

A Dürüm Döner View of Seismic Risk Assessment

Culinary adventures under high hazards

Dimitrios Vamvatsikos National Technical University of Athens

9th Turkish Conference on Earthquake Engineering, 3 June 2021

____ GALATA NERGIS BALIK _____ YILDIZLAR RESTAURANT

Photo by <u>Stefan Kostoski</u> on <u>Unsplash</u>

TAURANT

Dramatis Personae #1

Dürüm Döner: Super tasty Highly Addictive!

Hazardous event

> Dürüm Döner Vendors:

Masters of DD Excellent quality Highly variable DDs

Hazard source

9th Turkish Conference on Earthquake Engineering

Dramatis Personae #2

Researcher of risk DD afficionado Cuddly round figure Considering sabbatical year in Turkey

Exposure Asset-at-risk

≻Mrs. V:

Wife of Dr. V Tough girl! Wants Dr. V healthy & handsome

Stakeholder Decision maker

> PhD student:

Works with Dr. V. ...but reports to Mrs. V Must quantify risk without bias!

Risk Analyst

The Site

9th Turkish Conference on Earthquake Engineering

The Mission

- 365 days of sabbatical
- 365 days of hazard
- 1 DD per day on average
 - Mean Daily Rate = 1 DD / day
 - Mean Annual Rate = 365 DD / yr
- Some days one, others two or none...
- DD events are independent
- Memoryless!
- Poisson process

- Dr. V must maintain excellent figure!
- Constrain calories from DDs
- Mean Daily Rate \leq 1000 Kcal/day
- This is the performance objective
- If PhD overestimates, sabbatical is canceled \rightarrow Dr. V angry
- If PhD underestimates, Dr. V ruins figure \rightarrow Mrs. V angry
- Student never graduates...

It is all about assessing the probability of a complex event from its constituents:

1st tool: Use of simple logic operators (AND / OR / XOR) e.g. a case of a chain

$$\mathsf{F} \longleftarrow \mathsf{F} \longrightarrow \mathsf{F}$$

P(chain fails) = P(any link fails) = P (link 1 fails OR link 2 fails, OR) = ...

Equivalent to a **statically determinate** problem: EASY 🧡

... but can only tackle easy problems!

2nd tool: Total Probability Theorem:

=> Finite element method for statically indeterminate problems V V

Risk Assessment Basis #2: Total probability theorem x1 or x2?

If E_i is a **Mutually Exclusive Collectively Exhaustive** partitioning of a sample space then, the probability of any event A in this space is estimated as:

We can go one level down:

Or go directly to the smaller events

$$P(event A) = \sum_{i} P(A | E_i) \cdot P(E_i)$$

$$P(event A) = \sum_{i} P(A | E_{i}) \cdot \left[\sum_{j} P(E_{i} | E_{ij}) \cdot P(E_{ij}) \right]$$

$$P(E_{ij})$$

Conditional

$$P(event A) = \sum_{i,j} P(A \mid E_{ij}) \cdot P(E_{ij})$$

Non-Conditional

Employ **Conditional** or **Non-Conditional** approach?

Follow what nature does:

Every day 1 Dürüm Döner Over 100 days sample 1 DD from each shop Run a lab experiment to determine kcals Estimate probability of individual events:

$$i = 1...3(shop)$$

 $j = 1...100(day)$ $\rightarrow P(E_{ij}) = \frac{1}{300}$

 \rightarrow **Productivity** of 1 event/day

$$\rightarrow$$
 Total = 300 samples

We need $P(A | E_{ij})$ \longrightarrow Create histogram of kcals in each of 300 samples

Conceptually easy, practically horrible:

- Dr V. has to wait 100 days!
- These lab tests are quite pricey: \$ 1000 each! (minimum) 300 x \$1000 = \$300,000 ☺

Most important choice: How to condition/split the DD assessment

Need **interface variable** to represent the DD in terms of kcals

- 1. Employ coordinates x/y/z to cut DD
 - 3-element vector
 - Useless: 200 small pieces of DD with mixed ingredients
- 2. Partition ingredients (5-element vector): meat/bread/onion/tomato/mayo
 - 5-element vector
 - Use tables of Kcal/gr for each ingredient
 - Useful! But is it practical?
 - I need to weigh each ingredient before wrapping...
 - DD vendor will probably throw me out after the 3rd try...

Scalar Interface Variables #1

Let's look now for some scalar options

- 1. Diameter of the DD:
 - Easy to measure
 - Low information
 - Very vendor dependent.
 site
- 2. Length of the DD: Same pros/cons as height
- 3. Weight:
 - Easy to measure, directly relates to Kcals
 - Cannot distinguish doner vs tomato weight.
 - Mildly vendor-dependent

Final approach:Get 4 representative DDs per vendorAssess weight of individual ingredientsConvert into Kcals (e.g. via lab experiment)Sit 2 days observing weight of DDs produced per vendor

3x2 vs 100 days 3x4 vs 300 tests Three important qualities of a good interface variable

1) "<u>NO</u>" BIAS: i.e. <u>low</u> IV should not introduce bias when assessing DDs that are different from those I happened to observe (only 12!)

2 "<u>NO</u>" VARIABILITY: No variability is impractical, you end up with the non-conditional i.e. low approach. Settle for as low a variability as possible.

Say we have(i) DD of height 7cm:[700, 1200] Kcals (high variability)(ii) DD of weight 300gr:[900, 1100] Kcals (low varability)

3) **PRACTICABILITY:** Complex IV = difficult to estimate it no compromise! Think 5 ingredient weights vs 1 total weight. But simpler IVs tend to increase bias and variability. There is no perfect IV (perfect IV = Non-Conditional approach)

How to remove bias of imperfect, practical IVs?

Employ "DD Selection" Given that to satisfy ③ I have to compromise on ① and ② I should be sampling DDs in a way similar to how Dr. V is eating them!

Vendor 1 is putting **more meat** and Vendor 2 **more tomato** than Vendor 3 Dr. V is eating **twice as often** from Vendor 2 than 1 or 3 Sample 4 DDs from each $(3x4=12) \rightarrow biased$ weight-to-Kcal relationship!

Must sample:

3 DDs from Vendor 16 DDs from Vendor 23 DDs from Vendor 3

12 samples unbiased! DD calorie risk assessment perfectly translates to Seismic Risk Assessment!

Dürüm Döner

Earthquakes

- Dr. V
- Kcals
- DDs
- Weight
- DD selection -
- DD vendor
- DD Lab test

- building, dam, bridge, portfolio etc.
- damage, loss
- seismic event, ground motion \longrightarrow cannot control it!
- intensity measure
- ground motion selection
- faults
 - nonlinear timehistory analysis

End Game

- Going Conditional is complex but the only practicable approach today
- This can never be the final word in risk assessment
 - Computers grow more **powerful**
 - GM catalogues become more **populated**
 - Physics-based ground motion simulation will be **easier** (see wind risk!)
- Then, something **closer** to Non-Conditional may make sense
- Just do not forget:

If something applies to the dürüm döner, it probably also applies to earthquakes

• Make your choices wisely!

Acknowledgements

- Dr. P. Bazzurro, who first asked me to teach risk assessment back in 2014
- The Organizing Committee
- PANOPTIS & HYPERION project partners
 - <u>www.panoptis.eu</u> <u>www.hyperion-project.eu</u>
- Friends, collaborators, postdocs ка PhD students of the

- The Giants with broad shoulders: C.A. Cornell, H. Krawinkler
- The overworked Drs: K. Bakalis, V. Melissianos, A.K. Kazantzi, Z. Fasoulakis
- The even more overworked soon-to-be-Drs: A.Chatzidaki, C.Lachanas, D.Tsarpalis, D.Bilionis
- The one who cares for all: E. Vourlakou
- My loving & humorous wife: Danai
- The inspiration offered by BLTs, panini, gyropites, tacos, and dürüm döner

