
1 INTRODUCTION 

Structures in seismic areas are being analyzed, built 
and designed with only a summary treatment of the 
uncertainty that is present in the model, the material 
properties and the loads by using generic safety fac-
tors. In general, uncertainty has been a thorny issue 
that is only implicitly included by most seismic 
codes, perhaps the first explicit treatment appearing 
in the FEMA-350 (SAC/FEMA 2000) guidelines. In 
the wake of the SAC/FEMA project there has been a 
widespread adoption of the notion of uncertainty in 
the earthquake engineering community and novel 
methodologies have already appeared on how to in-
clude the uncertainty in performance estimation. 
Prominent examples are the work by Cornell et al. 
(2002) for the SAC/FEMA format or the work of 
Baker & Cornell (2003) which is builds upon the 
Pacific Earthquake Engineering Research (PEER) 
Center framework.  

Still, while methods to deal with uncertainty do 
exist, there is only so much we can do about estimat-
ing it. When dealing with complex nonlinear struc-
tures it is practically impossible to escape from 
Monte-Carlo methods, with every single simulation 
involving time-consuming static or dynamic nonlin-
ear analysis (e.g. Kwon & Elnashai 2006). Actually, 
one of the most comprehensive methods for seismic 
performance evaluation is incremental dynamic 
analysis (IDA, Vamvatsikos & Cornell 2002), which 
would essentially require multiple nonlinear dy-

namic analyses under a suite of ground motion re-
cords. In essence, a Monte Carlo simulation per-
forming a full IDA for each point in the parameter 
space would be prohibitively resource intensive, 
even for the simplest of structures. The necessary 
simulations would necessitate the execution of nu-
merous IDAs, each for twenty or thirty records, re-
sulting to millions of nonlinear dynamic analyses, 
thus rendering such efforts extremely cumbersome. 

Circumventing this significant computational ob-
stacle is usually done by assuming ad hoc values for 
the dispersions caused by uncertainties, e.g. in the 
model properties, and either implicitly taking them 
into account or explicitly including them in the 
guidelines, as in FEMA-350. Actually, even in the 
latter case these are meant to serve as reasonable 
placeholders that, unfortunately, in the absence of a 
more rational and proven values, tend to become the 
de facto standard.  

One solution to this problem has emerged by the 
recent appearance of a simple and accurate approxi-
mation to IDA. Using the flexible SPO2IDA tool 
(Vamvatsikos 2002) it has now become possible to 
rapidly estimate the performance of single-degree-
of-freedom (SDOF) oscillators and first-mode-
dominated structures, from elasticity all the way to 
collapse. Having such a tool at our disposal we can 
easily perform all the necessary simulations and ac-
tually provide an accurate estimate of the effect of 
uncertainty on the demand and capacity of struc-
tures. Using Monte Carlo on top of SPO2IDA we 
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propose to study the effect of the uncertainty in the 
force-deformation envelope and period of an oscilla-
tor to the resulting normalized limit-state capacities 
as a precursor to the application to actual buildings.   

2 INCREMENTAL DYNAMIC ANALYSIS 

Incremental Dynamic Analysis (IDA) is a powerful 
analysis method that offers thorough seismic de-
mand and capacity prediction capability (Vamvatsi-
kos & Cornell 2002). It involves performing a series 
of nonlinear dynamic analyses under a multiply 
scaled suite of ground motion records. By selecting 
proper Engineering Demand Parameters (EDPs) to 
characterize the structural response and choosing an 
Intensity Measure (IM), e.g. the 5% damped first-
mode spectral acceleration %)5,( 1TSa , to represent 
the seismic intensity, we can generate the IDA 
curves of EDP versus IM for each record and the 
16%, 50% and 84% summarized curves. On such 
curves the desired limit-states can be defined by set-
ting appropriate limits on the EDPs. Thus the corre-
sponding capacities and their probabilistic distribu-
tion are estimated. Such results combined with 
probabilistic seismic hazard analysis (Vamvatsikos 
& Cornell 2002) allow the estimation of mean an-
nual frequencies (MAFs) of exceeding the limit-
states thus offering a direct characterization of seis-
mic performance. 

Nevertheless, IDA comes at a considerable cost, 
even for simple structures, necessitating the use of 
multiple nonlinear dynamic analyses that are usually 
beyond the abilities and the computational resources 
of the average practicing engineer. Therefore, a sim-
pler and faster alternative is always desirable.   
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Figure 1. The normalized SPO2IDA backbone and its five con-
trolling parameters. 

3  IDA AND SPO2IDA 

A fast and accurate approximation has been recently 
proposed for IDA, both for single and multi-degree-
of-freedom systems utilizing information from the 
force-deformation envelope (or backbone) to gener-
ate the summarized 16%, 50% and 84% IDA curves 

by using elaborate fitted equations (Vamvatsikos & 
Cornell 2006).   

The approximation is based on the study of nu-
merous SDOF systems having varied periods, mod-
erately pinching hysteresis and 5% viscous damping, 
while they feature backbones ranging from simple 
bilinear to complex quadrilinear with an elastic, a 
hardening and a negative-stiffness segment plus a fi-
nal residual plateau that terminated with a drop to 
zero strength as shown in Figure 1 (Ibarra 2003; 
Ibarra et al. 2005). The oscillators were analyzed 
through IDA and the resulting curves (Fig. 2) were 
summarized into their 16, 50, and 84% fractile IDA 
curves (Fig.3) which were in turn fitted by flexible 
parametric equations (Vamvatsikos & Cornell 
2006). Having compiled the results into the 
SPO2IDA tool, available online (Vamvatsikos 
2002), we can get an accurate estimate of the per-
formance of virtually any oscillator without having 
to perform the costly analyses, almost instantane-
ously recreating the fractile IDAs in normalized co-
ordinates of ( ) ( )%5,/%5, TSTSR aya=  (where 

%)5,(TSay  is the %)5,(TSa  value to cause first 
yield) versus ductility µ. 

A typical example of applying SPO2IDA appears 
in Figures 3 and 4 where the 16, 50, and 84% fractile 
IDA curves of a 5% damped oscillator with moder-
ately pinching hysteresis are estimated using both 
IDA and SPO2IDA. The oscillator’s period is T = 
0.9s and its backbone has a hardening segment with 
stiffness ah = 30% of the elastic up to ductility µc = 
2, followed by ac = −200% negative stiffness seg-
ment plus a residual plateau that has a strength r = 
50% of the yield strength and ends at µf = 5. The ac-
curacy achieved by SPO2IDA is remarkable every-
where on the IDA curves, even close to collapse.  

SPO2IDA is in fact a powerful R–µ–T relation-
ship that will provide not only central values (mean 
and median) but also the dispersion due to record-to-
record aleatory randomness of the strength reduction 
R factor given µ. Such dispersions are of primary 
importance for the performance evaluation of struc-
tures and they are usually represented by their β-
value (SAC/FEMA 2000), i.e. by the standard devia-
tion the natural logarithm of R given µ, which can be 
calculated from the fractile IDAs as  

%16%50 lnln RRR −=β  (1)  

where %50
ˆ RR =  and %16R are the 50% (median) and 

16% R-values of capacity. Obviously, since we are 
mostly interested in the lower values of the capacity, 
it makes sense to estimate any β-value using the me-
dian and the lower fractile (16%) rather than the 
higher one (84%). 

This tool has been extended to first-mode domi-
nated MDOF structures (Vamvatsikos & Cornell 
2004), enabling the accurate estimation of the frac-
tile IDA curves even close to collapse without need-
ing nonlinear dynamic analyses. In addition it has 



been shown to only slightly increase the error in our 
estimation, resulting to an accuracy that is equiva-
lent to a full IDA using ten ordinary ground motion 
records. Thus it can render performing the multiple 
IDAs quite effortless, offering an efficient and very 
simple method for estimating the uncertainty associ-
ated with the normalized limit-state capacities of an 
oscillator, given the variability in its backbone pa-
rameters and its period. 

Still, SPO2IDA has several limitations which will 
consequently limit the scope of this study. First of 
all, the only EDP supported is ductility. Therefore, 
our results are meaningful only for limit-states that 
can be defined on terms of ductility or other directly 
related EDPs, such as the maximum deformation. 
Furthermore, when creating SPO2IDA we assumed 
only a moderately pinching hysteresis, not allowing 
us to considered at all the uncertainty in the shape of 
the hysteretic loop. Such issues remain to be re-
solved. 
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Figure 2. Thirty IDA curves and their flatline capacities for a 
T=0.9s system with the base backbone (ah = 0.3, µc = 2, ac = -2, 
r = 0.5, µf = 5). 
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Figure 4. The fractile IDA curves from Figure 3 versus the 
static pushover curve.  

4 METHODOLOGY 

Having SPO2IDA available we can easily perform a 
classic Monte Carlo by randomly varying the pa-
rameters of the oscillator according to their distribu-
tion. The uncertain parameters considered are the 
five backbone variables ah, µc, ac, r and µf plus the 
period T of the oscillator. For a given oscillator, i.e., 
for given default  or mean values of the parameters, 
all we need to do is create a large enough sample of 
possible realizations by drawing randomly from the 
distributions of the six parameters and use SPO2IDA 
on each alternate model. Thus we are able to directly 
estimate the fractile IDA curves without actually 
performing a single dynamic analysis. The final re-
sults are the distributions of the estimates of fractile 
demands and capacities, allowing the assessment of 
confidence intervals or dispersion β-values for the 
oscillator R-capacities given µ or the µ-demands 
given the normalized intensity R.  
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Figure 3. Summarization of the thirty IDA curves into fractile 
IDAs given µ or R. 
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Figure 5. The fractile IDAs for the base backbone and 
T=0.9sec, as estimated by SPO2IDA. 

 



As an illustrative example we are going to use the 
base backbone that appears in Figures 4-5 with de-
fault parameters ah = 0.3, µc = 2, ac = -2, r = 0.5, µf = 
5 and a period of T = 0.5, 1.0, 1.5 or 2.0s. Each pa-
rameter is independently normally distributed with a 
mean equal to its default value and a coefficient of 
variation (c.o.v) equal to 0.3. Care needs to be exer-
cised as the normal distribution assigns non-zero 
probabilities even for physically impossible values 
of the parameters, e.g., T < 0, or ah > 1. Addition-
ally, the equations comprising SPO2IDA were fitted 
for a specific range in the parameters: ah in [0,0.9], 
µc in [1,9], ac in [–4,-0.02], r in [0,0.9] and T in 
[0.1s,4s]. Therefore it makes sense to truncate the 
distribution of each parameter within some reason-
able minimum and maximum that satisfies both the 
physical limits and the fitted range of SPO2IDA. We 
chose to do by setting hard limits at roughly 2.0 
standard deviations away from the central value, 
thus cutting off only the most extreme cases.  

Given the parameter distributions, we performed 
classic Monte Carlo simulations for N realizations, 
using SPO2IDA to obtain N different sets of IDA 
fractiles. Of primary importance here is the estima-
tion of the variability caused by the parameter uncer-
tainties in the median capacity for each limit-state, 
i.e. in the R-values produced by SPO2IDA. As pro-
posed by Cornell et al. (2002), such dispersion 
caused by the uncertainty in the median capacity 
will be characterized by its β-value, βU, which can 
be calculated directly as the standard deviation of 
the natural logarithm of the estimates of the median 
capacities 

( )
1
lnln

2
%50%50

−
−

= ∑
N

RRi

Uβ  (2) 

where iR %50  (i = 1,2,…,N) are the estimates of the 
median R-value of capacity for a given limit-state, 
one from each oscillator realization, and %50ln R is 
the mean of the natural logarithm of the median R-
values of capacity.  

Of significant importance though is not just the 
value of βU but also the value of the total dispersion 
βRU caused by both the record-to-record randomness 
and the model uncertainty, which is used, e.g., in the 
SAC/FEMA framework to assess performance in the 
presence of uncertainty (Cornell et al. 2002). This is 
typically estimated as the square-root-sum-of-
squares of the β-values associated with uncertainty 
and randomness:  

22
URRU βββ +=  (3) 

Such a value for every limit-state, or value of ductil-
ity, serves as a useful comparison of the relative 
contribution of randomness and uncertainty to the 
total dispersion. In general, we expect the high βR to 
overshadow the lower βU, especially since the latter 

is produced by a c.o.v of only 0.3 in the parameter 
values. The only exceptions to this rule will appear 
in the exact areas where the sensitivity of perform-
ance to the parameters is most important.  

5 ILLUSTRATIVE RESULTS 

In our final implementation we performed a sensitiv-
ity analysis of the resulting βU values versus N, 
showing reliable results for practically any N > 500. 
Therefore we chose to use a conservative sample 
size of N = 1000, the full simulation needing only a 
minute on a Pentium IV processor.   

5.1 Single parameter uncertainty 
In order to better understand the effect of each pa-
rameter, additional simulations were performed by 
letting only one of the six parameters vary at a time 
around the default backbone values and having a 
mean oscillator period of T = 1s. The resulting βU 
and βRU values for each limit-state and each parame-
ter appear in Figures 6-11.   

In Figure 6, the end-of-hardening ductility µc 
seems to generate significant uncertainty especially 
for low ductilities, close to its central value of µc = 2. 
On the other hand, in Figure 7, the hardening slope 
ah has little or no influence on any limit-state. This is 
also echoed in recent sensitivity studies (e.g. Ibarra 
2003; Vamvatsikos & Cornell 2006) that have 
shown the small influence of ah on the oscillator per-
formance. Surprisingly, Figure 8 shows that there is 
also little uncertainty in the capacities associated 
with the negative slope ac. This is actually a conse-
quence of having a high mean |ac| value of 200% 
that forces a sharp drop in the force-displacement 
envelope, something that is narrowing down the 
available options: having a slightly milder or sharper 
slope is not really a big issue, as the descent remains 
quite rapid, thus leaving little room for variability on 
the IDA curve. Only for relatively low negative 
slopes (e.g. |ac| of 30% or less) would the uncer-
tainty rise.  

Actually, where the strength drop starts (µc) and 
where it ends (r) seems more important: For any 
ductility µ beyond the start of the residual plateau in 
the base case we get a small increase in the uncer-
tainty due to the variability in the plateau height r 
(Fig. 9). Still, the randomness βR attains its highest 
values in that region, thus obscuring any contribu-
tion from r. In contrast, the variability in the end of 
the residual plateau µf contributes significant uncer-
tainty to the R-values of capacities, practically for 
any limit-state at ductilities higher than the mean 
value of µf = 5 (Fig. 10). Finally the period T in Fig-
ure 11 is adding a small amount to the total uncer-
tainty that is steadily increasing for higher limit-
states.   
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Figure 6. Dispersion βU due to uncertainty in the end-of-
hardening ductility µc versus βR and the total dispersion βRU. 
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Figure 8. Dispersion βU due to uncertainty in the negative slope 
ac versus βR and the combined dispersion βRU. 
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Figure 10. Dispersion βU due to uncertainty in the ultimate duc-
tility µf  versus βR and the combined dispersion βRU. 
 
 

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ductility, µ = δ / δ yield

di
sp

er
si

on
 o

f R
 =

 S
a / 

S
ayi

el
d

β
RU

β
R

β
U

 
Figure 7. Dispersion βU due to uncertainty in the hardening 
slope ah versus βR and the combined dispersion βRU. 

 
 

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ductility, µ = δ / δ yield

di
sp

er
si

on
 o

f R
 =

 S
a / 

S
ayi

el
d

β
RU

β
R

β
U

 
Figure 9. Dispersion βU due to uncertainty in the residual pla-
teau height r  versus βR and the combined dispersion βRU. 
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Figure 11. Dispersion βU due to uncertainty in the oscillator pe-
riod T  versus βR and the combined dispersion βRU. 
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Figure 12. Dispersion βU due to uncertainty in all six parame-
ters versus βR and the combined dispersion βRU for oscillator 
period T = 1s.  
 

Regarding the uncertainty in the period, it should 
be noted though that the issue is more complex that 
what Figure 11 seems to imply. Our methodology is 
focusing specifically on the normalized capacities 

( ) ( )%5,/%5, TSTSR aya= . Still, in any comprehen-
sive performance estimation, when changing the pe-
riod T we are also changing the seismic demand as 
we are moving to adjacent points in the %)5,(TSa  
spectrum. Therefore, accurately including period un-
certainty in performance estimation requires an inte-
grated approach where at least some information 
about the spectral shape is included in the Monte 
Carlo procedure. For example, for a given ductility, 
increasing T will also increase R (Vamvatsikos & 
Cornell 2006), while it will generally decrease 

%)5,(TSa -demand, at least in the moderate and long 
periods. Therefore in that spectral region there is a 
negative correlation that we are not taking into ac-
count here by just focusing on the normalized R-
values. Nevertheless, even without including the 
spectral information this approach can provide a use-
ful approximation to the actual problem.  

5.2 Multiple parameter uncertainty 
The next task was to let all six parameters vary si-
multaneously in order to estimate the resulting un-
certainties for the default backbone at an oscillator 
period of T = 1s. The results are shown in Figure 12, 
where it is obvious that the trends appearing in each 
parameter are also present here: The influence of the 
µc uncertainty is driving βU up for ductilities around 
2, while the influence of µf is very clear for ductili-
ties close to collapse. Interestingly enough, for duc-
tilities within µ = 3-4, i.e. in the early part of the de-
fault residual plateau, we see a large reduction in the 
uncertainty, resulting in only a minor increase of the 
total βUR. It should be noted in general, that having a 
c.o.v of 0.3 has only produced a maximum βU of 0.2 
that appears only in the collapse limit-state.  
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Figure 13. Total dispersion βRU due to uncertainty in all six pa-
rameters versus the sum and the SRSS of individual βU’s com-
puted for each parameter. 

 
Actually, for the lower limit-states, before the on-

set of negative stiffness, we have a negligible effect 
of the model uncertainty on the R-values of capacity. 
Still, as discussed previously, because of T, the ac-
tual uncertainty in the %)5,(TSa -values of capacity 
may not be as benign.   

Seeing these encouraging results, it is only natu-
ral to attempt a reconstruction of the total uncer-
tainty by combining the uncertainty caused by each 
parameter. Two different rules were tried, (a) the 
sum of the individual uncertainties for each limit-
state (SUM), namely SUM

Uβ  versus (b) the square-
root-sum-of-square (SRSS) SRSS

Uβ . As seen in Figure 
13, the SUM rule is quite conservative, producing 
overly conservative estimates of βU while the SRSS 
rule is much more accurate. Based on our earlier ob-
servations it appears that we could estimate the total 
uncertainty dispersion simply by considering the dis-
persion in the ductilities µf and µc and maybe the pe-
riod T. Of course, it should be emphasized that no 
correlation has been designated between the various 
parameters, a fact that is probably enhancing the ac-
curacy of the SRSS rule.     

In order to investigate the effect of the mean pe-
riod to the uncertainty, in addition to T = 1s the 
simulations were also performed for periods T = 
0.5s, 1.5s, 2s, as shown in Figures 14, 15 and 16, re-
spectively. Apparently, our general observations are 
still valid for short and long periods as well. The 
shapes of the βU curves are quite similar, indicating 
the strong influence of µc and µf on the system’s per-
formance. What is most striking about the results 
though is the increase in the overall R-value uncer-
tainty as we are moving to longer periods. Lower pe-
riods lead to a consistent sharp drop in R-values, 
thus reducing the overall dispersion. Naturally, these 
observations may be reversed for the actual 

%)5,(TSa -values. Another interesting feature is that 
the relative contribution of µc and µf to βU is chang-
ing with the period. For low periods µc and µf cause a 



similar magnitude of uncertainty in the results. In 
contrast, the longer periods cause an increase in the 
uncertainty attributed to µf. Again, it appears that the 
rapid reduction of R-values for shorter periods ob-
scures the effect of the residual plateau to the IDA 
curves, while at longer periods, shorter versus longer 
plateaus have a significant difference. 

In summary, there is a lot of potential, but there 
are several issues that need to be resolved before the 
above observations are generalized. For example, it 
is imperative to check the resulting uncertainties for 
higher c.o.v. values, map their influence on the epis-
temic uncertainty and find out when βU starts ap-
proach βR. Furthermore, we need to verify our con-
clusions for different base (mean) backbones, 
especially ones containing milder negative slopes 
and much higher or lower residual plateaus. Finally, 
the accuracy of this tool needs to be checked versus 
actual IDA results, to make sure that there is nothing 
in the fitted equations that may introduce bias. 

6 CONCLUSIONS 

An innovative tool has been presented that can rap-
idly estimate the uncertainty in the limit-state ca-
pacities of SDOF systems having a complex quad-
rilinear backbone with uncertain properties and 
varying period. The resulting capacity dispersion 
due to uncertainty is generally increasing with duc-
tility, thus becoming much larger for higher limit-
states. The only exception are ductilities at the early 
part of the backbone residual plateau where, despite 
the uncertainty, the system response becomes stable 
enough to warrant a generous reduction in the result-
ing uncertainty. The most influential parameters are 
the end-of-hardening ductility and the ultimate duc-
tility. In general, the results are only mildly depend-
ent on the mean oscillator period, except perhaps in 
the shorter periods where, surprisingly, the effect of 
the most parameters is reduced. In all cases though, 
for relatively moderate coefficients of variation in 
the parameters, the dispersion in the capacities due 
to uncertainty remains lower than the respective 
variability due to the ground motion. 

Finally, it is shown that despite the interaction be-
tween the oscillator parameters, at least when they 
are independently distributed the uncertainties in ca-
pacity due to each individual parameter can be com-
bined via an SRSS rule to accurately estimate the to-
tal. Thus, by simply including the uncertainty in the 
end-of-hardening ductility, the ultimate ductility and 
perhaps the period we can get a good estimate of the 
final result for any limit-state. All in all, the pro-
posed tool is an excellent resource for accurate esti-
mation of the seismic performance of structures hav-
ing uncertain properties, for the first time providing 
specific results for each limit-state that can be used 
in the place of the generic code-prescribed values.  
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Figure 14. Dispersion βU due to uncertainty in all six parame-
ters versus βR and the combined dispersion βRU for oscillator 
period T = 0.5s. 
 
 

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ductility, µ = δ / δ yield

di
sp

er
si

on
 o

f R
 =

 S
a / 

S
ayi

el
d

β
RU

β
R

β
U

 
Figure 15. Dispersion βU due to uncertainty in all six parame-
ters versus βR and the combined dispersion βRU for oscillator 
period T = 1.5s. 
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Figure 16. Dispersion βU due to uncertainty in all six parame-
ters versus βR and the combined dispersion βRU for oscillator 
period T = 2s. 
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