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Abstract: A probabilistic assessment of the rocking and overturning response of a simply-
supported rigid block on a horizontal plane is reported. A two-dimensional rectangular block 
resting on a rough, horizontal, tensionless and cohesionless rigid base at ground surface is 
considered, subjected to far field horizontal earthquake excitations. The roughness of the 
interface is assumed to be sufficiently large to prevent sliding, while the flexibility of the block 
is neglected. Rocking response curves are calculated for increasing ground motion intensity 
(or, equivalently, decreasing uplift strength) via Incremental Dynamic Analysis (IDA), and 
results are summarised in the form of 16%, 50% and 84% fractile IDA curves. By employing 
non-linear regression analysis, simple expressions are developed for each fractile of peak 
response to offer a complete probabilistic characterisation of rocking behaviour. Generalised 
overturning criteria are proposed covering a wide set of excitations and block parameters. 
 
Introduction 
The rocking response of un-deformable free standing blocks to earthquake ground shaking 
has been a subject of intense investigations for many years. Despite its apparent simplicity, 
the problem is difficult to treat analytically, as determining the response can be challenging 
even for the simplest waveforms due to inherent nonlinearities and other mathematical 
complexities. Only a handful of cases have been solved completely, mostly for pulses of half-
cycle duration (Housner 1964, Shi et al. 1996, Voyagaki et al. 2013), whereas for full-cycle 
pulses exact analytical solutions are even fewer (Dimitrakopoulos and DeJong 2012, Voyagaki 
et al. 2014). Extending the overturning criteria to actual ground motions is impossible, as the 
overturning or survival of a block depends on the details of excitation. In light of this need, a 
pertinent probabilistic treatment of block response appears desirable. 
 
In the context of two-dimensional rigid-body dynamics, we investigate the numerical problem 
with the results post-processed in a probabilistic manner, to provide simple response criteria 
applicable to a wide range of far-field earthquake motions. The methodology of Incremental 
Dynamic Analysis (Vamvatsikos and Cornell 2002, 2004) is employed to this end. Non-linear 
regression analyses provided the means for developing simple parametric equations that offer 
a complete probabilistic characterisation of rocking response for use in Performance-Based 
Earthquake Engineering (PBEE). 
 
Problem definition 
The problem under investigation concerns rocking of a rigid block resting on a rough horizontal 
rigid plane, subjected to a suite of earthquake motions acting parallel to the plane (Fig.1a). 

The block is of rectangular shape having mass m, dimensions (2xb) by (2xh) − leading to a 
radial distance from the center of rotation to the center of gravity R=(b2+h2)1/2 and a 

dimensionless slenderness angle α=tan−1(b/h). The friction coefficient at the interface between 

block and base is assumed to be sufficiently large to prevent sliding, while the flexibility of the 
block and aerodynamic effects are neglected. The restoring force is shown in Fig.1b. 
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Figure 1. Rocking block on a rigid base and linearised resisting moment-rotation backbone curve in 
Eq.(2) 

 
The non-linear equation governing rocking response of a rigid block is (Housner 1963) 
 

sin[ sgn( )]sgn( ) cos[ sgn( )]+ − = + −
o g
I mgR mu R&& &&θ α θ θ θ α θ θ    (1) 

 
where Io is the moment of inertia of the block with respect to its corner P or P’ (for rectangular 
geometry, Io = 4mR 2/3) and sgn(·) denotes the signum function. The positive sign on the right-
hand side of the equations is to ensure positive rocking response for positive ground 
acceleration, as evident from the reference system of Fig.1a. 
 

For slender blocks angle α is small; the above equation can be linearized using the first-order 

approximations sin(α ± θ) ≅ α ± θ, cos(α ± θ) ≅ 1 and re-written in the form: 
 

( )2 2 2
/ sgnθ θ α θ− = + −

&& &&
g

p p u g p     (2) 

 
p = (3g/4R)1/2 is a measure of the dynamic characteristics of the block. Since the restoring force 
is exclusively due to gravity (as in the classical pendulum problem), the intrinsic frequency p is 

independent of the block mass.  
 
Assuming that sliding does not take place, initiation of rocking requires overcoming of the 

restoring moment due to self-weight, by the overturning moment due to inertia i.e., m·üg·h ≥ 

m·g·b. For slender blocks (α <20 degrees) this can be written as üg/g ≥ α. The ratio of 

slenderness over dimensionless peak pulse acceleration (α g/Ag), to be referred hereafter to 

as uplift strength η, can be used as discriminant: if η >1 no rocking occurs, if η <1 rocking 
initiates at t = tup, when üg(tup) = α g.  
 
In light of Fig.1, up to the point of impact the block rocks around the right edge (pivot point P) 
with positive uplift angles. After impact rocking continues around the left edge (pivot point P’) 
with negative uplift angles. The transition from one pivot point to the other is accompanied by 
energy loss during impact, even for a block made of a non-dissipative material and an elastic 

base. The reduction in kinetic energy during transition is 2)/( −+

=
ii

r θθ && , subscript i standing for 

“impact”. Assuming perfectly plastic impact (i.e., no bouncing) and using conservation of 

angular momentum, Housner (1963) evaluated r for slender rectangular blocks 
2

2/31 αε −== r , which defines the familiar coefficient of restitution. Clearly this is an upper-

bound estimate, as the true coefficient of restitution is always smaller than the one disregarding 
bouncing.  
 
As far as the seismic excitation is concerned, the FEMA P695 (FEMA 2009) far-field ground 
motion set was selected, comprising 22 pairs of strong acceleration time histories without any 
directivity or soft-soil characteristics.  
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Numerical simulations 

For performing the numerical analyses, we followed the original proposal by Prieto et al. 
(2004). Thus, a compact formulation was derived to incorporate nonlinearities stemming from: 
(a) the transition from one rotation pivot point to the other; (b) the energy dissipation during 
impact and the associated discontinuity in angular velocity; and (c) the geometric nonlinearities 
expressed by the trigonometric terms in Eq.(1). The equation can be written in dimensionless 
form as  

( ) ( ) ( ) ( ) ( )
2

2 2 2sgn ln sgn− + = +
f

x f x f x x x x&&&& & &ψ τ ε δ
η

   (3) 

 

where � =θ/α denotes the normalised rocking angle, 
gg

Au /)()( ττψ &&&& =  the acceleration-

normalised earthquake waveform, f=p td, and 	� =t/td dimensionless time. It is evident from the 

above expression that the problem parameters have been reduced to three: ε, f and η. As for 
the suite of far-field motions at hand a unique predominant period td is hard to identify, the 
effect of record frequency content has been ignored and p is used in the ensuing as a 
parameter indicative of block size. This is tantamount to using td =1s in Eq.(3).  

 
Probabilistic approach 
For the suite of 44 earthquake motions, the response was evaluated considering ten values of 
the restitution coefficient ε in the range (0.5-0.95), and twelve block radii (~0.07–70m) 
corresponding to characteristic frequencies p in the range (0.33–10s-1) that is, 120 parameter 

combinations per record. Applying the methodology of incremental dynamic analysis and 
selecting peak ground acceleration as the intensity measure IM and peak rocking angle as the 
engineering demand parameter EDP, each record was scaled to cover the entire range of 
rocking response, from uplift, to rocking, to overturning. The peak rocking angles were 
evaluated for each motion that, in turn, was scaled by gradually increasing its acceleration 
amplitude so that overturning was encountered under all seismic records. To ensure the 
desired accuracy, 100 to 300 increments for each case were required depending on system 
characteristics. Considering an average of 200 increments per record, the total number of 
analyses exceeds 1 million (120x200x44). 

 
 

Figure 2. All forty-four IDA curves and their summary into their 16%, 50% and 84% fractiles for a given 
characteristic frequency p=2s-1 and coefficient of restitution ε=0.70 

 

An example of the resulting IDA curve’s for the whole suite of records and a given pair of ε, p, 
is provided in Fig.2a. The results are presented in dimensionless form, normalised by the block 

slenderness angle α. The IM is thus represented by uplift strength η and the EDP by the ratio 
(θmax/α). The horizontal flatlines reached by each curve for large levels of intensity indicate that 
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overturning has occurred and thus provide critical levels of intensity (and strength) capacity: 
IMc or ηc. Given that rocking is a problem of instability, attempting to determine a critical value 

of response, EDPc becomes an ill-posed condition of lesser significance. In fact, any 
sufficiently large value of response practically corresponds to the same level of IMc. Thus, 
mainly for reasons of visualization, the static overturning criterion (θmax/α)c=1 is selected as an 

acceptable EDPc. It could be similarly set to be “infinite” without any appreciable effect on the 
results. Wherever multiple flatilines appear, termed “structural resurrection” by Vamvatsikos 
and Cornell (2002), IMc is taken equal to the uplift strength that corresponds to the lowest such 
flatline, or equivalently, the first occurrence of overturning. IDA results are finally summarized 
to provide the distribution of EDP given. This is achieved by calculating the 16%, 50%, and 
84% fractile values of EDP for given IM levels. The 50% value (i.e., the median) is indicative 
of the central tendency, while the 16/84% percentiles represent the dispersion, as illustrated 
in Fig.2b. 
 
The effect of block size, measured through the characteristic frequency p, is shown in Fig.3, 

where the 50% IDA’s are plotted for a given value of the coefficient of restitution. The safety 
wall separates the systems that overturn from the ones that do not. As evident from the graphs, 
the larger the value of the characteristic frequency (or, equivalently, the smaller the size of the 
block), the easier it is for overturning to occur. Conversely, the larger the size of the block the 
higher the ground motion intensity required to topple the block. This is in agreement with the 
findings of the analytical investigations based on the idealised waveforms and further 
investigations on near-source pulsive earthquakes.  
 

 
 

Figure 3. Median IDAs for different values of the characteristic frequency p; ε = 0.70 

 
When summarising the IDA curves, one may use stripes of EDP given levels of IM (“horizontal 
statistics” with respect to Fig.2, thanks to the late Prof. H. Krawinkler), or stripes of IM given 
EDP (“vertical statistics”, similarly). The issue whether one should summarise given IM or EDP 
has been extensively discussed in Vamvatsikos & Cornell (2004) and it has been shown that 
they are essentially equivalent representations when a sufficiently large number of ground 
motion records is employed. For the case at hand, a comparison of the two alternative 
approaches has shown that 44 records are enough to remove any such issues. Nevertheless, 

it is always conceptually simpler to determine IMc as the critical uplift strength ηc for a given 
(θmax/α)c that is indicative of collapse (i.e., “infinite”), a value set to be 1.0 in our case. The 
ensemble of resulting values of overturning capacity thus estimated in terms of the percentile 
curves are grouped in Fig.4. 

Dimensionless Peak Rocking Response:   θ
max 

/ α

0.0 0.5 1.0 1.5

U
p
lif
t 
S
tr
e
n
g
th
: 
 η
 =
 α
 x
 g
 /
 P
G
A

0.0

0.2

0.4

0.6

0.8

1.0

p = 1 s
-1  
 

2

3

50% IDA's

4

5

6

9

safety wall

7

8

10

0.33

0.5



 
E VOYAGAKI and D VAMVATSIKOS 

5 

 

 
Figure 4. 16%, median and 84% capacity curves for the investigated systems  

 

Given that we are only evaluating three point estimates of the ηc distribution, i.e. the 16/50/84% 
values, it is important to establish an appropriate distribution model for the entire population. 
The lognormal assumption has been typically employed for the collapse capacity of yielding 
systems and it may also be appropriate for the distribution of overturning capacity. To this end, 

the Lilliefors test (Lilliefors 1967) was employed to test the (null) hypothesis that log(ηc) values 

come from a normally distributed population. The majority of the tests (about 80%) show that 
we do not have enough evidence to reject this hypothesis at the 95% confidence level. The 
test p-values were generally higher than 10%. Thus, it may be stated in general that a 
lognormal distribution is an adequate model. Fig.5, provides two examples (out of 120 cases) 
of these distributions. Fig.5a is a typical example of cases with high p-values (pval>20%) and 

shows good agreement with the lognormal distribution assumption. Fig.5b refers to the non-
conforming cases of very low p-values (pval<1%) where a right skew is apparent in the 
distribution. Better precision by means of additional increments in the area of calculated values 
of ηc seems to fix the problem.  
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Figure 5. Lognormal probability plots of the overturning collapse capacity ηc  
(a) pval=55%; (b) pval=0.3% 

ε=0.55, p=10s-1 ε=0.95, p=6s-1 
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Overturning Criterion 
A simple expression that describes a general overturning criterion, as function of the problem 
parameters η, p, ε is desirable. To this end, the produced capacity curves were approximated 

by means of nonlinear regression. The existence of the analytical solutions made this task 
particularly easy as the regressions were based on the rigorous criterion for overturning under 
a full-cycle rectangular pulse (Voyagaki et al 2014). With that starting point we assumed that 
the critical uplift strength for the suite of motions at hand can be cast in the form 
 

 cbp

c ea )1(
−

−=η  (4) 

 

where a, b, c are parameters depending on the coefficient of restitution ε. To achieve an 
estimate of ηc for different values of ε and p, a two-step regression was employed. First, 
coefficients a, b, c were fit via Eq.(4) for each given value of ε and each of the three different 

percentiles of ηc. Thus, for each percentile of ηc, three sets of a, b, c points versus ε were derived 

and subsequently fit by regression. For the median capacity these are described by the 
following first- and second-order polynomials plotted in Fig.6 
 

          
50

0 44 0 43a . . ε= +  2

50
0 56 1 14 1 25b . . .ε ε= − +  2

50
1 66 0 38 1 4c . . .ε ε= − +  (5) 

 
For dimensional conformity, p (measured in s-1) in Eq.(4) should be multiplied by td =1s. 

Corresponding expressions were also produced for the 16% and 84% capacities: 
 

            
16

0 5 0 33a . . ε= +  2

16
1 64 4 39 3 44b . . .ε ε= − +  2

16
7 17 15 65 12c . . ε ε= − +    (6) 

and 

           
84

0 64 0 24a . . ε= +  2

84
0 66 2 32 0 94b . . .ε ε= − + −  2

84
2 28 10 3 6 27c . . .ε ε= − + −   (7) 

 

The approximate capacity curves represented by Eqs (4) − (7) are shown in Figs 6 and 7. As 
evident in Fig.7b, the 16% capacity curves are not perfect at the lower values of ε, still, these 

are considered rather difficult to encounter. Further analyses will improve upon that case. 
 

 
 

Figure 6. Median percentiles of critical uplift strength, calculated via nonlinear regression of the 
numerical data. The figures on the left represent the secondary fitting of the coefficients of Eq.(5) for 

different values of the coefficient of restitution 
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Figure 7. 16% and 84% percentiles of critical uplift strength, calculated via nonlinear regression of the 
numerical data; �, b, c from Eqs (6) & (7) 

 
Peak rocking response 
The maximum rocking angles may also be approximated via nonlinear regression, as shown 
in the ensuing. The parameters that need to be fitted are now increased by one (θmax/α) and so 

are the regression stages involved in the analyses. One possible approach is maintaining fixed 

boundaries of the solution at (θmax/α , η) = (0,1) and (1, ηc), where the critical uplift strength is 
given by Eqs (4)-(7). The peak rocking response may thus be written as 
 

 αθ

αθ

ηη /

/)1(

max

max

+

+

= m

m

c
 (8) 

 
m being a parameter depending on block geometry p, and by means of the parameters A, B, 

C, on the coefficient of restitution ε. For the median, 16% and 84% capacities the following 

simple exponential formulae were produced. 
 

 

2
ln








 −
−

=
B

Ap

Cem   (9) 
 

   ε6.3

50
6.8

−

= eA  ε5.2

50
1.8

−

= eB  ε2.3

50
014.0 eC =    (10) 

 

   ε4.1

16
9.1

−

= eA  ε3.1

16
7.2

−

= eB  ε4.1

16
046.0 eC =    (11) 

 

   ε8

84
78

−

= eA  ε7.1

84
9.3

−

= eB  ε7.4

84
007.0 eC =    (12) 

 
A summary of the above equations is given in Fig (8) for the 50% values. Their applicability is 
presently limited to values of θmax /α > 0.15. A comparison of the numerical data with the fitted 

curves described by Eqs. (8)–(12) is shown in Fig 9 where the fitted formula appears to 
generally underestimate the response, mainly due to the inflexibility of the fitted equation. The 
visualisation of the fitted formula is better achieved via the 3D plots in Fig 10 where all the 
problem parameters are present. It can be seen that the solution requires better fitting for small 
values of the rocking angle, a problem more apparent in the case of the 16% capacity curves.  
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Figure 8. 50% quantiles of uplift strength as function of peak rocking response θmax, normalised with 

slenderness angle α, calculated via nonlinear regression of the numerical data 

 

 
 

Figure 9. 16-50-84 percentiles of uplift strength as function of peak response. Comparison of 
numerical results with nonlinear regression. ε=0.7 
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Figure 10. 16-50-84 percentiles of uplift strength η, calculated via nonlinear regression of the 

numerical data, as function of peak rocking response (normalised with slenderness angle α), 
characteristic frequency p and restitution coefficient ε 

 
Conclusions 
The rocking behaviour of a free-standing block resting on a rigid base and subject to 44 far-
field earthquake motions was estimated numerically. Careful examination of the problem led 
to the following conclusions: 

1. Overturning due to far-field seismic excitations may be reduced to three parameters: 

block size, expressed in terms of characteristic block frequency p, dimensionless uplift 

strength η (i.e., ratio of minimum required acceleration for initiation of uplift over peak 

ground acceleration) and coefficient of restitution ε. 
2. The lognormal distribution is an adequate (although apparently imperfect) model for 

overturning capacity.  
3. A simple expression based on closed-form solutions for the so-called safety wall can 

be exploited through non-linear regression techniques to provide a general probabilistic 
criterion for overturning under far-field ground motions.  

4. The peak rocking response was approximated via simple fitted formulae that 
incorporate all the problem parameters. 

The proposed expression allows for calculating both the median/mean and dispersion of 
response as a function of the coefficient of restitution and the characteristic frequency. The 
end result can be used to evaluate the probability of overturning for any rigid block resting on 
the ground, providing all the data needed for performance-based earthquake engineering 
applications.  
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