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ABSTRACT 
 
 A methodology is developed to address the problem of the collective seismic 

vulnerability of historical cities. Our focus is the derivation of fragility curves of 
simple structural models that represent an ensemble of historical masonry 
buildings. The structural model estimates lateral strength using a Mohr-Coulomb 
type failure criterion applied on the cross sectional area of load-bearing walls in 
the building's plan. Example data are drawn from the building population of the 
historical city of Xanthi, in Northeastern Greece. The seismic behavior of the 
simplified systems is efficiently assessed using approximate incremental dynamic 
analysis via static pushover. Monte Carlo simulation with latin hypercube 
sampling is applied to include the effect of epistemic uncertainties on the system 
performance. The result is a simple and efficient evaluation tool that can facilitate 
a comprehensive performance evaluation of groups of masonry structures in a 
seamless way that is consistent with current performance-based seismic 
assessment frameworks. 

  
  

Introduction 
 

The vulnerability of historical city cores is an important issue for numerous cities in 
seismic areas, a fact exemplified by the recent devastation of the city of L’ Aquilla by the 2009 
Abruzzo earthquake. Historical cores are typically composed of numerous buildings of stone 
masonry often built over different periods, with varying degrees of workmanship and usually in 
various degrees of disrepair. It is not surprising that quantifying their collective seismic 
vulnerability is not a simple problem. Actually, this has been a recurring issue of interest in the 
literature, where multiple research teams have made valuable contributions, especially in the 
context of modeling, some aiming towards more accurate and elaborate models and others 
towards simpler and more tractable ones.  

For example, Tanrikulu et al (1992) have presented models of masonry structures under 
seismic excitation, while D’Ayala et al (1997) use simple mechanical models for a case-study of 
seismic loss estimation for the city of Lisbon. More recently, D’Ayala and Speranza (2003) have 
offered a comprehensive analysis of collapse mechanisms of masonry structures, geared towards 
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capturing such effects with few equations. In essence, such attempts recognize the inherent 
uncertainty in the structures themselves and make do with lean, easily-calibrated models. Yet, 
what we believe is lacking in this context is the existence of an equally simple, yet accurate 
methodology to provide an educated estimate of the seismic vulnerability of such groups of 
structures while taking into account both record-to-record aleatory randomness and epistemic 
uncertainty due to the inherent lack of knowledge on the buildings. Working in accordance with 
recent advances in performance-based earthquake engineering frameworks (e.g. Cornell and 
Krawinkler 2000) we aim to provide such a methodology that remains easy to apply and we are 
going to use it on the unique case of the historical center of Xanthi. 

 

 
 
Figure 1.  (a) Typical example of timber laced stone-masonry dwelling in Xanthi.  (b) Layout of 

TLM (from Vintzileou 2008). 
 

The old town of Xanthi 
 

Xanthi is a historical urban center in Northeastern Greece in the province of Thrace, its 
origins being traced back to pre-Byzantine times (mentioned by Strabo, 1st century A.D.).  
Situated in an ecologically rich area protected by the Ramsar treaty, the city core represents 
today the most well preserved sample of traditional Balkan architecture surviving in Greece. The 
city was destroyed by successive earthquakes in the 1820-30s, and was vigorously rebuilt 
immediately after, becoming an important international tobacco production, processing and 
exporting center.  The residential part of the city underwent a second phase of expansion after 
1860 when the nearby administrative center of Genissea was devastated by widespread soil 
liquefaction after yet another strong earthquake. Structures built ranged from three storey clay-
masonry storehouses and warehouses with stone masonry basements and large covered plan area 
(usually floor-diaphragms comprised steel I-beam traverses that encased clay masonry arches 
spanning between the parallel steel beams), to typical two storey residential dwellings built 
almost exclusively with the traditional load-carrying timber-laced masonry system abounding in 
the Balkans. 
 

This structural system is actually known since the Roman times as Opus Craticium, but 
the origins of this construction archetype dates back to pre-Minoan times, and it continues 
through classical antiquity and the Roman times (Vitruvius 27-23 BC) up to the early 20th 
century in the Balkan region, when it was displaced by reinforced concrete (RC). In timber-laced 
masonry (TLM), lateral load resistance is imparted by interface friction between mortar and 



stone or brick, and enhanced by the bearing action of gravity loads. Timber lacing (referred to 
hereon as tiers) acts in masonry walls as shear reinforcement, interrupting the planes of diagonal 
tension failure exactly in the same manner as horizontal reinforcing bars function as shear 
reinforcement in conventional RC walls (Tastani et al. 2009). Tiers are 0.1m thick timber beams 
embedded in the masonry parallel to the joints. A basic characteristic of this type of construction 
is the relatively large area ratio of exterior and interior walls, either reinforced or unreinforced 
with tiers, and the relatively flexible diaphragms. This characteristic imparts a great degree of 
robustness in the structure.  Walls usually have an aspect ratio (height to length) of almost 1.0 
(with the exception of piers forming between upper-storey windows) and therefore the behavior 
of the walls in their plane is dominated by shear deformation. 
 
 Today, an open issue in seismically active areas such as Northern Greece is assessment 
of seismic vulnerability of historical or traditional buildings. The traditional residential core of 
the city of Xanthi, which has been classified as protected heritage construction is such an 
example.  Typical problems encountered in this process are (a) that the lateral load resisting 
system is undefined, (b) old construction often combines compounded effects due to ageing, so 
their actual material properties and condition cannot be estimated with certainty and (c) their 
great variability of form.  
 

Mechanical model 
 
TLM buildings of Xanthi, being entirely utilitarian, were built in the same chronological period 
with local methods and workmen and using locally produced materials from the quarry of the 
Kosynthos river. Thus, such residential houses present several typifying characteristics that fall 
within well defined ranges of values. The typical house is a two storey dwelling with storey 
height ranging from 2.6 to 3 m. The floor plan is nearly rectangular (sides ranging from 8 to 12 
m), with floor area ranging between 60 and 130 m2. The lower floor and the basement, if it 
exists, are constructed with perimeter stone masonry walls; wall thickness ranges from 550mm 
to 700mm. Thus, the typical floor plan contains an average 20% area of gravity load-bearing 
walls, with a considerably low standard deviation in the range of 10%. 
 
 Fig. 2 plots the average shear stress – strain diagram for stone masonry walls without 
tiers adopted by Eurocode 8-III.  Shear strength, fv, is estimated as a weighted product of 
compressive strength of building block strength fbc and joint mortar compressive strength, fmc:  
fv=1.25kfbc

0.7fmc
0.3 (stress terms in MPa, k in the range of 0.35 to 0.55).   The range of values of 

the parameters listed above may vary, but the mean strength is estimated as 0.5MPa with a 
standard deviation of 0.15MPa. Note that the code recommended values for the shear distortion 
upon yielding of the masonry wall (yielding here is used to identify the onset of friction-sliding 
behavior along mortar joints after the occurrence of diagonal cracking) is in the range of 0.15%, 
whereas the shear strain ductility ranges reaching as high values as 3 in cases of timber laced 
masonry (EC8-III 2009). 
 
The design code model for shear strength rides on a Mohr-Coulomb type of idealization of the 
behavior of stone masonry, according with which, the cracking shear strength, vRd1, of 
unreinforced masonry is expressed in terms of the inherent stone-binder cohesion, σz is the 
normal compressive stress clamping the potential sliding plane, and μ is the apparent frictional 



coefficient.  

 
Figure 2.  Code-recommended resistance curve for masonry walls. 
 
 zRd cv σμ ⋅+=1  (1) 
 
 In obtaining the code relationship the frictional component of shear strength has been 
neglected on the assumption that normal stresses owing to overbearing loads are very small; this 
simplifies Eq. (1) to a Tresca-type failure criterion. The cohesion c may alternatively be taken as 
the weighted product of tensile (ft

’) and compressive (fc
’) strengths of the weaker component of 

the composite masonry (i.e., of the mortar): c=0.5(ft
’ fc

’)0.5 (where ft
’ is approximated as 0.1fc

’); 
this approach yields commensurate results with those given earlier (conservatively around 
0.5MPa). The contribution of tiers in this strength model is estimated by the total force, Vb, 
sustained by those tier elements that intersect a 45o plane of failure after diagonal cracking. 
 

Equivalent Single Degree of Freedom Idealization  
 

 
Figure 3.  Seismic loading on a traditional masonry structure  
 

Due to their low aspect ratio, robustness of load bearing structure and mode of 
construction (layered joints and building blocks), masonry walls develop insignificant flexural 
action in their plane of action, their fundamental mode of vibration approaching to a linear 
distribution of displacement with distance from the base; this corresponds to a shear-type 
behaviour, marked by an almost constant shear angle of distortion with height. This result is 
supported by 3-D finite element simulations of the outer shell of these structures; extreme 
diaphragm flexibility promotes the tendency of walls normal to the plane of action to also bend 
in the out of plane direction increasing the risk of a weak mode of failure with detachment of 
orthogonal walls at the corners. Considering the true complexity of the mechanical problem, the 
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uncertainty with regards the mechanical behavior of the materials, the extent of damage, and the 
actual state of interaction that occurs at the interfaces of different materials (e.g., timber and 
mortar or stones, soil with masonry, etc.) any calculation-intensive approach would be 
incompatible with the actual level of confidence in the input values. For this reason, response is 
considered in the fundamental mode of vibration only, as it may be easily shown that for a 
cantilever structure where the shear deformation is higher than the flexural contribution, the 
mass participating in this fundamental mode is at least 80% of the available mass, whereas the 
fundamental mode is almost linear height-wise. Seismic forces are distributed over the height of 
the structure as illustrated in Fig. 3. There is a linear distribution, q(z), following the fundamental 
shape of vibration, and a concentrated force at the top of the structure Vo associated with the roof 
weight. Equivalent mass (for overturning moments) and stiffness of the system are given as,  
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where, kw represents the secant wall stiffness in the shear-stress – distortion diagram, Fig. 3, Aw 
the area of the load bearing walls in the floor plan, and H the total height of the structure. The 
mass m(z) per unit height of the structure is evaluated from the wall thickness and the specific 
gravity of the stone blocks, γw (ranging between γw = 20 to 27 kN/m3). There is also the weight of 
the roof taken as γr⋅Αr; Αr is the roof area, and γr is the unit area weight of the roof, ranging from 
γr =160-180 Kg/m2 for stone tiles, to γr =110 – 150 Kg/m2 for roman-type and byzantine-type 
ceramic tiles. These values include the self weight of timber trusses, sheathing and insulation. 
The tributary roof weight is transferred to the supporting walls according to the geometry of the 
roof (two-way or four-way). Note that the wall cross sectional area, Αw may be altered with z due 
to the presence of openings. Here, for simplicity and with no loss of generality, Αw is assumed 
constant with regards to the definition of the axial load.  
 

Building Ensemble Probabilistic Characterization 
 

All in all, the proposed model consists of 11 random parameters which have been 
introduced above and from which all other essential variables may be derived. These appear in 
Table 1. The 11 parameters are considered statistically independent with the only exception of θy 
and μu, i.e., the yield shear strain and the ultimate ductility, respectively, which have a positive 
correlation of 0.75. This reflects the fact that stiffer walls tend to have lower ductilities compared 
to softer ones. These two values, together with the shear strength fv offer a complete 
characterization of the stress-strain curve of masonry (Fig.2) up to the significant drop in 
strength that signals major damage in the wall. Thereafter, the uncertainty in the response and 
the scarcity in the data is such that we choose to ignore the contribution of this residual segment 
to the strength of the wall.  

The distributions of the above variables have been estimated using experimental results 
in the literature, expert opinion and data from an inventory of Xanthi buildings. For lack of a 
better model, we have assumed almost all parameters to be normally distributed with truncation 
limits at some reasonable minimum and maximum limit, selected according to available data in 
order to avoid any problems with the normal distribution providing very small or very large 
unrealistic values. 



Having these values at our disposal, we can easily derive the essential variables needed 
for our problem. First is the roof weight per unit area, γr which is equal to γrc if rtype<=0.5 or 
equal to γrs if rtype>0.5. In other words, this follows a bimodal distribution which is a 50-50 
mixture of two (truncated) normals. Then, the total building weight W that is effective for shear 
loading is estimated as the sum of the weight of the walls, the roof, the factored live load 
q=2kN/m2 and a 0.2kN/m2 dead-load surcharge for floors and other structural elements left out. 
The other needed quantities are the yield base shear Vy, the ultimate shear strain θu the first-
mode spectral acceleration at yield Say(T1,ξ), the elastic stiffness Kel and the first mode period T1: 
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Table 1.  The characterization of the parameters of the probabilistic model for an ensemble of 

TLM buildings from Xanthi. 
 

Parameter Symbol Mean c.o.v. min max Distribution 
wall shear strength fv (MPa) 0.50 30% 0.20 0.80 Tr. Normal 
plan area A (m2) 90 22% 60 130 Tr. Normal 
ratio of walls in plan pw 0.20 10% 0.16 0.24 Tr. Normal 
total height H (m) 5.6 5% 5.2 6.0 Tr. Normal 
yield shear strain θy 0.0015 25% 0.0010 0.0030 Tr. Normal 
ultimate ductility μu 2.0 25% 1.2 3.2 Tr.. Normal 
damping ratio ξ 0.05 30% 0.03 0.07 Tr. Normal 
specific gravity of stones γw (kN/m3) 24 10% 20 27 Tr. Normal 
stone tiles’ roof weight γrs (kN/m2) 1.7 5% 1.6 1.8 Tr. Normal 
ceramic tiles’ roof weight γrc (kN/m2) 1.3 10% 1.1 1.5 Tr. Normal 
type of roof rtype 0.5 - 0 1 Uniform 

 
Performance Evaluation via IDA and SPO2IDA 

 
To evaluate the seismic performance of the equivalent single-degree-of-freedom (SDOF) 

systems we employ Incremental Dynamic Analysis (IDA,Vamvatsikos and Cornell 2002). This 
would normally involve performing a series of nonlinear dynamic analyses under a multiply 
scaled suite of ground motion records. By selecting proper Engineering Demand Parameters 
(EDPs) to characterize the structural response and choosing an Intensity Measure (IM), e.g. the 
5% damped first-mode spectral acceleration %)5,( 1TSa , to represent the seismic intensity, we 



can generate the IDA curves of EDP versus IM for each record and the 16%, 50% and 84% 
summarized curves, representing the aleatory randomness attributed to the record-to-record 
variability. On such curves the desired limit-states can be defined by setting appropriate limits on 
the EDPs allowing the estimation of the corresponding capacities and their probabilistic 
distribution. Such results can be combined with probabilistic seismic hazard analysis to evaluate 
the mean annual frequencies (MAFs) of exceeding the limit-states thus offering a direct 
characterization of seismic performance. 
 

Nevertheless, IDA comes at a considerable cost, even for simple structures, necessitating 
the use of multiple nonlinear dynamic analyses that are usually beyond the abilities and the 
computational resources of the average practicing engineer. A fast and accurate approximation 
has been recently proposed for IDA, both for single and multi-degree-of-freedom systems 
utilizing information from the force-deformation envelope (or backbone) to generate the 
summarized 16%, 50% and 84% IDA curves by using elaborate fitted equations (Vamvatsikos 
and Cornell 2006). The approximation is based on the study of numerous SDOF systems having 
varied periods, moderately pinching hysteresis and 5% viscous damping, while they feature 
backbones ranging from simple bilinear to complex quadrilinear with an elastic, a hardening and 
a negative-stiffness segment plus a final residual plateau that terminated with a drop to zero 
strength as shown in Figure 1 (Ibarra et al. 2005). The oscillators were analyzed through IDA 
and the resulting curves (Fig. 2) were summarized into their 16, 50, and 84% fractile IDA curves 
which were in turn fitted by flexible parametric equations. Having compiled the results into the 
SPO2IDA tool, available online (Vamvatsikos 2002), we can get an accurate estimate of the 
performance of virtually any oscillator without having to perform the costly analyses, almost 
instantaneously recreating the fractile IDAs in normalized coordinates of 

( ) ( )%5,/%5, TSTSR aya=  (where %)5,(TSay  is the %)5,(TSa  value to cause first yield) versus 
ductility μ. 

 
Having SPO2IDA available we can easily perform a Monte Carlo simulation by 

randomly varying the parameters of the oscillator according to their distribution (Vamvatsikos 
2007). Due to the simple backbone of our equivalent SDOF system, the uncertain parameters 
considered in normalized coordinates are only the ultimate ductility μu and the period T of the 
oscillator. By using a latin hypercube sampling scheme (McKay 1979) to draw from their 
distributions and applying SPO2IDA on each alternate model we are able to efficiently 
incorporate the epistemic uncertainty into the IDA results without actually performing a single 
dynamic analysis. The final results are the distributions of the estimates of fractile demands and 
capacities, allowing the assessment of confidence intervals or dispersion β-values for the 
oscillator R-capacities given μ or the μ-demands given the normalized intensity R.  

 
Such values can be de-normalized to more meaningful quantities of roof displacement 

and Sa to present us with the typical IDA curves (Vamvatsikos and Cornell 2005). Particular 
care needs to be exercised when trying to combine values coming from sample buildings with 
different first-mode period and damping. In order to provide a single base of reference we will 
translate all such results to a common IM, being the Sa(T1b,5%) where T1b=0.17s is the first-mode 
period of the base case building, i.e., the building defined by the central values of all random 
parameters. 
 



 
 

Analysis Results and Discussion 
 
 The results from applying SPO2IDA on NMC=200 samples of buildings from the Xanthi 
probabilistic model appear in Fig.4. The corresponding 200 static pushover curves are in Fig.4a 
showing the impact of the positive correlation between θy and θu: They are either stiff and with 
high yield strength or show lower strengths but higher ductilities. The corresponding 200 median 
IDAs from SPO2IDA appear in Fig.4b and show the actual distribution of response expected 
from the structure. Their spread characterizes almost entirely the effect of epistemic uncertainty 
on the central demand and capacity of the structures. 
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              (a) 200 SPOs                                                   (b) 200 median IDAs 

 
Figure 4.  (a) The resulting pushovers from of simulation and (b) the corresponding median 

IDAs produced through SPO2IDA. 
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      (a) capacity uncertainty                                       (b) limit-state fragilities 

 
Figure 5.  (a) The aleatory randomness and epistemic uncertainty in Sa-capacity for given values 

of θroof and (b) the corresponding fragility curves produced for two limit-states. 



 
To better illustrate the results of our case-study, we show the derived values of record-to-

record variability βR, estimated as one half the difference between the 16%, 84% Sa-capacities of 
the base case for given value of roof drift, versus the epistemic uncertainty βU derived as the log-
standard deviation of the median IDAs in Fig.4b. The two are combined into the total variability 
βRU that is of major importance for accurate performance evaluation. This can be done either via 
a square-root-sum-of-squares (SRSS) rule or directly by simulating individual records, say 50, 
from the Sa-capacity distribution of each sample structure and taking the overall log-standard 
deviation of the 50x200=10000 resulting individual IDA curves. Due to the correlation present 
in the results, the latter is actually the better method, as the SRSS rule may lead up to a 25% 
error.  

 
Finally, we have produced the fragility curves in Fig 5b for two limit-states, one 

signifying the onset of damage at first-yield, termed Immediate Occupancy (IO), and another at 
the loss of strength that signifies near-collapse, termed Collapse Prevention (CP). It is important 
to note that the definition of the limit-states is not based on a unique, externally-supplied 
response value of the roof drift θroof but instead it is completely model-dependent. In other 
words, when each model exceeds its own θy value, it exceeds the IO state, and when it exceeds 
its θu it also violates CP. This is in direct contrast with many recent applications of performance-
based earthquake engineering based on the PEER framework (Cornell and Krawinkler 2000), 
where it is usually assumed that the distribution of damage for any structural component is not 
correlated in any way to the actual capacity such a component might have in the structural model 
used to derive its response by static or dynamic analysis.  

 
While the fragility curves in Fig 5b are most useful in combination with a complete 

seismic hazard curve, we can derive some useful results considering the typical earthquake 
intensity defined in the current seismic code of Greece for the city of Xanthi (GSC 2000). These 
amount to about 0.45g for T1b=0.17sec and a 10% in 50yrs event. This corresponds to a 
negligible probability of exceeding CP and a low probability of violating IO. Thus, some 
serviceability-level damages are possible, but the building stock seems to be safe from any major 
collapses. Of course, such conclusions should be taken with a grain of salt, considering the limits 
of our modeling and in light of any improvements that need to be done to calibrate it with recent 
experimental data. 

 
Conclusions 

 
 A simplified methodology has been presented for the seismic vulnerability evaluation of 
a group historical structures. Using a simple mechanical model with appropriate probabilistic 
characterization based on existing literature, inventory data and expert opinion, we were able to 
derive fragility curves for the relatively homogeneous ensemble of stone masonry structures that 
comprise the historical core of the city of Xanthi. The end result is a realistic representation of 
the vulnerability of the building ensemble that incorporates both aleatory randomness and 
epistemic uncertainty in a concise and accurate way, showing that at the city center is vulnerable 
to serviceability-level damages from the design-level earthquakes occurring in the region, but, 
generally speaking, safe from catastrophic collapse.  



 
 
 

References 
 
CEN, 2004. Eurocode 8: Design of structures for earthquake resistance Part 3:Assessment and retrofitting 

of buildings. June 2004, Doc. CEN/TC250/SC8/N388B. Comité Européen de Normalisation, 
Bruxelles. 

Cornell C. A., and H. Krawinkler, 2000. Progress and challenges in seismic performance assessment, 
PEER Center News 3 (2) URL http://peer.berkeley.edu/news/2000spring/index.html, [Oct 2009]. 

D’Ayala D., and E. Speranza, 2003. Definition of Collapse Mechanisms and Seismic Vulnerability of 
Historic Masonry Buildings, Earthquake Spectra 19 (3) 479–509. 

D’Ayala D., R. Spence, C. Oliveira, and A. Pomonis, 1997. Earthquake Loss Estimation for Europe's 
Historic Town Centres. Earthquake Spectra, 14 (4) 773–793. 

Dolsek M. Incremental dynamic analysis with consideration of modelling uncertaintiesm Earthquake 
Engineering and Structural Dynamics 2009; 38(6):805–825. 

Fragiadakis M., and D. Vamvatsikos, 2010. Fast Performance Uncertainty Estimation via Pushover and 
Approximate IDA, Earthquake Engineering and Structural Dynamics (in press). 

GSC, 2000. Greek Seismic Code, Ministry of Environment, Land and Public Works, Athens, Greece. 
Ibarra, L.F., R.A. Medina, and H. Krawinkler, 2005. Hysteretic models that incorporate strength and 

stiffness deterioration, Earthquake Engineering and Structural Dynamics 34 (12) 1489–1511. 
Liel A. B., C. B. Haselton, G. G. Deierlein, and J. W. Baker, 2009. Incorporating modeling uncertainties 

in the assessment of seismic collapse risk of buildings, Structural Safety 31 (2) 197–211. 
McKay M. D., W. J. Conover, and R. Beckman, 1979. A comparison of three methods for selecting 

values of input variables in the analysis of output from a computer code. Technometrics 21(2) 
239–245. 

Tanrikulu A.K., Y. Mengi, and H.D. McNiven, 1992. The nonlinear response of unreinforced masonry 
buildings to earthquake excitation, Earthquake Engineering and Structural Dynamics 21 965–
985. 

Tastani S., M. Papadopoulos, and S. Pantazopoulou, 2009. Seismic response of traditional masonry 
buildings: parametric study and evaluation, Proceedings of the 1st International Conference on 
Protection of Historical Buildings, Rome, Italy. 

Vamvatsikos D., 2002. SPO2IDA software for all periods. http://blume.stanford.edu/pdffiles/Tech%20 
Reports/TR151_spo2ida-allt.xls [May. 20, 2009]. 

Vamvatsikos D., and C. A. Cornell, 2002. Incremental Dynamic Analysis, Earthquake Engineering and 
Structural Dynamics 31 (3) 491–514. 

Vamvatsikos D., and C.A. Cornell, 2005. Direct estimation of the seismic demand and capacity of MDOF 
systems through Incremental Dynamic Analysis of an SDOF Approximation, ASCE Journal of 
Structural Engineering 131 (4) 589–599. 

Vamvatsikos D., and C.A. Cornell, 2006. Direct estimation of the seismic demand and capacity of 
oscillators with multi-linear static pushovers through Incremental Dynamic Analysis. Earthquake 
Engineering and Structural Dynamics 35 (9) 1097–1117. 

Vamvatsikos D., 2007. Influence of parameter uncertainties on the seismic performance of oscillators via 
SPO2IDA, Proceedings of the 10th International Conference on Applications of Statistics and 
Probability in Civil Engineering, Tokyo. 

Vamvatsikos D., and M. Fragiadakis, 2010. Incremental dynamic analysis for estimating seismic 
performance uncertainty and sensitivity, Earthquake Engineering and Structural Dynamics (in 
press).  

Vintzileou E., 2008. The effect of timber ties on the behaviour of historic masonry, ASCE Journal of 
Structural Engineering 134 (6) 961–972.  


