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Abstract. Throughout recorded history, accelerograms have displayed an unfor-

tunate tendency to become unrecorded and lost. Statistically speaking, even after 

the advent of low-cost accelerometers, the ground motion retains an almost 100% 

chance of staying unobserved at any given point. One may only place some limits 

on the peak amplitude of ground motion by observing its effects, or lack thereof. 

To do so, seismologists run to the mountains, looking for fragile geological fea-

tures, such as precariously balanced rocks. Structural engineers take a slightly 

more cinematic and sinister approach. They put on their fedora hats (or tank top 

and shorts, for video game enthusiasts) and go tomb raiding, searching for rock-

ing rigid bodies that may have survived or toppled in graveyards, tombs, mauso-

leums, churches, and temples. Yet how is one to best make sense of such low-

entropy (and sometimes contradictory) uncertain information? Let’s have some 

fun by blowing an old problem to smithereens, perhaps needlessly bringing to 

bear all the tools of contemporary earthquake engineering, ranging from ground 

motion prediction models and correlation structures to rocking body fragilities 

and Bayesian analysis. 
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1 Introduction 

Perhaps starting from the discovery of pottery and that very first red face looking at a 

toppled vase somewhere in a prehistoric settlement, there has been considerable interest 

on understanding how rigid bodies rock and overturn. The fact that pots, rocks, boulders 

and tombstones overturn due to earthquakes, has lent even greater importance to their 

use as evidence for the intensity of ground motion. Field reports of earthquake damage 

have long recorded the toppling of tombstones and other graveyard objects, dating at 

least from 1926 [1], using such observations to approximate seismic intensities, most 

prominently in Japan [2-5].    

Seismology routinely employs fragile geologic structures, and especially precari-

ously balanced rocks, to place limits on the seismic intensity that has or has not been 

exceeded at a given site [6-9]. This has been of particular importance for planned or 

existing nuclear waste repositories and powerplant sites, where the capability of dating 
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such rock formations is probably the only way to validate the results of seismic hazard 

analysis with return periods in the thousands of years. Since the earliest studies circa 

1992 recognizing the usefulness of such rock formations [6], seismologists have refined 

their approaches considerably [10-12], nowadays employing state-of-art probabilistic 

concepts to fine-tune their seismic hazard predictions [13,14].  

On the other hand, despite being early in the game of rigid body rocking [15-17] and 

having recognized the importance of incorporating uncertainty, structural engineers 

have lagged a bit behind when it comes to applying refined probabilistic concepts to 

the same problem. To date, most investigations of historically observed earthquake-

induced overturning remain focused on the modeling side [18-22], which should not 

surprise us given how important it is for achieving some measure of accuracy. Still, 

whenever some sensitivity analysis is performed, this invariably results in reaching the 

limits of deterministic approaches (applied with or without a thin veneer of probability). 

In turn, this often leads to rather bleak assessments that trying to derive any meaning 

from overturning observations is probably useless [20]. Still, being structural engineers 

at heart, the authors could not resist poking a bit more at this age-old problem. It may 

very well be that the situation is hopeless. Still, why not bring all the modern guns of 

PBEE to bear, introducing standardized probabilistic models for rocking response [23], 

modern analytical tools [24], and novel fitted expressions for overturning fragilities 

[25] in the hope of understanding how far we can go, even with an idealized model? At 

the very least, even if nothing better comes to pass, we will learn the true limits of our 

predictive capabilities. With this rather sobering thought, let us aim at the problem and 

let fly. 

2 The single tombstone problem 

Let us first consider a single 2D rigid block, using the idealized model of Housner [15] 

to represent a tombstone. In this we assume no bouncing, or sliding, but only pure rock-

ing behavior. While the onset of rocking (uplift initiation) is a relatively easier and more 

secure issue to check, as it is theoretically fully predicted by the peak ground accelera-

tion, at the same time it may not be easy to detect, unless one observes some movement 

or fresh damage of the toe of the block in question (e.g., due to post-uplift impact at the 

base). Instead, let us go directly for the obvious case of overturning. As the IM we shall 

choose the peak ground velocity (PGV), which is a fairly efficient and sufficient choice 

[26]. Let O and S represent the overturned versus standing (i.e., non-overturned) con-

ditions of a tombstone. 

We are interested in estimating the probability P( |O)PGV x= , i.e., the probability 

that PGV lies in a small interval “around” x given that overturning has occurred. Note 

that we shall henceforth loosely use P( |O)PGV x=  to imply the mathematically more 

precise term of P( [ , d ] |O)PGV x x x + . We do this for reasons of convenience, as the 

resulting expressions are anyways meant to be evaluated by discretizing x in bins, as 

well as for reasons of promoting understanding of the subsequent derivations, which 

are easier to picture in terms of discrete probabilities rather than probability densities. 
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In all cases, it is easy to return to continuous functions and proper mathematical for-

malism by considering, for example, that 

 P( |O) ( |O) dPGVPGV x f x x=   (1) 

where ( )PGVf x is the probability density function of the PGV experienced at the site. 

At a first glance it would be easy to say that P( |O)PGV x=  is essentially the distri-

bution of the PGV that characterizes overturning of the block, or its overturning fragil-

ity function, readily available by Kazantzi et al. [25]. That is until one realizes that the 

fragility is actually P(O | )PGV x= , or the probability of overturning given the PGV of 

x. In other words, it is the inverted conditioned quantity. Equating the two is a common 

fallacy that should be avoided. Perhaps it is better to explain this via a counter-example. 

Say for example, that we have a very slender block whose overturning fragility has a 

median “collapse” PGV value of PGVC50 = 0.01m/s, with an associated dispersion 

(standard deviation of the logs) of β = 0.5. If we see this block overturn and then come 

out to say that the median PGV of the ground motion that occurred is 0.01 m/s, there is 

something seriously wrong. This is even clearer if we try to set an upper bound at the 

95% percentile, which comes to PGVC50× exp(1.645β) = 0.023m/s. Obviously, the 

higher percentiles of the block overturning capacity say nothing about the earthquake 

that occurred. The only thing that can reliably be said is that the PGV was larger than 

0.01 m/s, or if we want to be on the safe side of things, larger than 0.023m/s, without 

any capability of assigning an actual confidence or probability. To be able to say some-

thing more meaningful than this, requires more information. This becomes clearer if 

we apply the Bayes rule: 

 
P(O | ) P( )

P( | O)
P(O)

PGV x PGV x
PGV x

= =
= =  (2) 

Of the above expression, the only term that is presently quantifiable is 

P(O | )PGV x= , this being the overturning fragility, or if you will, the cumulative dis-

tribution function (CDF) of the overturning capacity PGVC [27]. P( )PGV x= and 

P(O) are meaningless without some information about the hazard. As it often happens 

whenever we hit an insurmountable wall trying to solve a problem, the reason is that 

we are lacking the proper frame of reference. In our case we clearly need to introduce 

information about the causal event and the graveyard site. Such information becomes 

readily available after every earthquake and there is no loss of utility in including it. At 

a minimum, this should include information about the event magnitude, M, source-to-

site distance, R, site class, fault type etc. In simple terms, one should include as much 

information as needed to employ a suitable ground motion prediction equation (GMPE) 

from the literature, or in general a probabilistic model of the form

P( | , , , )PGV x M R site fault= , which nearly universally conforms to a lognormal dis-

tribution of PGV given the event, source and site characteristics. For brevity, we will 

henceforth only refer to it as P( | )PGV x MR= , implying all other conditioning re-

quired by the GMPE at hand. Readers well-versed in probabilistic seismic hazard 
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assessment (PSHA, [28]) will immediately recognize the need for having alternative 

GMPEs at the very least. This is easily treatable by a logic tree, having one branch per 

GMPE, each with its own weight. In the end, the resulting probability P( |O)PGV x=  

is estimated as a weighted average of the individual branch probabilities, each one com-

ing from its own GMPE. We contend this extension to be trivial, therefore we shall not 

expand further on it. 

As we are in a post-earthquake environment, where a single event has occurred, all 

subsequent derivations need to be conditioned on it, so P( |O)PGV x=  is now properly 

written as P( |O, )PGV x MR= , where the comma is used to imply the logical AND. 

Thus, Equation (2) now is transformed to 

 
P(O | , ) P( | )

P( | O, )
P(O | )

PGV x MR PGV x MR
PGV x MR

MR

= =
= =  (3) 

Assuming that PGV is a sufficient intensity measure [29] to describe overturning, im-

plies that conditioning on PGV and other ground motion characteristics is the same as 

conditioning on PGV only. Lachanas et al. [26] have provided enough evidence in sup-

port, allowing us to state that 

 P(O | , ) P(O | )PGV x MR PGV x=  =  (4) 

As mentioned earlier, this is the block overturning fragility, evaluated at PGV = x. Of 

the remaining terms, P( | )PGV x MR= is clearly coming from the GMPE while

P(O | )MR is akin to a more typical risk integral: The probability of overturning given 

a certain event has occurred. This is easily treated by the total probability theorem, 

using PGV in its proper role as an interface variable between the structural and the 

seismological parts: 

 
0

P(O | ) P(O | , ) P( | ) d

x

x

MR PGV x MR PGV x MR x

=

=

  = =  =  (5) 

The first and second terms inside the integral are identical to the first and second terms 

in the numerator of Equation (3), i.e., they are evaluations of the overturning fragility 

and the GMPE. Thus, we may rewrite Equation (3) as: 

 

0

P(O | ) P( | )
P( | O, )

P(O | ) P( | ) d

x

x

PGV x PGV x MR
PGV x MR

PGV x PGV x MR x

=

=

=  =
= =

  =  =

 (6) 

For those familiar with Bayesian analysis, this is a fairly typical application whereby 

the prior distribution provided by the GMPE, P( | )PGV x MR= , is updated to include 

the information provided by the block overturning (O), resulting in the posterior distri-

bution of P( |O, )PGV x MR= . If we are interested in deriving the PDF of the PGV 

that occurred at the site, namely ( | O, )PGVf x MR , we may simply apply the 
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transformation of Equation (1) to all probabilities, other than those conditioned on 

PGV = x (as they are CDFs) to receive the respective PDFs. 

In an identical way, we may easily derive the probability distribution of PGV when 

the block has remained standing, as S and O are complementary events:  

 

0

[1 P(O | )] P( | )
P( |S, )

[1 P(O | )] P( | ) d

x

x

PGV x PGV x MR
PGV x MR

PGV x PGV x MR x

=

=

− =  =
= =

  − =  =

 (7) 

Just note that P( |S, ) 1 P( |O, )PGV x MR PGV x MR=  − = . Simply put, a block re-

maining upright gives us completely different and unrelated information than when it 

overturns.  

In the case where the causal M, R are not known, an uninformative prior can be 

employed, say assigning a uniform distribution to P( | )PGV x MR= . Its support of 

[vlow,vupp] can be appropriately set to indicate the range of physically plausible values 

of PGV. For instance, a typical choice could be vlow = 0, and vupp = 2m/s. This serves 

the same purpose as a truncation limit to ( | )GMPEf x MR , removing unreasonably large 

velocity values. Then, within the entire field of definition of the prior, we can eliminate 

P( | )PGV x MR=  from both the nominator and the denominator of Eqs (6) and (7) to 

receive: 

 

P(O | )
if  [ , ]

P(O | ) dP( | O, )

0 otherwise

upp

low

low uppx v

x v

PGV x
x v v

PGV x xPGV x MR

=

=

=


  == = 




  (8) 

 

1 P(O | )
if  [ , ]

[1 P(O | )] dP( |S, )

0 otherwise

upp

low

low uppx v

x v

PGV x
x v v

PGV x xPGV x MR

=

=

− =


  − == = 




  (9) 

3 Truncation: Separating fantasy from reality 

The lognormal distribution is present in all the equations derived in Section 2. It is the 

standard model for GMPEs, while it is also a very effective model for the PGV fragili-

ties [23]. Unfortunately, it remains an imperfect model for both, as it comes with a wide 

support of [0, +∞). For the GMPE, this implies that any event, regardless of how strong 

or weak, has a non-zero probability of producing both a very high and a very low PGV. 

For the fragility, this means that any block has a non-zero probability of overturning at 

very low intensities, and of remaining standing at very high ones. The nature of the 
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problem is such that all values of PGV within [0, +∞) will thus receive a non-zero 

probability of occurrence.  

In most situations this is not a problem, as these are extremely unlikely combinations 

whose probability is negligible. Still, this will become an issue when “extreme” obser-

vations appear, such a nearby, large magnitude event that could not topple a low-sta-

bility (e.g., small and very slender) block, or conversely a far, small magnitude event 

that overturned a high-stability block. In such highly improbable cases, one should ex-

pect that other unmodeled factors may come into play. For example, in the case of the 

overturning of a theoretically stable system, there may be factors that have not been 

accounted for that can increase the severity of the ground motion beyond what is pre-

dicted by the GMPE employed, such as directivity or soft-soil effects. There can also 

be issues with the block itself, such as crushed/weak toes, or an uneven distribution of 

mass, which if properly modeled would render it less stable. If we let the lognormal 

distribution offer non-zero probabilities everywhere in [0, +∞), the equations of Section 

2 will still try to offer plausible explanations based on the idealized models of the 

GMPE and the 2D block, typically falling off the mark. Instead, applying simple trun-

cation limits of two to three log-standard-deviations away from the log-mean (signified 

as ±2σln or ±3σln, respectively) to both the GMPE and the capacity distribution, safe-

guards the results against such improbable combinations and points the modeler in the 

proper direction of GMPE or model (rather than probability) updating. Actually, a ±3σln 

truncation is fairly common in PSHA [30]; we are only extending it here to the PGV 

capacity. 

4 Application example 

Let us consider a single slender block with of base width b = 0.71m, height h = 3.61m, 

resulting to a stability angle (or slenderness) of α = b/h = 0.2 and size parameter 

p = 2s−1. Based on the work of Kazantzi et al. [25], this has an overturning capacity in 

terms of the geometric mean PGV that is lognormally distributed with a median of 

PGVgmC50 ≈ 63 cm/s, and dispersion (standard deviation of the logarithm of the data) of 

β ≈ 0.3. Let us also consider two scenario events, having moment magnitudes of M = 6 

and M = 8, both at a closest distance to the surface projection of the fault of R = 10km. 

The first event is a moderate one, while the second can be called extreme for most sites. 

The GMPE of Boore and Atkinson [31] was employed, assuming a site with shear wave 

velocity in the top 30m of vs30 = 400m/s and a reverse fault. 

Fig. 1(top) compares the PDFs of the overturning capacities in terms of PGVgm vis-

à-vis the GMPE predictions and the results of Eqs (5) or (6), assuming the block over-

turned (O) or remained standing (S), respectively, for the M = 6 event. As expected, if 

no overturning is observed (S), a near identical PDF is derived, matching the initial 

estimated GMPE distribution. Essentially, this is a “no-information-added” event, as a 

relatively low intensity did not overturn a fairly large block, telling us nothing in the 

process. If instead the block overturned (O), the update points to considerably larger 

PGV values expected at the site, somewhere in the middle between the fragility estimate 

and the GMPE prediction. Fig. 1 (bottom) shows the same distributions, only for the 
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much larger M = 8 event. Now, both the O and S observations offer valid updates, the 

first restricting the low end of PGVs that may have occurred, and the latter restricting 

the upper end (right tail). In both cases, though, the dispersion remains quite high. Fig. 

2 shows an alternative to Fig. 1(top) when truncation is applied. While no change ap-

pears when the block remains standing, the overturning is a fairly unusual event, given 

the moderate magnitude of M = 6. Thus, the truncation of the upper tail of the GMPE 

has the most pronounced effect, setting an upper limit of PGVgm ~ 65m/s, and severely 

cutting off the upper tail. Finally, Fig. 3 shows a case where no event knowledge is 

available. Then, an S observation only serves to derive a plausible upper bound, while 

the O observation conversely offers a lower bound.  

 

 

Fig. 1. PDF of the overturning capacities in terms of PGVgm vis-à-vis the GMPE and its updates 

via Eqs (5) or (6) for the M = 6 (top), and the M = 8 (bottom) events. 
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Fig. 2. PDF of the overturning capacities in terms of PGVgm vis-à-vis the GMPE and its updates 

via Eqs (5) or (6) for the M = 6 event. Truncation at ±3σln is applied. 

 

Fig. 3. PDF of the overturning capacities in terms of PGVgm vis-à-vis the uninformative prior (no 

event knowledge) and its updates via Eqs (8) or (9).  

5 A graveyard of identical tombstones 

Let us consider multiple “identical” tombstones at a given site, meaning that they are 

all of the same type, as expressed in terms of size and slenderness in the idealized rigid 

block model of Housner [15]. All tombstones experience the same ground motion rec-

ord, assuming the graveyard is relatively compact in size. In theory, if the idealized 

block model was indeed a perfect description of the actual tombstone rocking behavior, 

all tombstones should be at the same condition after any given event. In other words, 

they should all be found either standing up or lying overturned. In reality, there will be 
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uncertainties due to imperfect modeling of each individual block, as we have disre-

garded the actual ground support conditions, coefficient of restitution, incidence angle 

of the ground motion relative to the block itself, 3D effects etc.  

 

 

Fig. 4. PDF of the GMPE prediction and its updates via Eqs (10) for various percentages of 

“identical” tombstones found overturned, given the M = 6 (top) and the M = 8 (bottom) events. 

Say, then, that we observe only a percentage r1 of tombstones (0 ≤ r1 ≤ 1) that have 

overturned. We should expect that r1 will take the limiting values of 0 or 1 only in the 

case of an extremely weak or an extremely strong ground motion, respectively. Other-

wise, it should lie somewhere between the two bounds. This is indicative of the addi-

tional unmodeled uncertainty that is not captured, e.g., by the Kazantzi et al. [25] prob-

abilistic model. We propose to account for this via a logic tree, whereby an arbitrary 

block of the given type and subject to the same ground motion will overturn with 
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probability r1, and remain standing with probability 1 – r1. Then, the resulting estimate 

of the probability distribution of the occurred seismic intensity is: 

 
1 1 1P( | , ) P( |O, ) (1 ) P( |S, )PGV x r MR r PGV x MR r PGV x MR= =  = + −  =  (10) 

where both probability terms required for the evaluation are directly derived from Eqs 

(6) and (7), or (8) and (9), depending on whether event information is available or not. 

Fig. 4 is the direct analogue of Fig. 1, considering the same two events but multiple 

tombstones and different r1 ratios. Clearly, if r1 = 0 or 1 one simply recovers the results 

of having a single block at S or O, respectively. As the ratio moves from 0 to 1, the 

PDF similarly fluctuates between the two extremes, with the case of least information 

(and highest dispersion) being the utterly ambiguous r1 = 0.5.  

6 Concluding discussion 

A fresh look was promised on the stale problem of seismic intensity prediction via top-

pled/untoppled rigid rocking blocks, and hopefully it has been delivered. If there is any 

direct conclusion from the results observed so far, is that having some seismological 

characteristics of the event, sufficient to allow prediction of intensity via a ground mo-

tion prediction equation, will positively complement the overturning observations and 

help deliver a better result. Otherwise, especially where historical observations are con-

cerned and no event data is available, only rough upper/lower bounds may be placed 

on the ground motion intensity. Inherent randomness limits the predictive capability of 

single or multiple “identical” blocks, while further epistemic uncertainty (i.e., non-suit-

ability of the model employed) can limit their usefulness even further. Essentially, this 

is as far as blocks of a single type can go. Still, graveyards are filled with tombstones 

of different shapes and sizes. Whether these can help us improve our predictions will 

be the setting of our upcoming endeavors.  
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