|IM

is no longer lognormal. There is a number of tricks one may employ to extend the fragility

curves to highetM levels. For instance, case (d) employs the pdawrfit to artificially

extend the validity of lognormality, by assuming constant digperfegarding case (c), one

may extend the fragility up to th®l where 16% of ground motion records collapse, employing

the EDPsa% and EDP1sy percentiles to estimate the dispersion. By the same logic, one may

even use thé&DPgsyr EDPsoy percentiles, whie is valid for cases where the number of

collapsing records does not exceed 50% of the ground motions considered. Still, there is a point

where all such tricks will fail aSDP|IM is no longer lognormal. At this point, one can employ

lognormality only forthe noncollapsing records and introduce collapse via @8), even

though, strictly speaking, the naollapsing points are not exactly lognormal. Maximum

likelihood may

al so

be

e mp lgauyeesds 0t d ofginto ranafMbledeista g i | i t
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based on lowetM results. In general, employing E(RO) on anEDP-bass can become
challenging due to collapse; yet, it allows to offer the simplest expression of fragilityia an
basis later on.

IM-basis estimation

Combining Eq(10) and(20) results in theM-basisclosedform solution. This approach finds
great application in practice as the probability of exceedance estimation is directly related to

the seismic intensity and the prescribed me&BP capacity:

E (M)= Fg_l‘n(alM °)- INEDP. oy, g__&lna+binIM - InEDR 4, §
s = =
- ge bEDP(IM )tot 9 ge bEDP(IM )tot 9
a Ao /b >0
an IM - |n%%g 38 (22)
& a = g2 AniM-Inim v
— e @; HO: Fg;n n C,50°/08
: bEDP(IM ),tot/b 8 é‘% b||v| tot 9
® 0

The associated dispersioffing o) is also estimated according to Eg1), only this time it

incorporates the slope of the underlying poVesv approximation

1 bl
B jor = B\/béDP(IM) + béDPc = \/bli/l ieop + EZP (23
Note that 't hoe iisnfolfuteennc eneogfl eict ed i n many s

assuméb=1. As much as this assumption may be valid for mod¢odteng period structures,
it is clearly na the case for limit states in the proximity of the global instability region. Yet, it
is offset by the fact that little information might be available on &aohbegin with.

A comparison of théM-basisclosed or m s ol uti on ver sygwvet he
(Eq.(17)), its corresponding lognormal fit (E(L8) and(19)) and the empirical CDF obtained
for the MCS raw data is presentedfeg. 8(b). The good agreement among those curves not
only confirms the results obtained from tiM-basis closedorm solution, but also highlights

the robustness of theM-basis over theEDP-basis approachThis is mainly due to the

m

o
n ¢



579 application of Eq(22) on the raw IDA data, where the aleatory dispersion is now conditioned

580 on theEDP capacity (i.ebmieop) rather than théM (i.e. beprgmy), and thus the infinitEDP of

581 collapsing records does not cause any issues.

582 Limitations regarding the applicability of the aforementioned cldeed solutions exist,

583 and are mostly related to the extent thafpivrerlaw approximation is valid for the nonlinear

584 response of a structure. In the general case, the limit state under investigation should be away
585 from the global instability region, as the regression paramedety cannot be accurately

586 estimated. Eq(22) may also be adopted for higher states of structural damage where only a

587 certain | ow percentage of col | apsienlagterr ecor
588 constituzese@ (figgwueyt o the fAall owabl ed number
589 avoided unless special care on estimating the median capacity and the corresponding dispersion

590 s exercised.

591 General remarks on the lognormality assumption

592 The lognormal representation of fragility forms a tperameter model with respect to the

593 medianlMc and its associated dispersion. Various techniques such as the maximum likelihood
594 estimation and the momentatching approach may be adopted to defieeafiorementioned

595 parameters. Empirical evidence has shown that the lognormality assumption presents a good
596 fit on the associated data, although one may find cases where other distributions may be equally
597 good or sometimes even better.

598 Regardless of théS being fit, lognormality means that there is always a-nenm

599 probability thatLSis violated for an arbitrarily lowM > 0. In general, this is not a problem

600 when discussing a structural system on its own, as this is probably negligible (and
601 monotonicaly decreases very quickly with decreasiig. It becomes quite important though,

602 when applying this fragility to characterize a whole class or group of buildings, like in the case

603 of regional or portfolio loss assessment. Then, when-tlighma g e ne@ar€ollgps® fio r



604 fCollaps®) | i mit states are discussed, it is pos
605 a population of buildings some will collapse even at, s&(a=0.01g, which is obviously

606 unrealistic. In such cases, one may adopt tharerapCDF that clearly does not suffer from

607 such issues, or if a compact representation is still required, empleyaea®eter shifted

608 lognormal model, wherein a lolW, > O is identified, e.g. at/or below the fitd that is found

609 to cause th&Sviolation in the discrete set of analysis runs. The lognormal fitting may then be

610 performed on the shiftedd1-IM, data, instead of jusi, where obviously nopositive values

611 are discarded. Henceforth, when a lognormal approximation is discussed, eithemaf the

612 threeparameter models are implied as their use is interchangeable, by simply exchighging

613 with IM-IM, (Stoica et al. 2007)

614 Multi-EDP Limit States

615 So far, the discussion regarding seismic fragility is wwehfined under the assumption that the

616 (global response can be adequately represented through a single failure madgdBPRand

617 Although this approach is valid for most limit states and structurakmgsof interest, there

618 are several cases where multiplePsmay be needed to determine the violation of a system

619 limit state. For instance, global collapse may be triggered due to global lateral instability, a

620 Aisi mul at edodo mode aifx ocdudtd aihpranedesot failar& (e.d. columra

621 s hear or axi al failure) t hatsiamue adfetder , n eti
622 simplicity or due to the inability to accurately model their effect on the global behaviour

623 ( D6 Ayala et al. 2015; F E Mk suziocaseshe ppbabilllywfn a n d a n

624 exceedance should be estimated as

626 wheremis the number odEDPsand associated failure modes, each of which may individually

627 trigger the limit state violatiorEDP; denotes the demanddBDP,c (i= 1 é) the capacity.



628 The case of multipl&DPsor failure modes may appear even in more mundane cases that
629 one often associates with a singlBP. Perhaps, the most prominent is the case wdfieses

630 used to determinany limit state exceedance for a building. Ideally, one should employ the
631 individual storey driftsd, i=1 ém), to check for exceedance at each storey. Ufingnstead,

632 is a useful convention that speeds up computations; yet, is it acceiguté@) illustrates the
633 potential component and systdevel approaches that can be used for the seismic fragility
634 evaluation of am-storey moment resisting frame. The sysiewel approach is presented on
635 the right side of the vertical dashed line, where the syE@Rmcapacity and demand PDFs are
636 shown in terms offnax For a giveriM level, there is a distribution for eadhdemand and a
637 corresponding distribution for eaclosty-capacity, as shown by the relevant PDFs appearing
638 on t he @comp oFigd)t The distaibuteon afih.xdeimand is easy to derive in a

639 MCS setting asg,, = max(g ); however, the distribution of capacity is not as obvious to

640 estimate from the individual storeys, unless one assumes identical capacities along the height
641 without any correlation. Ideally, both approaches should result in the same system fragility; yet
642 this is not the case unless (a) a single storey dominatedntheesponse or (b) all storey

643 capacities are deterministic and of the same value. In the latter case, when capacities are not
644 equal (but still deterministic), one may still employ the deranchpacity ratiqDCR, Jalayer

645 et al.(2007) and rewrite each term of E(4) as PEDP/EDP; c>1 |IM] to use the maximum

646 demanecapacity ratio of alstoreys (or components or failure modes) for simplititywever,

647 inthe moregeneraktase where storey (or componeletjel capacities are considered uncertain

648 an MCS should be empl oyed, pforéobpér abl y wusing

649 1 for everylM level
650 2 for every storeyjor component) and storeyor componentjevel capacityEDP, ¢
651 3 estimateF (IM) via Eq.(25)

652 4 end for
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5 end for

6 optionally, combing= ¢(IM) to deriveF.s (IM) via Eq.(26)

Nrec

N |[any(EDFi’j > EDFi’,kC)l ”V']

Fis(M) =22 N (29

rec

Nc Nrec

a & lfany(EDR’ > EDRL )M

FLS(lM )= == N_N (26)
C rec

Fig. 10(a) present@a comparisoetween the component and systewel fragility curves for

the 12storey case study adoptatfhenthe componet-level approach is employed vizg.

(26) andstoreycapacities are considered uncorrelatkd fragility curve develops a significant

shift towards smalleiM values compared to the corresponding sydtaral solutionoffered

via Eq.(15). On the other hand, perfect correlation among different storey capacities iresult

a perfect match among tladorementione@pproachesAlong these lines, it should beted

thatwhen loss estimation via compon€éREMA 2012)rather than buildindevel( D6 Ay al a et
al. 2015)approaches is sought, one does not need to combine such component (clestelrey)
fragilities into one, but use them individually to assess the loss of each component.

Anot her good example to hi ¢DROiI gphtocteldesriemp c
case of some industrial structures. The complex response of such structural systems during
earthquakes may result into several modes of failure that correspond to varying degrees of loss.
The system damage state classification follows an increasing severity pattern that takes into
account the leakage potential of the stored matgNathi et al. 2017)and requires careful
combination of the compentlevel failure modes in order to assess the functional state of the
system(Bakalis et al. 2017)For instance, leakage on a liquid storage tank could be triggered
either due to the scalledel ephant 6s f oot buck]| ilastigrotations.t o e x°
Similarly, severe structural damage without leakage could be developed both on the base plate

due to uplift and the roof of the tank due to sloshing of the contained ligigd(b)). None
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of these limit states can be described by the $2bf¢ and therefore they are often combined
to assess the systdavel state of damage.

Since multtEDP fragilities may often be of such practical interest, tingpgest scenario
of two failure modes (e.g. A, B) controlling a singds is further presented. In the general
case, one needs to account for correlation of dem&abd, EDPs and capacitieE€DPa.c,
EDPscvia MCS. Hence, Eq24) may be expanded accordingly:

FLS(IM ): FLAS(IM )+ I:LBS(IM )' FLA:B(lM )

Nrec Nc Nrec

4 PlEDP) >EDP,. [IM] & & I[EDP} > EDP. |IM]
FA(lM): j=1 — k=1 j=1
- Nrec NCNrec
Nrec . Nc Nrec .
4 PEDP >EDP,. [IM] & & I[EDR >EDR:. | IM| (@D
FB(IM): j=1 _ kel j=1
- Nrec NCNrec

Nc Nrec

4 A I[EDP! > EDPX. < EDP! > EDPX. |IM ]
FLAS<B(|M ): k=1 j=1

NC Nrec
Eventually, the only practical difficulty may lie in estimating the probability of the intersection
of the event#® andB. For the case that the two capacities are independent (demands are usually

correlated), the intersection can be estimated for each ground motion record through the

product of the individual probabilities as:

Nrec

3 PlEDP! > EDP, . | IM |&P[EDR) > EDR, . |IM]

FSP(IM) =22 N (28)

rec

Fig. 10(b) depicts the fragility curves for evemsandB, their intersection and the associated

union based on E¢§27) and(28).
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Conclusions

A comprehensive overview on existing seismic fragility functions has pessented for
methods that rely on nonlinear dynamic analysis. Atb2ey moment resisting frame has been
adopted to illustrate the various methodologies that can be used to extract fragility curves. As
expected, th&DP-basis results match the ones gatenl though théM-basis approach, both
under a deterministic and an uncertadP capacity framework. AlthougEDP-basis is easier

to digest compared to the slightly tricki&-basis, the latter presents a more robust probability

of exceedance estimati@pproach, especially for limit states close to the global instability
region. The aforementioned methodologies can be used to evaluate the system fragility of a
structural system using a single gloB&)P, or take a step further and employ loe&IPsand

failure modes to allow for higher resolution in a complex sydtagility estimation.
Undeniably, seismic assessment procedures based on 4$gg&#mesponse parameters have
dominated standard practice. Recent advances, however, point towards theamspaofent

level approaches for the damage and loss estimation of single structures, delegating system
level fragility only to the role of estimating collapse or demolition potential. Even so, regional
and portfolio assessment remains grounded on systeifitfrastimates, leaving ample space

for applications.
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Figure Captions

Fig. 1. (a) Singleecord IDA curves and example BDP|IM andIM|EDP distributions. The
shaded areas represent the two alternative approaches in defining the seismic fragility for a
deterministicEDP capacitydma=2%. An IM|EDP vertical stripe atdna=2% fully defines

fragility, while multiple horizontal stripes (here shown at 0.4g) are needed for an equivalent



880 result. (b) Stripe analysis for the 0.7g and QMdevels and cloud analysis for the unscaled

881 FEMA P-695 (FEMA 2009) ground motion set, togethéth a poweslaw fit for the latter.

882 Fig. 2. EDPbasis approach for determinise®P capacity: (a) Three illustratiu® stripes on
883 the singlerecord IDA curves. (b) Discreté s(IM) results via Eq. (11) and continuous

884 lognormal fit. The filled triangles refer 1 levels equal to 0.2g, 0.4g and 0.6g respectively.

885 Fig. 3.IM-basis approach for a determinidEDP capacity: (a)Mc points and three illustrative
886 horizontallM-demand levels on the singlecord IDA curves. (b) Discrete s(IM) results via
887 Eg. (12) and continuous lognormal fit. The filled triangles refékttéevels equal to 0.2g, 0.4g

888 and 0.6g respectively.

889 Fig. 4. (a) Globalnstability data points on all 44 IDA curves. @PP|IM andIM|EDP data
890 points on 4 arbitrary IDA curves, featuring tBBP versudM-basis probability of exceedance

891 estimation for a limit state capacity that adequately represents global instability.

892 Fig. 5. EDP-basis approach for uncertadDP capacity: (a) A stratified sample dfc=10
893 equiprobabldDP capacities and three illustratiid stripes on the singleecord IDA curves.

894 (b) Discrete versus smeared fragility curva kEq. (14) and , respectively.

895 Fig. 6. IM-basis approach for uncertaEDP capacity: (a) A stratified sample dc=10
896 equiprobabld&DP capacities and three illustrative IM stripes on the singt®rd IDA curves.
897 (b) TheNc=10 discrete versus the smeared fragility curve via Eq. (16) and (17), respectively.

898 Each discrete fragility curve is the CDF of a single vertical stripMefpoints.

899 Fig. 7. Singlerecord, 16%, 50% and 84% IDA curvdsaturing the corresponding local
900 powerlaw fit for the ma=2%), Si(T1)=0.4g) median capacity point. Elsewhere, the fit may not

901 be valid.
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Fig. 8. (a)EDP-basisclosed or m compari son to MCS ndditynear edo
curves. (b)M-basisclosed or m compari son to MCS fAsmearedo,

CDF fragility estimates.

Fig. 9. (a) Component versus systlavel demand and capacity distribution patterns for the
seismic fagility estimation of an uncertain-storey moment resisting frame. The PDFsfof
demand and capacity are presentedawss the ones ofimax conditioned on thdM. (b)
Componerdevel demand and capacity distributions for various failure modes on an

unanchored liquid storage tank.

Fig. 10. (a) System versus componkeviel fragility estimation. The estimation has been
performed based on Eq. (15) and (26). (b) lllustrative fragility curve generation example for
damage stat that depend on two failure modesg®Pg. The estimation has been performed

based on Eqg. (27) and (28).
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Fig. 5. EDP-basis approach for uncertadDP capacity: (a) A stratified sample ®fc=10

equiprobabldEDP capacities and three illustratiifd stripes on the singleecord IDA curves.

(b) Discrete versus smeared fragility curve via @4) and, respectively.

(@)

(b)

Fig. 6. IM-basis approach for uncertaiEDP capacity: (a) A stratified sample ®c=10

equiprobableEDP capacities and three illustrative IM stripes on the singé®rd IDA curves.

(b) TheNc=10 discrete versus the smeared fragility curve via(Eg).and(17), respectively.

Each discrete fragility curve is the CDF of a single vertical stripMefpoints.









