Performance-Based Seismic Design in Real Life: The Good, the Bad and the Ugly

D. Vamvatsikos
National Technical University of Athens, Greece

S. Leone, E. Morricone
Cinecittà, Rome, Italy

ANIDIS 2017
OPENING SCENE
REMINISCING UPON DEFINITIONS
Problem statement

Izmit refinery (Kocaeli 1999)
Japan (Tohoku 1999)

How to design critical facilities for the desired seismic performance?
What is a performance objective?

A triplet of values

\[\lambda_{x\%} \ (D > C) \ < \lambda_o \]

1: Capacity: An EDP threshold to define LS

2: maximum allowable MAF of exceeding C

3: confidence level of meeting objective vis-à-vis epistemic uncertainty
• direct monetary losses exceeding $C = 500,000\text{€}$ with a maximum MAF of $\lambda_O = 0.0021$, or 10% in 50yrs, at a confidence of $x = 75\%$;

• downtime exceeding $C = 1$ week with $\lambda_O = 10\%$ in 10yrs, at $x = 60\%$;

• no more than $C = 20\%$ of the columns enter Damage State 3 with $\lambda_O = 5\%$ in 50yrs, at $x = 90\%$;

• maximum interstory drift less than 2% with $\lambda_O = 10\%$ in 50yrs, at $x = 75\%$.
THE BAD:
NO PROBABILITY MEANS NO PERFORMANCE
BAD: Design code approach (EN1998)

Strength Check: $S_a(T_1)$

Stiffness Check: $0.4 - 0.5 \times S_a(T_1)$

Select: $T_1, 10\%/50\text{yr} \ S_a(T_1)$

Member sizing

Final Design (?)
Issue 1: Design spectrum ≠ Seismic hazard

Seismic hazard surface, hazard curve & UHS
Issue 2: Where is the variability?

Unfortunately, each record has its own IDA curve
Variability cannot be ignored

- Frequent lower intensity earthquakes also do damage
- MAF of damage > MAF of $S_a(T_1)$!
Uncertainty should not be ignored

- Plastic rotation capacity of beam-column connections (Lignos & Krawinkler)
- Potential realizations of dynamic response IDA curves for 9-story steel frame
Result: Inconsistent / Unknown Safety

Performance (MAF)

Target

Period, T_1

Actual

Unsafe

Uneconomical

Behavior factor, overstrength, nominal material properties add conservativeness
BAD: Displacement-based design

• Is Stefano Pampanin in the audience?

• Confusion dates back to SEAOC Vision 2000 … and even Priestley (2000) “Performance based seismic design”

• Saying that your objectives are expressed in terms of displacement is not the same as PBSDD

• Displacement-based design is not that bad, it is simply not PBSDD

• That does not mean it cannot be upgraded….
Another BAD candidate: Risk targeted spectra

Workshop on Update of Pacific Northwest Portion of U.S. National Seismic Hazard Maps

"Potential Design Mapping Updates," N. Luco, USGS

March 22, 2012
RT spectra ≠ performance

- They do account for hazard and risk… … but for all structures at the same time
- They are site-specific but building-ignorant
- I like RT spectra, just not on their own and not for performance-based design
- We will take another look at them later on…
THE UGLY:
WIN SOMETHING – LOSE SOMETHING
Performance-Based Design = Iterations

- Set performance targets
- Determine preliminary design (not always easy)
- Assess performance
- Iterate to convergence
 - Redesign and reassess in each cycle!
- Expensive!
UGLY: Iterate without guidance

- Trial and error? (trust user “expertise”)
- Genetic-style optimizer (shotgun approach)
- Iterate first on pushover then on dynamics? (Dolsek and coworkers)

Sinkovic et al. 2016
UGLY: Risk-based q-factor & RT-spectra guidance

Step 5

- \(\lambda(\text{LS}) < 10\% / 50 \text{ years} \) → q-factor ✓
- \(\lambda(\text{GC}) < 1\% - 2\% / 50 \text{ years} \) → q-factor ✓

otherwise → q-factor ✗ → Iterations

Step 6

- \(\lambda(\text{LS}) < 10\% / 50 \text{ years} \) → q-factor ✓
- \(\lambda(\text{GC}) < 1\% - 2\% / 50 \text{ years} \) → q-factor ✓

acceptable but maybe non-optimal
• Iterations are done by academics, not engineers
• The more fine-grained the q-factor is, the better
• Unfortunately, can only work for hard-wired objectives
• In the end, some proper nonlinear assessment would help
THE GOOD:
ALWAYS DELIVERS
How to pick a “design invariant” proxy (T_1?)

- Easy with experience (usual design case)
- Difficult with novel structures or new requirements
 - Example for ELASTIC 1DOF oscillator:
 - Iterate:
 1. Select initial T
 2. Find $S_a(T)$ from UHS at x% in 50yrs
 3. Calculate new period $T = 2\pi \sqrt{\delta_{\text{lim}} / S_a}$
Potential proxies

• Equivalent **linear** MDOF? (Franchin et al.)
 – Not trivial. Works best with automated software

• Equivalent **nonlinear** SDOF
 – Assume constant T_1 per cycle (force basis)
 – Assume constant d_y per cycle (yield disp. basis)

• Is Stefano Pampanin in the audience?
• Forget period, let’s do yield displacement!
• “Constant” given system mass, general dimensions & material
• Largely independent of strength (Moehle, Priestley et al, Aschheim)
• Some systems (rocking walls?) may work better with constant T_1
Use equivalent nonlinear SDOF with variability

SPO2IDA: Moderate periods
Valid for firm soil, 5% damping and moderate periods

<table>
<thead>
<tr>
<th>Segment</th>
<th>SA/SAyield</th>
<th>μ @ end</th>
<th>% in SA terms</th>
<th>μ</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic</td>
<td>0.00</td>
<td>0.00</td>
<td>16%</td>
<td>12.00</td>
<td>Hardening μ 4</td>
</tr>
<tr>
<td>Hardening</td>
<td>1.00</td>
<td>1.00</td>
<td>50%</td>
<td>12.00</td>
<td>Hardening slope 20%</td>
</tr>
<tr>
<td>Softening</td>
<td>0.70</td>
<td>7.60</td>
<td>84%</td>
<td>12.00</td>
<td>Softening slope -25%</td>
</tr>
<tr>
<td>Res. Plateau</td>
<td>0.70</td>
<td>12.00</td>
<td></td>
<td>11.39</td>
<td>Residual plateau 70%</td>
</tr>
<tr>
<td>Collapse</td>
<td>0</td>
<td>12.00</td>
<td></td>
<td>7.29</td>
<td>Fracturing μ 12.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISO</th>
<th>Ad</th>
<th>Csr</th>
<th>Cdr</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static PO</td>
<td>IDA-50%</td>
<td>capacity</td>
<td>IDA-16%</td>
<td>IDA-84%</td>
</tr>
</tbody>
</table>

Graph showing the relationship between ductility (μ) and R = SA/SAyield.
“Invert” Performance Integral

TARGET

MAF_{L_S} = \int \text{hazard curve} \times \text{IDA curves}

Depends on

- Structural parameters: Backbone shape, Base shear coefficient, dy
- Limit state definition: MAF and ductility
- Map entire parameter space to solve
Given
- site
- backbone shape
- δ_y

Get
- Base shear
- Period
How to compute?

• Numerically
 – As S_{di} hazard curves (Inoue & Cornell, Jalayer & Cornell, Ruiz-Garcia & Miranda etc)
 – Dynamic analysis or R-μ-T with dispersion (e.g. SPO2IDA)

• Analytically
 – Invert Cornell & Jalayer or DV’s closed-form solutions

\[
C_y = \frac{1}{g \mu_{lim}^{1/b}} \cdot \exp \left[\frac{1}{2k_2} \left(-k_1 + \sqrt{\frac{k_1^2}{\phi'} - \frac{4k_2}{\phi'} \ln \frac{P_o}{k_0 \sqrt{\phi'}}} \right) \right]
\]
Introduce uncertainty

• Assume it adds to the total variability
 – Not perfect: Bias is also possible
 – ….. but tough to quantify

• Use “required confidence” to guard against uncertainty
 – Say 90-95% against brittle failure mechanisms
 – Only 60-75% for ductile, low-consequence failures

• Tune design to user and problem requirements
A code-compatible approach

- Invert Cornell & Jalayer equations
 - Adopt power-law fit for hazard, IM vs EDP response
 - Derive solutions given the design spectral shape

- Constant accel:
 \[
 C_y = \frac{S_{amax}}{g \mu_{lim}^{1/b}} \cdot \exp \left[\frac{k_1}{2b^2} \beta_{T\theta}^2 \right]
 \]

- Constant vel:
 \[
 C_y = \left(\frac{S_{amax} \cdot T_c}{2\pi} \right)^2 \frac{1}{\delta_y g \mu_{lim}^2} \exp[k_1 \beta_{T\theta}^2]
 \]

- Constant disp: "Any" result is ok!
THE FINAL DUEL:
THE GOOD DOES NOT ALWAYS WIN IN REAL LIFE
Can we let the BAD win?

• Bad methods are currently dominating
 – Will continue to do so for run-of-the-mill design
 – …not everybody needs accurate performance

• Good methods are lovely and will probably get better
 – Still, this does not mean engineers or codes will adopt them

• Ugly concepts may have a better chance
 – Create automated optimization (and modeling) software?
 – “Hack” the code with RT-spectra and risk-based q-factors
What is my opinion as a cinephil?

Academics love perfection, but in real life we need to be practical. Sometimes “better” is the enemy of “good enough”

So Ugly it is going to be for quite a while

For sure though, please do not let the Bad guy win
The eternal genius and running commentary of Prof. Ulysses R. Garbaggio

Instigators: Alex Taflanidis, Ioannis Kougioumtzoglou, Anastasios Sextos, Paolo Franchin, Terje Haukaas and Ting Lin

Collaborators in crime: Mark Aschheim, Paolo Bazzurro, Michalis Fragiadakis

Drs and soon-to-be Drs: Athanasia Kazantzi, Mohsen Kohrangi, Konstantinos Bakalis and Andrea Spillatura

ANIDIS 2017 for the invitation