

National Technical University of Athens

School of Civil Engineering

Funky Structure Behavior Factors

Dimitrios Vamvatsikos

Institute of Steel Structures, NTUA

Eurocode 8 is now a teenager....

- It was conceived circa 1990
- It came to the world in 2005
- It is now 14 years old
- and we should finally get to have this awkward conversation that every responsible parent should have with his/her child at this age....

What are we going to do with q?

- Elastic design spectrum to inelastic via q
- Reduces elastic forces by taking into account the effect of *system* ductility and overstrength
- Standardized, period-free values for each system type
- It condenses everything we need to know on nonlinearity & safety into a single scalar
- For example, we design at 475yrs for severe damage and expect to satisfy collapse requirements at 2475 or 5000 yrs intensities!

Wave your wand, shout "q-factorum" and make Harry Potter jealous!

Before quantifying, we need defining

- Let's try figuring out what should be contained in this hidden tail before trying to estimate it.
- Then we can quantify and present it to professionals as a perfect value to use, **hiding** the rest under the surface

Examples

- direct monetary losses exceeding C = 500,000€ with a maximum MAF of λ₀ = 0.0021, or 10% in 50yrs, at a confidence of x = 75%;
- downtime exceeding C = 1 week with λ_0 = 10% in 10yrs, at x = 60%;
- no more than C = 20% of the columns enter Damage State 3 with λ₀ = 5% in 50yrs, at x = 90%;
- maximum interstory drift less than 2% with $\lambda_0 = 10\%$ in 50yrs, at x = 75%.

Now we can mathematically define q

- Estimating q is an optimization problem in probability space:
 - Find the maximum q that when used to design a set of archetype structures at given sites, they will satisfy all performance objectives

Code approaches: EU versus USA

Eurocode 8

ASCE-7

- Modest q factors (2.5 6.5)
- Overstrength based on *first yield*
- No formal approach for introducing new systems

- Larger R factors (3 8)
- Overstrength based on design base shear
- New systems via FEMAP695
- Adopt it for Eurocode use?

1 - Static or dynamic analysis?

Static

- Just a single static pushover!
- Equal displacement rule employed for ductility: $q_{\mu} = \mu$ (really?)
- Direct estimation of overstrength: $\Omega = V_{max}/V_{design} \dot{\eta} a_u/a_1$
- Multiply: $q = q_{\mu} \cdot \Omega$

Dynamic

- Many nonlinear dynamic analyses needed
- A new daemon appears: Uncertainty
- Overstrength cannot be estimated easily

2 - Direct or indirect assessment?

- Direct approach = Straightforward evaluation
 - 1. Select a trial q-factor.
 - 2. Design a set of archetypes
 - 3. Estimate an updated value of q

Can only be achieved via the static approach. Careful if initial and final q-values differ considerably

- Indirect approach = Requires iteration
 - 1. Select a trial q-factor.
 - 2. Design a set of archetypes
 - 3. Check performance objectives. If inadmissible, return to 1.

3 - Which intensity measure?

Classic: S_a(T₁)

- Neglects higher/elongated modes
- Moderate dispersion
- The only choice available in the static approach
- Requires large scale factors to achieve collapse, potentially needing correction for bias.

Incorporates multiple periods

$$AvgS_a(T_1, \dots, T_n) = \left(\prod_{i=1}^n S_a(T_i)\right)^{1/n}$$

- Low dispersion
- Low scaling factors for collapse
- No/little need for bias correction

4 - How many and which performance objectives?

- FEMA P695 uses CP but (a) modern structures do not collapse (b) it is tough to capture it.
- LS is easier to model and check for.
- Why not use both?

5 - Intensity or risk based?

- Intensity-based: The approach of FEMA P695
 - Sa_{LimitState,x%} > Sa@MAF_{target}: Check the x% IM capacity against a desired intensity level for compliance.
 - In principle, incompatible with uniform hazard spectra
 - Risk-check enforced indirectly via **risk-targeted spectra**.
- Risk-based:
 - MAF_{LimitState} < MAF_{target}: Check MAF of limit-state exceedance for compliance.
 - Compatible with existing **uniform hazard spectra**
 - Risk-check enforced directly without risk-targeted spectra.

How do we answer for EN1998?

- Static or Dynamic?
 - > Dynamic. Static only for initial q determination.
- Direct or Indirect?
 - Indirect. Direct only for initial q determination.
- Which IM?
 - AvgSa, hands down.
- Which performance objective(s)?
 - Use both Life Safety and Collapse Prevention.
- Risk or Intensity basis?
 - Risk always wins

Example: 6-story X-braced CBF

- One braced bay per side
- Story height 3.5 m, bay length 9m.
- T1 = 1.14sec

Design and member sizing

Longitudinal Elevation

	HE360A		HE360A		HE360A	HE360A	HE360A	HE360A	
HE360A	HE360A	HE360A	HE360A	HE360A	HE360A H	HE 450 X 120 X 10 X 10 X 10 X 10 X 10 X 10 X	609 НЕ360А Н	HE360A	HE360A
HE360A	HE360A	HE360A	HE360A	HE360A	HE360A H	54614078 015 7005780 HE450A	HE360A H	HE360A	HE360A
HE360B	HE360A	HE360B	HE360A	HE360B	800 HE360A 프	HESOOR	HE360A H	HE360A	HE360B
HE360B	HE360A	HE360B	HE360A	HE360B	нез60А Н	51540744 HE450B	HE360A H	HE360A	HE360B
HE400B	HE360A	HE400B	HE360A	HE400B	HE360A H	HESSON, HESSON	HE360A H	HE360A	HE400B
HE400B	×	HE400B	<u>\</u>	HE400B	HESSOM	SHS189718 SHS130758	HE400B	Ň	HE400B

Braced frame model

2D OpenSees model

- Add a geometric imperfection to allow compression buckling
- Fully represent gusset plate offset and connection properties

Assessment via the static approach

- Yield drift: $\theta_v = 0.0033$
- Ultimate drift: $\theta_u = 0.0160$
- Ultimate ductility: μ_T = 0.0160/0.0033 = **4.83**
- Max base shear:
 V_{base} = 3847kN
- Design base shear:
 V_{design} = 2736.60 kN
- Overstrength:
 Ω = 3847/2736.60 = 1.41

• Estimated $q = \mu_T \cdot \Omega = 6.79$

Nonlinear dynamic analysis (1)

 $IM = Sa(T_1)$

- 44 records
- IDA here, but cloud or MSA work perfectly well
- Median Sa @ collapse: 0.93g

Nonlinear dynamic analysis (2)

IM = AvgSa

- 44 records
- IDA here, but cloud or MSA work perfectly well
- Median Sa @ collapse: 1.06g
- Typically lower dispersions

Comparison of Results

- Sa(T1) results
 - q ≈ 5.4 5.7 (after bias correction)
 - Estimated 97% confidence against collapse @ 1% in 50yrs
 - Design at q = 4 is deemed safe (but conservative)

- AvgSa results:
 - $q \approx 4.0 4.3$ (no bias correction needed)
 - Estimated 93% confidence against collapse @ 1% in 50yrs
 - We found less conservatism (but AvgSa results are more reliable!)

Uncomfortable Conclusions

- q-factor estimates differ
 - With building characteristics (e.g., period: tall buildings \rightarrow lower q)
 - With approach adopted:

Nonlinear static = 6.8 Nonlinear dynamic with Sa(T1) = 5.5 Nonlinear dynamic with AvgSa = 4.2

- We will prefer the latter approach
 - No need for risk-targeted spectra
 - No need for bias correction of q if IM=AvgSA
 -but at the cost of a heavier analysis burden

Our thanks go to

- INNOSEIS RFCS project partners
 - http://innoseis.ntua.gr/
- Friends, collaborators, postdocs και PhD students
 - The wonderful Profs: M. Aschheim, E. Hernández-Montes, D. Lignos
 - The overworked Drs: K. Bakalis, V. Melissianos
 - The even more overworked soon-to-be-Drs: D. Tsarpalis, A. Chatzidaki
 - The imitable queen of relaxation: Daphne
- Das Organisationskomitee for inviting me to Innsbruck