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Abstract. The Global Earthquake Model (GEM) has commissioned the preparation of analyt-
ical vulnerability guidelines for general use. Within this framework, a distinct modeling and 
analysis method hierarchy has been proposed, whereby both detailed and reduced-order 
models can be analyzed using nonlinear static or dynamic methods. Each subsequent reduc-
tion in complexity increases the speed of application, yet generates additional error that 
needs to be considered in the form of epistemic uncertainty. The available choices represent 
different levels of compromise between the accuracy achieved and the associated effort need-
ed, meant to suit users having different levels of expertise and resource availability. Our par-
ticular focus will be on the middle path that is expected to become the most popular choice, 
combining (a) a simplified stick model of the structure with (b) a static pushover analysis with 
accurate record-to-record dispersion information. The entire procedure is cast within an ap-
propriate probabilistic framework that can effortlessly incorporate all the epistemic and alea-
tory uncertainty sources to become a viable path for evaluating structural fragility for a 
building class.  
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1 INTRODUCTION 

The Global Earthquake Model (GEM) is a grand effort to offer a comprehensive open-
source tool for loss assessment on a large scale. A vital component of it is the definition of 
physical vulnerability for different classes of buildings (Figure 1), a task that has been under-
taken by an international consortium of researchers. Separate thrusts of the project are geared 
towards defining building vulnerability functions based on (a) empirical data (b) expert opin-
ion and (c) structural analysis. Our focus will be on the latter part with emphasis on low- and 
mid-rise structures and specifically on the development of guideline documents for estimating 
analytical fragility functions for assessing structural damage.   

The analytical vulnerability guidelines are being developed as a hierarchy of approaches 
that can accommodate different levels of expertise. Our proposal thus accommodates several 
paths towards reasonable approximations that strike different compromises between the time 
committed and the accuracy achieved. The present work deals with the case where the analyst 
has the skills and time to perform nonlinear static analysis. The minimum target is for a struc-
tural engineer with Master’s level training and the ability to create simplified nonlinear struc-
tural models, to be able to determine the vulnerability functions pertaining to structural 
response, damage or loss with reasonable effort. This has been defined as 20-40 man-hours 
for any single structure, and 80-160 man-hours for a class of buildings. 

Estimating vulnerability for a class of buildings involves a number of steps that need to be 
undertaken in series. First and foremost, a set of “index” buildings needs to be selected to rep-
resent the class. These are typically 3 to 7 distinct structures having different macro-
characteristics, such as number of stories, level of construction quality and degree of vertical 
or plan asymmetry. Subsequently, appropriate structural models need to be generated and 
structural analysis undertaken to determine their response to seismic loads. Fragility curves, 
i.e., probability-valued functions of the seismic intensity for exceeding specified damage 
states for each story or an entire building, are then estimated. The final step is the estimation 
of losses. At each step all sources of uncertainty need to be quantified and propagated to the 
final result, taking into account the variability of ground motions, single building properties, 
population diversity and our own methodological errors.  

Our focus will be on the modeling and analysis stages, with particular emphasis on provid-
ing a solid basis for evaluating fragility curves for a single building without loss of any prob-
abilistic information. Among a wealth of offered paths to achieve this, we are only going to 
discuss the option of applying nonlinear static analysis on simplified stick models of the struc-
tures, representing an excellent compromise between accuracy and simplicity. 

 
Figure 1: Conceptual framework for seismic risk assessment adopted by GEM (source: 

http://en.wikipedia.org/wiki/Global_Earthquake_Model). 
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2 SIMPLIFIED STICK MODELS 

The development of structural models for each index building is an important issue when 
deriving analytical vulnerability functions. The complexity of detailed modeling offers unde-
niable accuracy, yet it often absorbs most of the effort due to the multiple representative 
buildings employed. Typically, a detailed 2D or 3D multi-degree-of-freedom model would be 
required for each index building. Appropriate representation of the nonlinear behavior of all 
identified lateral-load resisting components in the building (columns, beams, walls, braces etc.) 
is essential. Significant global or local geometric nonlinearities (e.g., P-∆ effects, brace buck-
ling) also need to be included. In short, this is a modeling level that is roughly equivalent to 
the detail needed for assessing an individual building according to current seismic guidelines. 
Despite the inherent accuracy and reliability of such detailed models, their use in loss estima-
tion for an entire class may not always be practical. The broad variability within the class 
means that individual details that have been painstakingly modeled will eventually disappear 
and only some macro-characteristics may dominate. Then, the simplicity of a 2D stick repre-
sentation of a building becomes a cost-effective alternative. 

 
Figure 2: A three-story stick model, showing column elements, floor masses M1 – Μ3 and rotational springs to 

represent beam and foundation stiffness. 

Our proposal for a simplified macro-model is based on the concept of “fishbone” models 
pioneered by Luco et al. [1] to represent moment-resisting frame buildings. This would reduce 
a frame to a single column-line, each story rotationally restricted by two half-beams that are 
roller-supported at their opposing ends. This idea has been further simplified and generalized 
to represent both flexural and shear buildings as shown in Figure 2. It retains the column-line, 
comprising N columns and N nodes (plus the foundation node) for N stories, each with 3 de-
grees of freedom (horizontal, vertical, rotational) in 2D space. The nodes are further re-
strained by N rotational springs representing the strength and stiffness of beams at each floor. 
All elements are nonlinear, at the very minimum having a capped elastoplastic behavior, i.e., 
an elastic perfectly-plastic relationship of force-deformation, moment-rotation or stress-strain 
that contains a hard-coded ultimate ductility to simulate component failure (Figure 3). Ele-
ment characteristics can be easily derived using the aggregate stiffness of the columns, piers, 
walls or beams in each story together with the corresponding yield and ultimate displacements 
or rotations. Only translational story masses need be assigned to each node, while global P-∆ 
effects are explicitly taken into account.  

By thus condensing the characteristics of each story into one column and one rotational 
spring, the stick model achieves remarkable economy. While it can capture many of the sali-
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ent features of modern buildings, especially height, vertical irregularities and flexural versus 
shear behavior, it cannot take into account any effects related to the two neglected horizontal 
dimensions. For example, the effect of column compression/tension due to the overturning 
moment, or any shear lag effects within a single beam-line are not captured. In addition, as 
with any 2D structure, 3D interaction effects are not modeled. This is of little importance for 
plan-symmetric structures with distinct lateral load-resisting systems in the two horizontal di-
rections. It becomes an issue for plan-asymmetric structures or wherever the appearance of 
mass/shear center eccentricity causes torsion. It may also introduce bias in the results if the 
system strength in the two horizontal directions is strongly interacting, thus making biaxial 
shaking significantly more detrimental than uniaxial.  

 
Figure 3: The capped elastic-plastic backbone is the simplest recommended force-deformation or moment-

rotation backbone relationship for elements. 

Such 3D effects can still be taken into account approximately by using theoretical or re-
gression expressions to relate, e.g., the index of plan asymmetry to a reduction in the column 
and beam ductility capacities incorporated in the model. This is considered a far superior ap-
proach than using a direct “damage modifier”, where the modification is applied on the EDP 
displacement (or acceleration) response of the model rather than its properties, leading to con-
siderable difficulties in properly defining collapse. In other words, it is not easy to make such 
modifications influence the seismic intensity level causing collapse when applying them only 
in post-processing. By including them in the model properties, though, their integration be-
comes more natural. For example, for square-plan multi-bay space-frames with ductile mem-
bers, it can be shown that a normalized plan eccentricity of e leads to an increase of elastic 
base shear in any of the two directions by a factor of 1+1.5e. Reducing the yield and ultimate 
ductility of both the beam spring and the column element in the corresponding eccentric sto-
ries yields a simple method to roughly account for this effect. 

3 EVALUATION OF FRAGILITY CURVES USING NSP 

While nonlinear dynamic analysis is steadily gaining ground as the standard method of 
analysis, at present its use largely remains within the academic community. The mainstay of 
current practical guidelines for seismic assessment is currently the nonlinear static procedure 
(NSP). There are several methodologies for estimating fragility curves for a structure that are 
based on NSP, using a pushover analysis to evaluate system performance. They are generally 
simple and relatively easy-to-use methods that are intuitive for engineers that have worked 
with nonlinear static analysis. Apart from any inaccuracies incurred by the well-known ap-
proximating nature of the pushover, they do share one major drawback: Despite trying to cap-
ture an inherently probabilistic quantity such as the fragility curve, they are in essence 
deterministic approaches, simply because of their root in classic pushover analysis.  
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Typical NSP approaches determine a single demand value for any structural response vari-
able (or engineering demand parameter, EDP) that corresponds to a given level of the seismic 
intensity measure (IM), as measured in terms of the spectral acceleration Sa(T) at period T. 
This is summarized in the so-called performance point, situated on the capacity curve at an 
estimated target displacement (typically of the roof). This single demand value can be esti-
mated via two possible methods, namely displacement modification/coefficient method (Ve-
letsos and Newmark [2]) or the equivalent linearization approach (Jacobsen [3]). In the first 
case, an R-µ-T relationship is employed to provide an approximation to the mean or median 
value of ductility, µ, of a nonlinear single-degree-of-freedom oscillator with period T that is 
subjected to a given level of intensity, defined by the strength ratio R. The latter is the ratio of 
the seismic force over the oscillator yield strength, or simply the seismic intensity in Sa terms 
over its value that causes yield. This method is the basis of most current US and EU guide-
lines, namely ASCE/SEI 41-06 [4] and EN1998-Part III [5]. The equivalent linearization 
method, instead, utilizes a lengthened period and an increased damping value to define a line-
ar oscillator that can provide the needed (mean/median) displacement response. It has been 
popularized by the ATC-40 document and it was later shown to be able to deliver mean or 
median results of similar accuracy to the displacement modification approach (FEMA 440 
[6]), as long as a direct physical interpretation is not a constraint when deriving the equivalent 
period and damping. Still, it remains an indirect approach that has not seen much use beyond 
ATC-40 [7]. Therefore it will not be the focus of our proposed approach.  

Summing up, the constraints placed upon NSPs by the target displacement approximation 
method essentially limit its ability to provide a full distribution of response for a given level 
of intensity and hence capture the seismic input randomness. As a result, the static pushover 
itself is only used as a method to determine the central value (median or mean) of intensity 
measure (IM) capacity that anchors the fragility curve, while the dispersion around it is typi-
cally an assumed constant value, regardless of period or deformation. This has the undesirable 
effect of providing only a rough approximation of the considerable record-to-record variabil-
ity, while not offering any insight into the additional dispersion due to aleatory and epistemic 
sources inherent in modeling, analysis and threshold values of EDP capacity.  

Recent advances in R-µ-T relationships have offered at least two viable options for intro-
ducing record-to-record variability back into NSP estimates. The first is the work of 
Vamvatsikos and Cornell [8] on SPO2IDA, a spreadsheet-level tool that allows estimating the 
median and dispersion of ductility for complex quadrilinear capacity curves that may incorpo-
rate a negative stiffness segment, e.g. due to P-∆ or material in-cycle degradation and a resid-
ual strength branch, similar to the post-peak response of a braced or infilled frame. The 
second approach comes from Ruiz-Garcia and Miranda [9] that have offered R-µ-Τ (or, more 
precisely CR-µ-T, where CR = µ(R)/R) expressions with dispersion information for elasto-
plastic oscillators. Such tools offer substantially improved information that can be used to in-
ject probability back into traditional NSPs. 

3.1 Probabilistic basis of fragility 

Fragility curves have been around for a long time, dating back to the early work in the nu-
clear industry, e.g., Kennedy and Ravindra [10]. In our case, the probabilistic formulation that 
will be adopted to represent the fragility curve goes back to at least the concepts forming the 
backbone of the SAC/FEMA framework (Cornell et al [11]) that have also appeared in the 
earlier or later work of many researchers, for example Shinozuka et al [12], Choi et al [13] 
and Kazantzi et al. [14]. Following in their footsteps, the fragility function is defined as the 
probability function of the limit-state capacity C being exceeded by the demand D for a given 
intensity level (i.e. IM-value), s. It may be defined for an entire building or for any of its sto-
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ries. In both cases, if demand and capacity are expressed in terms of intensity levels, then we 
get the simplest representation of fragility: 

 ( ) ( ) ( )ssFsssPsDCPsP ccLS |||)( =<=<=  (1) 

where sc is the (random) IM-value of capacity that when exceeded signals violation of the 
limit-state and F[·] is the cumulative distribution function (CDF) of its arguments. Essentially, 
the fragility curve then becomes the CDF of sc evaluated at the intensity level s. It is usually 
assumed that sc is lognormal, leading to the simple expression of:  
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where cŝ  is the median IM-value of capacity and βSc the corresponding dispersion (standard 

deviation of the log-data). While conceptually simple, these two parameters may become dif-
ficult to evaluate as the results of structural analysis are in terms of EDP given the level of IM, 
rather than vice-versa.  

Therefore, a more intuitive format is based on the expression of both demand and capacity 
in terms of the engineering demand parameter that is used to test for limit-state violation. If θc 
is the corresponding EDP capacity and θ the structural demand (both random variables), then   

   ( ) ( )sPsDCPsP cLS ||)( θθ <=<=  (3) 

Again, it is assumed that both demand and capacity are lognormal with medians )(ˆ sθ , cθ̂  and 

dispersions βθd, βθc, respectively.  
Then, considering that the sum (or difference) of two normal variables is also normal, and 

assuming that demand and capacity are independent (see also the relevant discussion in Cor-
nell et al. [11]) the following well-known result comes up (e.g., Kennedy and Ravindra [10]):  
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Following the work of Cornell et al. [11], a power law approximation is assumed for the 
median EDP demand given IM, which is valid as long as the structure has not approached the 
global instability region: 

   bsas ⋅≈)(θ  (5) 

Then, by introducing the above into Eq. (4) a simpler approximation may be derived for fra-
gility that resembles the earlier IM formulation: 
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Now, it becomes obvious by comparing Eq. (2) and (6) that the median and dispersion of the 
IM value of capacity, sc, may be estimated as: 
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In order to introduce the effect of epistemic uncertainty, it is assumed that demand and ca-
pacity maintain their medians but acquire additional dispersion of βUθd and βUθc, respectively. 
This is typically referred to as the “first-order assumption” and it causes the overall dispersion 
of Eq. (8) to become instead: 

   22221
cUdUcdTSc b θθθθ βββββ +++=  (9) 

The dispersions βθc, βUθd and βUθc are essentially parameters of the problem that need to be 
provided and cannot be easily determined by a simple computational analysis. For example, 
Kazantzi et al. [15], Liel et al [16], Dolsek [17], Vamvatsikos and Fragiadakis [18] offer a 
number of computational methods for estimating βUθd when dealing with models having un-
certain parameters. Similarly, the median EDP capacity is best determined by experimental 
data, post-earthquake surveys or expert judgment. On the other hand, a, b and βθd can be rea-
sonably approximated, ideally by multiple dynamic analyses (e.g. incremental dynamic analy-
sis, IDA, Vamvatsikos and Cornell [19]) or, in many cases, with a simple static pushover. The 
latter will be the focus of the proposed method. 

3.2 Estimation in a pushover setting without global collapse 

The “central value” of roof (or generally control node) displacement response correspond-
ing to any level of spectral acceleration intensity, Sa = s can be estimated as follows (e.g. 
EN1998 [5], ASCE/SEI 41-06 [4]): 
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where Γ is the first-mode participation factor (estimated for the first-mode shape normalized 

by the roof displacement), T is the equivalent SDOF system period and RĈ  is the median ine-
lastic displacement ratio for the given strength ratio R. Considering that the pushover results 
offer practically a one-to-one mapping between any local EDP and the roof displacement, 
with the possible exception of isolated spots in the negative stiffness region, we can represent 

the median roof drift as a function of the corresponding median EDP, i.e. )ˆ(ˆ θδδ roofroof = . 

Then we can use the pushover results to easily estimate the δroof corresponding to the median 
capacity value, θc, and solve for the corresponding median seismic intensity: 
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For the median CR, one can use SPO2IDA for practically any shape of capacity curve, or 
resort to the simpler relationships provided by Ruiz-Garcia and Miranda [9], valid for elasto-
plastic systems: 
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An appropriate value for R for use with Eq. (12) should generally correspond to a value of 
seismic intensity close to the region of interest, or, in other words, close to the median EDP-
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value of capacity. In terms of ductility, this maps to the value of ( ) ycrooflim δθδµ /ˆ= . A poten-

tial solution would be to prescribe Rlim = µlim in the sense of the equal displacement rule, but 
this would grossly overestimate both b and βθd for shorter periods. A much better solution is 
to set µ = µlim in Eq. (12) and solve the resulting quadratic expression for R. Since b and the 
dispersion βθd tend to increase with R (rather than remain constant), it is best to take a point 
estimate (a form of biased fitting) at a reduced value, say at 85% of the resulting R-value  

   ( ){ }0.1,1)12(21425.0max 2 +−++−= limlim cccR µ , where 98.112.79 Tc =  (13) 

A lower limit of 1.0 has been imposed for performance points close to yielding as the 85% 
reduction taken above may make Rlim become less than 1.0.  

Thanks to the proportionality between CR and droof / sc, a useful local b can be estimated 
through Eq. (12) by interpolating in log-space between the yield point at (µ,R) = (1,1) and the 
value of the median µ at Rlim. This is equivalent to the ratio of the logs of the latter two values, 
which can be easily estimated from Eq. (12) above, by taking the log of both sides and then 
dividing by lnRlim: 
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In the limiting case of Rlim = 1, signifying elastic response, the slope b is always set to 1.0. 
Strictly speaking, this is the b-slope corresponding to the roof displacement. In the case of in-
elastic response, proportionality should be locally valid between δroof and θ for the above b to 
be usable for the latter. Otherwise more careful interpolation will need to be performed close 
to the median value of θc. 

Finally, the needed conditional demand dispersion can also be estimated from either 
SPO2IDA [8], or the work of Ruiz-Garcia and Miranda [9]. Then, the dispersion of δroof is the 
same as the dispersion of CR, as they are proportional: 
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If proportionality holds in the vicinity of sc between δroof and θ, then they both share the 
same dispersion. This is a reasonable assumption that generally makes sense for most situa-
tions. Otherwise, it is best to estimate βθd as one half of the difference between the 16 and 84 
percentiles of θ at the given intensity level:  
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where θ[·] represents the inverse mapping offered by the pushover between roof drift and the 
EDP of choice. 

Note that when multiple EDPs are used to define a limit-state, where exceeding any one of 
them signals violation, the above framework shows that they will generally offer the same βθd 
dispersion to the fragility curve. As long as no significant differences are introduced by the 
other aleatory and epistemic contributions to the dispersion between the different EDPs, then 
we only need to define the appropriate median intensity capacity that corresponds to the EDP 
that governs, i.e., use the one whose θc median capacity corresponds to the lowest roof dis-
placement. This is for example the case of using the story drifts to determine the limit-state: 
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Separate checks for each story can be conveniently replaced by a single check of the maxi-
mum drift over all stories, as long as all stories have about the same drift capacity and the lim-
it-state is considered to be violated if any story drift exceeds it (which is the usual choice). 
Even if the dispersions corresponding to each EDP differ significantly, the above statements 
are still true as long as the dispersion corresponding to the governing EDP is the highest. Oth-
erwise, all EDPs may need to be taken into account, for example via the formulation dis-
cussed in Choi et al [13], to incorporate issues of correlation. It is noted however that such 
considerations are mostly an issue for tagging applications, where assigning a single damage-
state to an entire building makes sense. Seismic loss assessment is best performed through a 
fine-grained application of fragility, at the story or even component level that allows a more 
accurate calculation of cost. Furthermore, structural, non-structural and content damage is 
best considered separately rather than through a common damage-state. Thus, it is not envi-
sioned that multiple EDPs will become important when defining such localized damage-states.   

In summary, a simple algorithm for estimating fragility curves for an elastoplastic system 
and for any limit-state defined by a single scalar EDP under the assumptions presented above 
can be cast as follows: 

1. Run a static pushover analysis in order to obtain the capacity curve and the correspond-
ing results for the EDP needed for limit-state definition. 

2. Fit the pushover curve via an elastoplastic idealization 

3. From the pushover results estimate )ˆ( croof θδ , i.e., the median roof displacement corre-

sponding to the median EDP capacity. 

4. Estimate the median IM capacity, cŝ  from Eq. (11) and (12) 

5. Estimate b from Eq. (14) 

6. Estimate βθd from Eq. (15) or (16) 

7. Evaluate the fragility dispersion according to Eq. (8) or (9). 

 
Use of SPO2IDA only changes steps 4-6, where instead of Eq. (12), (14) and (15) to esti-

mate CR, b and βθd, respectively, direct numerical results are taken from the SPO2IDA tool. 
In any case, the overall fragility curve is defined by the median IM capacity and the corre-

sponding total dispersion, according to Eq. (2) in this very simple scheme that needs no itera-
tions and no assumptions about record-to-record variability. Moreover, it is fully compatible 
with nonlinear dynamic analysis results, as long as the assumptions of the pushover analysis 
hold, the R-µ-T relationship is accurate enough for the capacity curve employed (see also De 
Luca et al. [20] on fitting) and the limit-state is not close to the region of global dynamic in-
stability.  

3.3 Introducing global collapse information 

The phenomenon of global dynamic instability may only appear if adequate modeling of P-
∆ and/or material in-cycle degradation has been employed, or, at the very least, some ultimate 
ductility capacity has been imposed a posteriori on the pushover results. Such modeling op-
tions generate a distinctive plateau on the IDA curves in IM versus EDP co-ordinates (for ex-
ample the region beyond the ductility of 5 in Figure 4a). This corresponds to an explicit 
simulation of the results of global collapse. Then, estimation of the fragility for limit-states 
that occur close to this region cannot be reliably performed with the aforementioned proce-
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dure. To be more precise, if the corresponding median intensity capacity cŝ  is higher than the 

16% spectral acceleration collapse capacity (i.e., an R-value of about 2.3 in Figure 4b), the 
power-law approximation of Eq. (5) is no longer accurate. Thus, additional steps need to be 
taken when defining the fragility curve to ensure that collapse (which by default violates all 
limit-states) is taken into account. 

First, the values of CR, b and βθd should only be based on intensities that directly precede 
the 16% value of capacity. In other words, they should be based on non-collapse responses 
(ideally, higher intensities should also be included by taking into account only non-collapse 
data points but this definition is only usable when discrete dynamic analyses are available). 
Then, the probability of collapse needs to be directly incorporated by conditioning on collapse 
and non-collapse (Jalayer and Cornell [21]): 

 ( ) ( ) )()(1,|)( sPsPNCsDCPsP CCLS +−⋅<=  (17) 

where PC(s) is the probability of collapse, or simply, the fragility of the global collapse limit-
state and P(C<D|s, NC) is the fragility curve determined with the procedure presented earlier.  

Note that due to the nature of global instability, simplified assumptions fail to deliver the 
desired fidelity if an EDP basis is chosen for evaluating the collapse fragility PC(s). The ap-
pearance of multiple “infinite” values of EDP due to individual collapses (Figure 4a) means 
that the distribution of EDP at a given intensity cannot be characterized by a lognormal. On 
the contrary, an IM basis is perfectly adequate, as lognormality still holds. Thus, the collapse 
fragility can only be defined via Eq. (1), whose parameters are directly provided by SPO2IDA. 
Note here that this is different from other definitions of collapse where the model happily 
goes on forever (i.e., the IDA curves never flatline in Figure 4a) and collapse is retro-actively 
defined by some EDP capacity. Such cases may not offer the fidelity and accuracy of the 
above formulation, yet they have the advantage of being conveniently handled with the origi-
nally presented approach, without needing to separately account for global instability. 
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Figure 4: (a) Forty IDA curves and (b) their summarization into 16/50/84% fractiles for an SDOF system. The 
EDP is ductility and the IM is Sa(T1) normalized by its yield-level value. The x% fractiles EDP|IM curves are 

practically identical to the (1-x)% IM|EDP curves (Vamvatsikos and Cornell [19]).  

4 CONCLUSIONS  

A simplified method has been presented for extracting fragility curves via the static pusho-
ver method preferentially coupled with simplified stick models for optimal application to 
large sets of buildings. The methodology allows the accurate estimation of the record-to-
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record variability and the introduction of any additional source of uncertainty, without need-
ing to resort to ad hoc assumptions. It is thus simple and reliable enough to be applicable to a 
large number of buildings and become useable for estimating fragility not just for a single but 
for an entire class of structures, as required for application with the Global Earthquake Model. 
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