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PROBABILISTIC CHARACTERIZATION OF OVERTURNING 
CAPACITY FOR SIMPLY-SUPPORTED RIGID BLOCKS 

 
Elia VOYAGAKI1 and Dimitrios VAMVATSIKOS2 

ABSTRACT 

A probabilistic treatment to the problem of rocking and overturning of a simply-supported rigid block 
is presented in the context of Performance-Based Earthquake Engineering (PBEE). To this end, a two-
dimensional rectangular block resting at ground surface  on a rough, horizontal, tensionless and 
cohesionless rigid base is considered, subjected to a suite of 44 horizontal earthquake excitations. The 
roughness of the interface is assumed to be sufficiently large so that sliding is prevented, while the 
flexibility of the block and aerodynamic effects are neglected. Rocking response curves are calculated 
for increasing ground motion intensity (or decreasing uplift strength) via Incremental Dynamic 
Analysis (IDA), and results are summarized in the form of 16%, 50% and 84% fractile IDA curves. 
The solution based on a geometrically linearized rocking equation is advantageous, as it limits the 
problem parameters to just three that is, uplift “yield” strength, pseudo natural frequency and 
coefficient of restitution (damping), as in the classical yielding oscillator. On the other hand, the 
slenderness angle of the block is not an essential independent variable, as it simply normalizes the 
response angle. Generalized overturning criteria are proposed covering a wide set of excitations and 
block parameters. By employing non-linear regression analysis, simple formulae are developed for 
both the median/mean and the dispersion of response to provide a complete probabilistic 
characterization of rocking response for use in PBEE. 

INTRODUCTION 

Starting with the seminal publication of Housner (1963), the rocking response of un-deformable free 
standing blocks to earthquake ground shaking has attracted the attention of several researchers. 
Despite its apparent simplicity, the problem is difficult to treat analytically, as determining the 
response can be challenging even for the simplest waveforms due to inherent nonlinearity and 
presence of transcendental functions. Only a handful of cases have been solved completely, mostly for 
pulses of half-cycle duration (Housner 1964, Shi et al. 1996, Voyagaki et al. 2013), whereas for full-
cycle pulses analytical solutions leading to exact or approximate overturning criteria are even fewer 
(Dimitrakopoulos and DeJong 2012, Voyagaki et al. 2014). Extending the overturning criteria to 
actual ground motions is difficult, as the survival or toppling of a block depends on the details of 
excitation (Yim et al. 1980, Ishiyama 1982, Psycharis and Jennings 1983, Spanos and Koh 1984). In 
this light, a pertinent probabilistic treatment of the problem appears desirable. 

In this work, the problem is treated numerically in the realm of two-dimensional rigid-body 
dynamics, with the results post-processed from a probabilistic viewpoint to provide simple response 
criteria applicable to a wide range of far-field earthquake motions. The methodology of Incremental 
Dynamic Analysis (Vamvatsikos and Cornell 2002, 2004) is employed to this end. The 
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aforementioned analytical investigations for simple pulses (Housner 1963, Voyagaki et al. 2013, 2014) 
provided the fundamental means for casting light into several complex trends observed in numerical 
and experimental studies, including the effects on overturning of block slenderness, size, amplitude of 
base excitation and coefficient of restitution. Non-linear regression analyses provided the means for 
developing simple parametric equations that offer a complete probabilistic characterization of rocking 
response for use in Performance-Based Earthquake Engineering (PBEE). 

PROBLEM DEFINITION 

The problem under investigation concerns rocking of a rigid block resting on a horizontal rough rigid 
plane, subjected to a suite of earthquake motions acting parallel to the plane (Fig.1a). The block is of 
rectangular shape having mass m, dimensions (2xb) by (2xh)  leading to a radial distance from the 
center of rotation to the center of gravity R = (b2+h2)1/2 and a dimensionless slenderness angle = 
tan1(b/h). The friction coefficient at the interface between block and base is assumed to be sufficiently 
large to prevent sliding, while the flexibility of the block and aerodynamic effects are neglected. The 
restoring force is shown in Fig.1b. 

 

 

Figure 1. Rocking block on a rigid base and linearized resisting moment-rotation backbone curve in Eq.(2). 

 
The non-linear equation governing rocking response of a rigid block is (Housner 1963) 

 
sin[ sgn( )]sgn( ) cos[ sgn( )]    o gI mgR mu R            (1) 

 
where Io is the moment of inertia of the block with respect to its corner P or P’ (for rectangular 
geometry, Io = 4mR2/3) and sgn(·) denotes the signum function. The positive sign on the right-hand 
side of the equations is to ensure positive rocking response for positive ground acceleration, as evident 
from the reference system of Fig.1a. 

For slender blocks angle  is small; the above equation can be linearized using the first-order 
approximations sin (α  θ)  α  θ, cos (α  θ)  1 and re-written in the form: 
 

 2 2 2/ sgn       gp p u g p     (2) 

 
where p = (3g/4R)1/2 is a measure of the dynamic characteristics of the block. Since the restoring force 
is exclusively due to gravity (as in the classical pendulum problem), the intrinsic frequency p is 
independent of the block mass. It should be noted that the second term on the right side of the equation 
refers to a constant restoring force in each response branch, whereas the second term on the left side 
can be interpreted as a negative (geometric) stiffness. 

Assuming that sliding is prevented, initiation of rocking requires exceedance of the restoring 
moment due to self-weight, by the overturning moment due to inertia i.e., m·üg·h  m·g·b. For slender 
blocks (< 20 degrees), this can be written as üg/g  . The ratio of slenderness over dimensionless 
peak pulse acceleration (α g/Ag), to be referred hereafter to as uplift strength , has the following 
properties: if η >1 no rocking occurs, if η <1 rocking initiates at t = tup, when üg(tup)  α g.  
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According to the adopted notation (Fig.1), up to the point of impact the block rocks around the 
right edge (pivot point P) with positive uplift angles; after impact rocking continues around the left 
edge (pivot point P’) with negative uplift angles. The transition from one pivot point to the other is 
accompanied by energy loss during impact, even for non-dissipative block and base materials. The 

reduction in kinetic energy during transition is  2
/i ir      , subscript i standing for “impact”. 

Assuming perfectly inelastic impact (i.e., no bouncing) and using conservation of angular momentum, 

Housner (1963) evaluated r for slender rectangular blocks at 21 3/ 2r    , which defines the 
familiar coefficient of restitution. Clearly this is an upper-bound estimate, as the true coefficient of 
restitution is always smaller than the one disregarding bouncing.  

 
Table 1. The forty-four ground motions of the FEMA P695 far field set (FEMA 2009). 

 

No Event Date Mw Station 

Closest 
Fault 

Distance 
(km) 

Orientation 
Ag        

(g) 
Vg 

(cm/s) 

1 
Manjil, Iran 20/6/1990 7.4 Abbar 12.6 

Long 0.515 42.5 
2 Trans 0.496 52.1 
3 

Kocaeli, Turkey 17/08/1999 7.4 Arcelik 17.7 
000 0.218 17.7 

4 090 0.149 39.5 
5 

Friuli, Italy 06/05/1976 6.5 Tolmezzo 37.7 
000 0.351 22 

6 270 0.315 30.8 
7 

Superstition Hills, CA 24/11/1987 6.7 
El Centro Imp.Co. 

Center  
13.9 

000 0.358 46.4 
8 090 0.258 40.9 
9 

Duzce, Turkey 12/11/1999 7.1 Bolu 17.6 
000 0.728 56.4 

10 090 0.822 62.1 
11 

Superstition Hills, CA 24/11/1984 6.7 Poe Road 12.4 
270 0.446 35.7 

12 360 0.30 32.8 
13 

Loma Prieta, CA 18/10/1989 6.9 Capitola 14.5 
000 0.529 36.5 

14 090 0.443 29.3 
15 

Chi-Chi, Taiwan 20/09/1999 7.6 CHY101 11.1 
W 0.353 70.6 

16 N 0.440 115 
17 

Landers, CA 23/07/1992 7.3 Coolwater 21.2 
Long  0.283 25.6 

18 Trans 0.417 42.3 
19 

Kocaeli, Turkey 17/08/1999 7.4 Duzce 12.7 
180 0.312 58.8 

20 270 0.358 46.4 
21 

Loma Prieta 18/10/1989 6.9 Gilroy Array #3 14.4 
000 0.555 35.7 

22 090 0.367 44.7 
23 

Imperial Valley, CA 15/10/1979 6.5 
Delta   43.6 

262 0.238 26 
24 352 0.351 33 
25 

El Centro Array # 11 12.6 
140 0.364 34.5 

26 230 0.380 42.1 
27 

Hector Mine, CA 16/10/1999 7.1 Hector 11.7 
000 0.266 28.6 

28 090 0.337 41.7 
29 

Northridge, CA 17/01/1994 6.7 

Canyon County –  
W Lost Canyon  

13 
000 0.410 43 

30 270 0.482 45.1 
31 Beverly Hills – 14145 

Mulholland 19.6 
009 0.416 59 

32 279 0.517 62.8 
33 

Kobe, Japan 16/01/1995 6.9 Nishi – Akashi 11.1 
000 0.509 37.3 

34 090 0.503 36.6 
35 

San Fernando, CA 09/02/1971 6.6 
LA Hollywood 

Stor Lot 
21.2 

090 0.210 18.9. 
36 180 0.174 14.9 
37 

Cape Mendocino, CA 25/04/1992 7.1 Rio Dell Overpass 18.5 
270 0.385 43.9 

38 360 0.549 42.1 
39 

Kobe, Japan 16/01/1995 6.9 Shin-Osaka 15.5 
000 0.243 37.8 

40 090 0.212 27.9 
41 

Chi-Chi, Taiwan 20/09/1999 7.6 TCU045 24.1 
W 0.474 36.7 

42 N 0.512 39 
43 

Landers, CA 28/06/1992 7.3 Yermo Fire Station 24.9 
270 0.245 51.5 

44 360 0.152 29.7 

 
As far as the seismic excitation is concerned, the FEMA P695 (FEMA 2009) far-field ground 

motion set was selected for the analyses, comprising 22 pairs of strong acceleration time histories, 
(Table.1) that belong to a bin of relatively large magnitudes of 6.5 to 7.6 and bear the following 
characteristic attributes: average Joyner-Boore and Campbell source-to-site distance >10km; peak 
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ground acceleration Ag>0.2g and peak ground velocity Vg>15cm/sec; Vs,30>180m/s (all selected records 
correspond to C/D NEHRP sites); limit of 6 records from a single seismic event; lowest useable 
frequency <0.25 Hz, to ensure that the low frequency content has not been removed by the ground 
motion filtering process; strike-slip and thrust faults; no consideration of spectral shape.  

Summarizing, the problem parameters can be reduced to five: Block size or characteristic 
frequency, described by p in units of (1/Time), damping or energy dissipation during impact, 
described by the coefficient of restitution , block slenderness , an intensity measure selected here to 
equal peak ground acceleration Ag, and the predominant period of the excitation, 2·td. Assuming a 
slender block, the number of parameters is further reduced to three dimensionless quantities,  , f=p·td 
expressing the size of the block or the frequency content of the excitation, and =x g/Ag, which 
expresses the resistance of the system to uplift and varies in the range [0, 1]: =0 refers to an infinitely 
slender block with zero resistance to uplift or an infinitely large peak ground acceleration, while for 
>1 the peak ground acceleration does not suffice to initiate rocking. 

ANALYTICAL SOLUTIONS 

The analytical solutions for simple pulse waveforms provided the initiative for this work as they cast 
light into the physics of this complex problem and help us understand the key characteristics of the 
response. More importantly, they can be extended in the realm of probability to apply to general 
problems and provide general overturning criteria for design purposes. To this end, a brief review of 
the available closed-form solutions is presented.  

Until recently, the only available closed-form analytical solutions describing conditions of 
overturning, concerned the rocking response to half-cycle pulses of rectangular (Housner 1963) and 
sinusoidal shape (Shi et al. 1996). The criterion for overurning under a half-cycle rectangular pulse is: 

 
1 fe         (3) 

 
where η=α g/Ag is the dimensionless uplift strength and f=ptd the dimensionless pulse duration, equal 
to the characteristic frequency of the block p in units (1/time) times the half-cycle pulse duration td. 

An extensive set of exact overturning criteria has been recently published by Voyagaki et al. 
(2013, 2014) which are applicable to symmetric pulses of half- and full-cycle duration, described by a 
generalized waveform controlled by a single shape parameter  to cover the whole range from a 
perfect rectangle (“box”) to a perfect impulse (“spike”) as shown in Fig.2. For a half-cycle case 

 

2 / 2 / 2 (1 / ) 2 (1 / )( ) [1 ( ) ( / 2) (1 ) ( )]
1

d d d dg t t t t t t t t
g d d
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e
   


        


  (4) 

 
where H(·) denotes the Heaviside (step) function. 

 

 
 

Figure 2. Ground acceleration time history for a generalized pulse (Eq.4). 
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The overturning criterion for the whole suite of half-cycle pulses at hand is expressed by the 
following closed-form expression 

 

2

2

2

1 ( 2 )
1

1
2 ( 2 )
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f

w f

e f

e
f e f




 








 
                                                

(5) 

Considering the simple case of a rectangular pulse (), Eq.(5) simplifies to the solution by 
Housner in Eq.(3). In the above equation w is interpreted as a limit strength separating systems that 
overturn (w) from those that do not ( > w). In this light, the curve w = w(f, ) is referred in the 
ensuing to as “safety wall”.  

The above solutions are presented graphically in Fig.3 which depicts the areas of safety and 
overturning as function of uplift strength η and pulse duration f for different values of the shape factor 
ranging from –∞ (perfect rectangle) to +∞ (perfect spike). Evidently, for large values of uplift 
strength overturning requires large pulse duration and vice versa.  

 

 
 

Figure 3. Areas of Safety (S) and Overturning (O) for a rocking block under an exponential pulse excitation of 
half-cycle duration for different values of shape factor (Voyagaki et al. 2013). 

 
Response to a full-cycle pulse is far more complicated than that to its half-cycle counterpart, as 

the existence of the second, negative, excitation lobe allows overturning of the block under two 
distinct, mutually exclusive modes: Mode 0, corresponding to overturning in the forward sense 
without impact; and Mode 1, that is overturning in the backward sense following a single impact and 
rocking reversal (Zhang and Makris 2001). The overturning criterion for Mode 0 in f space in the 
simplest case of a full-cycle rectangular pulse is defined as 

 
2(1 )f

w e         (6) 
 

and will be proven particularly useful in describing critical strength to actual earthquake excitations as 
explained later in the paper. Criteria for overturning after an impact (Mode 1) are far more complicated 
(Voyagaki et al. 2014) and lie beyond the scope of this study. Fig.4 depicts the limits of the two modes 
including the effect of the coefficient of restitution on Mode 1. It will be shown that the mathematical 
description of the curves corresponding to the specific mode of overturning are not particularly 
important for actual earthquake ground motions. On the other hand the effect of the coefficient of 
restitution is significant.  
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Figure 4. Areas of overturning without an impact (Mode 0), after one impact (Mode 1), and effect of the 
coefficient of restitution , for a rocking block under a symmetric rectangular pulse of full – cycle duration 

(modified after Voyagaki et al. 2014).  

NUMERICAL SIMULATIONS 

For performing the numerical analyses, a Matlab code was developed, capable of solving by a 
varying-order Runge-Kutta procedure the nonlinear equations of rocking motion in a continuous 
manner for an arbitrary excitation time history. Following the original proposal by Prieto et al. (2004), 
a compact formulation was derived to incorporate nonlinearities stemming from: (1) the transition 
from one rotation pivot point to the other; (2) the energy dissipation during impact and the associated 
discontinuity in angular velocity; and (3) the geometric nonlinearities expressed by the trigonometric 
terms in Eq.(1). The equation can be written in dimensionless form as  

 

               
2 2

2sgn sin 1 sgn cos 1 sgn ln sgn          
f f

x x x x x x x x x       
 

 (7) 

 
where x= denotes the normalized rocking angle,  g g( ) u ( ) / A     the acceleration-normalized 

earthquake waveform, f=p td, and =t/td dimensionless time. In the special case of a slender block, 
Eq.(7) simplifies to 
 

         
2

2 2 2sgn ln sgn   
f

x f x f x x x x     


   (8) 

 
In light of Eq.(8), it is evident that the problem parameters have been reduced to three: , f and . As 
for the suite of far-field motions at hand a unique predominant period td is hard to identify, the effect 
of record frequency content has been ignored and p is used in the ensuing as a parameter indicative of 
block size. This is tantamount to using td=1s in Eqs (7) and (8).  

PROPABILISTIC APPROACH 

For the suite of 44 earthquake motions of Table.1, the response was evaluated considering ten values 
of the restitution coefficient ε in the range (0.5-0.95) and twelve block radii (~0.07 – 70m) 
corresponding to characteristic frequencies p in the range (0.33 – 10s-1). This leads to 120 parameter 
combinations per record. Applying the methodology of incremental dynamic analysis and selecting 
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peak ground acceleration as the intensity measure IM and peak rocking angle as the engineering 
demand parameter EDP, each record was scaled to cover the entire range of rocking response, from 
uplift, to rocking, to overturning. The peak rocking angles where evaluated for each motion that, in 
turn, was scaled by gradually increasing its acceleration amplitude so that overturning was 
encountered under all seismic records. To ensure the desired accuracy, 100 to 300 increments for each 
case where required depending on system characteristics. Considering an average of 200 increments 
per record, the total number of analyses exceeds 1 million (120x200x44). 
 

 

Figure 5. All forty-four IDA curves and their summary into their 16%, 50% and 80% fractiles for a given 
characteristic frequency p=2s-1 and coefficient of restitution =0.70. 

 
An example of the resulting IDA curve’s for the whole suite of records and a given pair of , p, 

is provided in Fig.5a. The results are presented in dimensionless form, normalized by the block 
slenderness angle . The IM is thus represented by uplift strength  and the EDP by the ratio max/. 
The horizontal flatlines reached by each curve for large levels of intensity indicate that overturning has 
occurred and thus provide critical levels of intensity (and strength) capacity: IMc or c. Given that 
rocking is a problem of instability, attempting to determine a critical value of response, EDPc becomes 
an ill-posed condition of lesser significance. In fact, any sufficiently large value of response practically 
corresponds to the same level of IMc. Thus, mainly for reasons of visualization, the static overturning 
criterion (max/)c=1 is selected as such an acceptable EDPc. It could be similarly set to be “infinite” 
without any appreciable effect on the results (see Fig.5). Particular attention should also be paid to the 
phenomenon of “structural resurrection” (Vamvatsikos and Cornell, 2002) that may occur for some 
ground motion records: Due to each point on an IDA curve corresponding to a single (and 
independent) timehistory analysis, it may sometimes happen that a system will display multiple 
potential flatlines, seemingly coming back from global dynamic instability to display finite EDP 
response at an even higher value of IM. IMc is then taken equal to the uplift strength that corresponds 
to the lowest such flatline, or equivalently, the first occurrence of overturning. 

The IDA curves display a wide range of behaviors, showing large record-to-record variability, 
thus making it essential to summarize such data and quantify the randomness introduced by the 
waveforms. To this end, we need to employ appropriate summarization techniques that will reduce this 
data to the distribution of EDP given IM and to the probability of exceeding any specific limit-state 
given the IM level. This is achieved by calculating the 16%, 50%, and 84% fractile values of EDP for 
given IM levels. The 50% value (i.e., the median) is indicative of the central tendency, while the 
16/84% percentiles represent the dispersion as illustrated in Fig.5b.   

The effect of block size, measured through the characteristic frequency p, is shown in Fig.6, 
where the 16%, 50% and 84% IDA’s are plotted for a given value of the coefficient of restitution. The 
safety wall, in full analogy to the notion presented in the analytical solutions, separates the systems 
that overturn from the ones that return to stability. As evident from the graphs, the larger the value of 
the characteristic frequency (or, equivalently, the smaller the size of the block), the easier it is for 



8 
 

overturning to occur. Conversely, the larger the size of the block the higher the ground motion 
intensity required to topple the block. This is in agreement with the findings of the analytical 
investigations based on the idealized half-cycle waveforms and further investigations on near-source 
pulsive earthquakes.  
 

 
 

Figure 6. Comparison of 16%, median and 84% IDAs as function of the characteristic frequency p, for the suite 
of 44 far field motions in Table.1;  = 0.70. 

 

When summarizing the IDA curves, one may use stripes of EDP given levels of IM (“horizontal 
statistics” with respect to Fig.5, thanks to Prof. H. Krawinkler), or stripes of IM given EDP (“vertical 
statistics”, similarly). The issue whether one should summarize given IM or EDP has been extensively 
discussed in Vamvatsikos & Cornell (2004) and it has been shown that they are essentially equivalent 
representations when a sufficiently large number of ground motion records has been employed. 
Significant differences may appear when low numbers of ground motions are used, simply due to the 
frequent use of linear interpolation to determine the percentiles. For example, when having an even 
number of records, the median is estimated as the average of the two values closest to the middle of 
the sample. It is obvious that close to the flatline any summarization given EDP will always encounter 
finite values of IM, while summarization given IM will have to deal with “infinite” EDP responses. 
Since the average of a finite and an infinite (i.e., very large) value is always governed by the latter, 
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some differences are expected to appear. For the case at hand, a comparison of the two alternative 
approaches is presented in Fig.7. showing that 44 records are enough to remove any such issues. 
Nevertheless, it is always conceptually simpler to determine IMc as the critical uplift strength c for a 
given (θmax/α)c that is indicative of collapse (i.e. “infinite”), a value set to be 1.0 in our case. The 
ensemble of resulting values of overturning capacity thus estimated in terms of the percentile curves 
are grouped in Fig.8 
 

 
 
Figure 7. 16%, 50% and 84% percentiles of critical uplift strength as function of characteristic frequency, for 
different values of the coefficient of restitution. Critical strength values computed by summarization into 
fractiles of c|(max/)c (IM given EDP) versus fractiles of (max/)c|c (EDP given IM) are practically the same.  
 

 
 

Figure 8. 16%, median and 84% capacity curves for the investigated systems.  
 

Given that we are only evaluating three point estimates of the c distribution, i.e. the 16/50/84% 
values, it is important to establish an appropriate distribution model for the entire population. The 
lognormal assumption has been typically employed for the collapse capacity of yielding systems and it 
may also be appropriate for the distribution of overturning capacity. To this end, the Lilliefors test 
(Lilliefors 1967) was employed to test the (null) hypothesis that log(c) values come from a normally 
distributed population. The majority of the tests (about 80%) show that we do not have enough 
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evidence to reject this hypothesis at the 95% confidence level. The test p-values were generally higher 
than 10%. Thus, it may be stated in general that a lognormal distribution is an adequate model. Fig.9, 
provides two examples (out of 120 cases) of these distributions. Fig.9a is a typical example of cases 
with high p-values (pval>20%) and shows good agreement with the lognormal distribution assumption. 
Fig.9b refers to the non-conforming cases of very low p-values (pval<1%) where a right skew is 
apparent in the distribution. Better precision by means of additional increments in the area of 
calculated values of c seems to fix the problem.  
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(a) log (c) (b) log (c) 

 
Figure 9. Lognormal probability plots of the overturning collapse capacity c. (a) pval=55%; (b) pval =0.3%. 

 
Nonlinear Regression 
A simple expression that describes a general overturning criterion, as function of the problem 
parameters , p, is desirable. To this end, the produced capacity curves were approximated by 
means of nonlinear regression. The existence of the analytical solutions made this task particularly 
easy as the regressions were based on the rigorous criterion for overturning under a full-cycle 
rectangular pulse given by Eq.(6). With that starting point we assumed that the critical uplift strength 
for the suite of motions at hand can be cast in the form 
 

cbp
c ea )1(        (9) 

 
where a, b, c are parameters depending on the coefficient of restitution . To achieve an estimate of ηc 
for different values of ε and p, a two-step regression was employed. First, coefficients a, b, c where fit 
via Eq.(9) for each given value of ε and each of the three different percentiles of ηc. Thus, for each 
percentile of ηc, three sets of a, b, c points versus ε where derived and subsequently fit by regression. 
For the median capacity they are described by the following first- and second-order polynomials 
shown in Fig.10 
 

50 0 44 0 43a . .                   (10a) 
2

50 0 56 1 14 1 25b . . .                   (10b) 
2

50 1 66 0 38 1 4c . . .                   (10c) 
 
For dimensional conformity p, (measured in s-1) in Eq.(9) should be multiplied by td =1s. 
Corresponding expressions were also produced for the 16% and 84% capacities: 
 

16 0 5 0 33a . .                   (11a) 
2

16 1 64 4 39 3 44b . . .                   (11b) 
2

16 7 17 15 65 12c . .                    (11c) 
and  

ε=0.55, p=10s-1 ε=0.95, p=6s-1 
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84 0 64 0 24a . .                   (12a) 
2

84 0 66 2 32 0 94b . . .                    (12b) 
2

84 2 28 10 3 6 27c . . .                    (12c) 
 

 
 

Figure 10. Median percentiles of critical uplift strength, calculated via nonlinear regression of the numerical 
data. The figures on the left represent the secondary fitting of the coefficients of Eq.(9) for different values of the 

coefficient of restitution. 
 

 
 

Figure 11. 16% and 84% percentiles of critical uplift strength, calculated via nonlinear regression of the 
numerical data; a, b, c from Eqs (11) & (12). 

 
The approximate capacity curves represented by Eqs (9)  (12) are shown in Figs 10 and 11. As 
evident in Fig.11b the 16% capacity curves are not perfect at the lower values of ε, still, these are considered 
rather difficult to encounter. Further analyses will improve upon even that case. 
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CONCLUSIONS 

The rocking behavior of a free-standing block resting on a rigid base and subject to 44 far-field 
earthquake motions was estimated numerically through Incremental Dynamic Analysis (IDA). Careful 
examination of the problem and the resulting data led to the following conclusions: 

1. Overturning due to far-field seismic excitations may be reduced to three parameters: block 
size, expressed in terms of characteristic block frequency p, dimensionless uplift strength  
[i.e., ratio of minimum required acceleration for initiation of uplift (or equivalently block 
slenderness angle) over peak ground acceleration] and coefficient of restitution . 

2. The lognormal distribution is an adequate (although apparently imperfect) model for 
overturning capacity.  

3. A simple expression based on closed-form solutions for the, so-called, safety wall can be 
exploited through non-linear regression techniques to provide a general probabilistic criterion 
for overturning under far-field ground motions.  

The proposed expression allows for calculating both the median/mean and dispersion of response as a 
function of the coefficient of restitution and the characteristic frequency. The end result can be used to 
evaluate the probability of overturning for any rigid block resting on the ground, providing all the data 
needed for performance-based earthquake engineering applications.  
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