

National Technical University of Athens School of Civil Engineering

Performance-Based Seismic Design in Real Life: The Good, the Bad and the Ugly

D. Vamvatsikos

National Technical University of Athens, Greece

S. Leone, E. Morricone Cinecittà, Rome, Italy

ANIDIS 2017

OPENING SCENE REMINISCING UPON DEFINITIONS

Problem statement

Izmit refinery (Kocaeli 1999)

Japan (Tohoku 1999)

How to design critical facilities for the desired seismic performance?

What is a performance objective?

A triplet of values

1: Capacity: An EDP threshold to define LS 2: maximum allowable MAF of exceeding C $\lambda_{x\%}(D > C) < \lambda_{O}$ 3: confidence level of meeting objective vis-àvis epistemic uncertainty

Examples

- direct monetary losses exceeding C = 500,000€ with a maximum MAF of λ₀ = 0.0021, or 10% in 50yrs, at a confidence of x = 75%;
- downtime exceeding C = 1 week with $\lambda_0 = 10\%$ in 10yrs, at x = 60%;
- no more than C = 20% of the columns enter Damage State 3 with $\lambda_0 = 5\%$ in 50yrs, at x = 90%;
- maximum interstory drift less than 2% with $\lambda_0 = 10\%$ in 50yrs, at x = 75%.

THE BAD: NO PROBABILITY MEANS NO PERFORMANCE

BAD: Design code approach (EN1998)

Issue 1: Design spectrum ≠ Seismic hazard

Seismic hazard surface, hazard curve & UHS

Issue 2: Where is the variability?

Unfortunately, each record has its own IDA curve

Variability cannot be ignored

- Frequent lower intensity earthquakes also do damage
- MAF of damage > MAF of $S_a(T_1)$!

Uncertainty should not be ignored

 Plastic rotation capacity of beam-column connections (Lignos & Krawinkler) Potential realizations of dynamic response IDA curves for 9-story steel frame

Result: Inconsistent / Unknown Safety

Behavior factor, overstrength, nominal material properties add conservativeness

BAD: Displacement-based design

- Is Stefano Pampanin in the audience?
- Confusion dates back to SEAOC Vision 2000
 ... and even Priestley (2000) "Performance based seismic design"
- Saying that your objectives are expressed in terms of displacement is not the same as PBSD
- Displacement-based design is not that bad, it is simply not PBSD
- That does not mean it cannot be upgraded....

Another BAD candidate: Risk targeted spectra

Workshop on Update of Pacific Northwest Portion of U.S. National Seismic Hazard Maps

"Potential Design Mapping Updates," N. Luco, USGS

March 22, 2012

RT spectra ≠ performance

- They do account for hazard and risk... ... but for all structures at the same time
- They are site-specific but building-ignorant
- I like RT spectra, just not on their own and not for performance-based design
- We will take another look at them later on...

THE UGLY: WIN SOMETHING - LOSE SOMETHING

Performance-Based Design = Iterations

- Set performance targets
- Determine preliminary design (not always easy)
- Assess performance
- Iterate to convergence
 - Redesign and reassess in each cycle!
- Expensive!

UGLY: Iterate without guidance

- Trial and error? (trust user "expertise")
- Genetic-style optimizer (shotgun approach)
- Iterate first on pushover then on dynamics? (Dolsek and coworkers)

Sinkovic et al. 2016

UGLY: Risk-based q-factor & RT-spectra guidance

Rough but workable

- Iterations are done by academics, not engineers
- The more fine-grained the q-factor is, the better
- Unfortunately, can only work for hard-wired objectives
- In the end, some proper nonlinear assessment would help

THE GOOD: ALWAYS DELIVERS

How to pick a "design invariant" proxy $(T_1?)$

- Easy with experience (usual design case)
- Difficult with novel structures or new requirements
 - Example for ELASTIC 1DOF oscillator:
 - Iterate:
 - 1. Select initial T
 - → 2. Find $S_a(T)$ from UHS at x% in 50yrs
 - 3. Calculate new period $T = 2\pi \sqrt{\delta_{\text{lim}} / S_a}$

Potential proxies

- Equivalent linear MDOF? (Franchin et al.)
 - Not trivial. Works best with automated software
- Equivalent nonlinear SDOF
 - Assume constant T_1 per cycle (force basis)
 - Assume constant d_y per cycle (yield disp. basis)
- Is Stefano Pampanin in the audience?

Yield Displacement Basis

- Forget period, let's do yield displacement!
- "Constant" given system mass, general dimensions & material
- Largely independent of strength (Moehle, Priestley et al, Aschheim)
- Some systems (rocking walls?) may work better with constant T₁

Use equivalent nonlinear SDOF with variability

1 8

"Invert" Performance Integral

- Structural parameters: Backbone shape, Base shear coefficient, dy
- Limit state definition: MAF and ductility
- Map entire parameter space to solve

All together: Yield Frequency Spectra

How to compute?

- Numerically
 - As S_{di} hazard curves (Inoue & Cornell, Jalayer & Cornell, Ruiz-Garcia & Miranda etc)
 - Dynamic analysis or R-µ-T with dispersion (e.g. SPO2IDA)
- Analytically
 - Invert Cornell & Jalayer or DV's closed-form solutions

$$C_{y} = \frac{1}{g\mu_{lim}^{1/b}} \cdot \exp\left[\frac{1}{2k_{2}}\left(-k_{1} + \sqrt{\frac{k_{1}^{2}}{\phi'} - \frac{4k_{2}}{\phi'}}\ln\frac{P_{o}}{k_{0}\sqrt{\phi'}}\right)\right]$$

Introduce uncertainty

- Assume it adds to the total variability
 - Not perfect: Bias is also possible
 - but tough to quantify
- Use "required confidence" to guard against uncertainty
 - Say 90-95% against brittle failure mechanisms
 - Only 60-75% for ductile, low-consequence failures
- Tune design to user and problem requirements

A code-compatible approach

- Invert Cornell & Jalayer equations
 - Adopt power-law fit for hazard, IM vs EDP response
 - Derive solutions given the design spectral shape

• Constant accel:
$$C_y = \frac{S_{amax}}{g\mu_{lim}^{1/b}} \cdot \exp\left[\frac{k_1}{2b^2}\beta_{T\theta}^2\right]$$

• Constant vel: $C_y = \left(S_{amax}\cdot\frac{T_c}{2\pi}\right)^2 \frac{1}{\delta_y g\mu_{lim}^2} \exp\left[k_1\beta_{T\theta}^2\right]$

• Constant disp: "Any" result is ok!

THE FINAL DUEL: THE GOOD DOES NOT ALWAYS WIN IN REAL LIFE

Can we let the BAD win?

- Bad methods are currently dominating
 - Will continue to do so for run-of-the-mill design
 - ...not everybody needs accurate performance
- Good methods are lovely and will probably get better
 - Still, this does not mean engineers or codes will adopt them
- Ugly concepts may have a better chance
 - Create automated optimization (and modeling) software?
 - "Hack" the code with RT-spectra and risk-based q-factors

Academics love perfection, but in real life we need to be practical. Sometimes "better" is the enemy of "good enough"

So Ugly it is going to be for quite a while

For sure though, please do not let the Bad guy win

The eternal genius and running commentary of Prof. Ulysses R. Garbaggio

Instigators: Alex Taflanidis, Ioannis Kougioumtzoglou, Anastasios Sextos, Paolo Franchin, Terje Haukaas and Ting Lin

Collaborators in crime: Mark Aschheim, Paolo Bazzurro, Michalis Fragiadakis

Drs and soon-to-be Drs: Athanasia Kazantzi, Mohsen Kohrangi, Konstantinos Bakalis and Andrea Spillatura

ANIDIS 2017 for the invitation