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Abstract. The Global Earthquake Model (GEM) has commissioned the preparation of anal yt-
ical vulnerability guidelines for general use. Within this framework, a distinct modeling and
analysis method hierarchy has been proposed, whereby both detailed and reduced-order
models can be analyzed using nonlinear static or dynamic methods. Each subsequent reduc-
tion in complexity increases the speed of application, yet generates additional error that
needs to be considered in the form of epistemic uncertainty. The available choices represent
different levels of compromise between the accuracy achieved and the associated effort need-
ed, meant to suit users having different levels of expertise and resource availability. Our par-
ticular focus will be on the middie path that is expected to become the most popular choice,
combining (a) a ssimplified stick model of the structure with (b) a static pushover analysis with
accurate record-to-record dispersion information. The entire procedure is cast within an ap-
propriate probabilistic framework that can effortlessly incorporate all the epistemic and alea-
tory uncertainty sources to become a viable path for evaluating structural fragility for a
building class.
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1 INTRODUCTION

The Global Earthquake Model (GEM) is a grand eftortoffer a comprehensive open-
source tool for loss assessment on a large scal&taAcomponent of it is the definition of
physical vulnerability for different classes of limgs (Figure 1), a task that has been under-
taken by an international consortium of researcheeparate thrusts of the project are geared
towards defining building vulnerability functiongaded on (a) empirical data (b) expert opin-
ion and (c) structural analysis. Our focus willdethe latter part with emphasis on low- and
mid-rise structures and specifically on the develept of guideline documents for estimating
analytical fragility functions for assessing stwreil damage.

The analytical vulnerability guidelines are beingveloped as a hierarchy of approaches
that can accommodate different levels of experta. proposal thus accommodates several
paths towards reasonable approximations that stiifkerent compromises between the time
committed and the accuracy achieved. The preserk deals with the case where the analyst
has the skills and time to perform nonlinear statialysis. The minimum target is for a struc-
tural engineer with Master’s level training and Himlity to create simplified nonlinear struc-
tural models, to be able to determine the vulnéitabiunctions pertaining to structural
response, damage or loss with reasonable effors. fds been defined as 20-40 man-hours
for any single structure, and 80-160 man-hoursfolass of buildings.

Estimating vulnerability for a class of buildings/olves a number of steps that need to be
undertaken in series. First and foremost, a s&hdéx” buildings needs to be selected to rep-
resent the class. These are typically 3 to 7 diststructures having different macro-
characteristics, such as number of stories, lelzebostruction quality and degree of vertical
or plan asymmetry. Subsequently, appropriate strattmodels need to be generated and
structural analysis undertaken to determine tresponse to seismic loads. Fragility curves,
i.e., probability-valued functions of the seismitensity for exceeding specified damage
states for each story or an entire building, aentestimated. The final step is the estimation
of losses. At each step all sources of uncertaiegd to be quantified and propagated to the
final result, taking into account the variability ground motions, single building properties,
population diversity and our own methodologicabesr

Our focus will be on the modeling and analysis esagvith particular emphasis on provid-
ing a solid basis for evaluating fragility curves & single building without loss of any prob-
abilistic information. Among a wealth of offeredtpa to achieve this, we are only going to
discuss the option of applying nonlinear staticlgsia on simplified stick models of the struc-
tures, representing an excellent compromise betaeeumracy and simplicity.
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Figure 1: Conceptual framework for seismic riskeassnent adopted by GEM (source:
http://en.wikipedia.org/wiki/Global Earthquake Mdde
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2 SIMPLIFIED STICK MODELS

The development of structural models for each inoleidding is an important issue when
deriving analytical vulnerability functions. Theraplexity of detailed modeling offers unde-
niable accuracy, yet it often absorbs most of tfiertedue to the multiple representative
buildings employed. Typically, a detailed 2D or 8iblti-degree-of-freedom model would be
required for each index building. Appropriate resgmetation of the nonlinear behavior of all
identified lateral-load resisting components in bioidding (columns, beams, walls, braces etc.)
is essential. Significant global or local geomenanlinearities (e.g., R-effects, brace buck-
ling) also need to be included. In short, this im@deling level that is roughly equivalent to
the detail needed for assessing an individual mgldccording to current seismic guidelines.
Despite the inherent accuracy and reliability aftsdetailed models, their use in loss estima-
tion for an entire class may not always be pratti€he broad variability within the class
means that individual details that have been palkisgly modeled will eventually disappear
and only some macro-characteristics may domindten;Tthe simplicity of a 2D stick repre-
sentation of a building becomes a cost-effectiterahtive.
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Figure 2: A three-story stick model, showing coluetements, floor masses;M M; and rotational springs to
represent beam and foundation stiffness.

Our proposal for a simplified macro-model is basedthe concept of “fishbone” models
pioneered by Luco et al. [1] to represent momesisting frame buildings. This would reduce
a frame to a single column-line, each story rotwily restricted by two half-beams that are
roller-supported at their opposing ends. This idas been further simplified and generalized
to represent both flexural and shear buildingshasve in Figure 2. It retains the column-line,
comprisingN columns andN nodes (plus the foundation node) fistories, each with 3 de-
grees of freedom (horizontal, vertical, rotational)2D space. The nodes are further re-
strained byN rotational springs representing the strength diffiesss of beams at each floor.
All elements are nonlinear, at the very minimumihg\wa capped elastoplastic behavior, i.e.,
an elastic perfectly-plastic relationship of foeformation, moment-rotation or stress-strain
that contains a hard-coded ultimate ductility towgiate component failure (Figure 3). Ele-
ment characteristics can be easily derived usiecatigregate stiffness of the columns, piers,
walls or beams in each story together with theesponding yield and ultimate displacements
or rotations. Only translational story masses risedssigned to each node, while global P-
effects are explicitly taken into account.

By thus condensing the characteristics of eacly stdo one column and one rotational
spring, the stick model achieves remarkable econdfityle it can capture many of the sali-
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ent features of modern buildings, especially heighattical irregularities and flexural versus
shear behavior, it cannot take into account amgcedfrelated to the two neglected horizontal
dimensions. For example, the effect of column casgion/tension due to the overturning
moment, or any shear lag effects within a singlaniodéine are not captured. In addition, as
with any 2D structure, 3D interaction effects aod modeled. This is of little importance for
plan-symmetric structures with distinct lateralda@sisting systems in the two horizontal di-
rections. It becomes an issue for plan-asymmetricctires or wherever the appearance of
mass/shear center eccentricity causes torsionayt aso introduce bias in the results if the
system strength in the two horizontal directionsti®ngly interacting, thus making biaxial
shaking significantly more detrimental than unidxia
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Figure 3: The capped elastic-plastic backbonedsiimplest recommended force-deformation or moment-
rotation backbone relationship for elements.

Such 3D effects can still be taken into accountrexmately by using theoretical or re-
gression expressions to relate, e.g., the indetasf asymmetry to a reduction in the column
and beam ductility capacities incorporated in theeh. This is considered a far superior ap-
proach than using a direct “damage modifier”, whtwe modification is applied on the EDP
displacement (or acceleration) response of the hratteer than its properties, leading to con-
siderable difficulties in properly defining collagsn other words, it is not easy to make such
modifications influence the seismic intensity legalising collapse when applying them only
in post-processing. By including them in the mopEperties, though, their integration be-
comes more natural. For example, for square-plalti-tmy space-frames with ductile mem-
bers, it can be shown that a normalized plan edcéptof e leads to an increase of elastic
base shear in any of the two directions by a fastdr+1.%. Reducing the yield and ultimate
ductility of both the beam spring and the columenednt in the corresponding eccentric sto-
ries yields a simple method to roughly accountffiis effect.

3 EVALUATION OF FRAGILITY CURVESUSING NSP

While nonlinear dynamic analysis is steadily gagnground as the standard method of
analysis, at present its use largely remains withénacademic community. The mainstay of
current practical guidelines for seismic assessnseatrrently the nonlinear static procedure
(NSP). There are several methodologies for estmgdtiagility curves for a structure that are
based on NSP, using a pushover analysis to evadyatem performance. They are generally
simple and relatively easy-to-use methods thatiraretive for engineers that have worked
with nonlinear static analysis. Apart from any ioa@cies incurred by the well-known ap-
proximating nature of the pushover, they do shaeerajor drawback: Despite trying to cap-
ture an inherently probabilistic quantity such &e fragility curve, they are in essence
deterministic approaches, simply because of tleit in classic pushover analysis.
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Typical NSP approaches determine a single demalne ¥ar any structural response vari-
able (or engineering demand parameter, EDP) thraégmonds to a given level of the seismic
intensity measure (IM), as measured in terms ofsihectral acceleratio&(T) at periodT.
This is summarized in the so-called performancetpaituated on the capacity curve at an
estimated target displacement (typically of thefxodhis single demand value can be esti-
mated via two possible methods, namely displacemmantification/coefficient method (Ve-
letsos and Newmark [2]) or the equivalent lineararaapproach (Jacobsen [3]). In the first
case, arR-u-T relationship is employed to provide an approxioratio the mean or median
value of ductility,«, of a nonlinear single-degree-of-freedom oscillatith periodT that is
subjected to a given level of intensity, definedtihg strength rati® The latter is the ratio of
the seismic force over the oscillator yield stréngtr simply the seismic intensity & terms
over its value that causes yield. This method éslihsis of most current US and EU guide-
lines, namely ASCE/SEI 41-06 [4] and EN1998-Palt[#]. The equivalent linearization
method, instead, utilizes a lengthened period and@eased damping value to define a line-
ar oscillator that can provide the needed (meanéangdlisplacement response. It has been
popularized by the ATC-40 document and it was lateswn to be able to deliver mean or
median results of similar accuracy to the displametmodification approach (FEMA 440
[6]), as long as a direct physical interpretatismot a constraint when deriving the equivalent
period and damping. Still, it remains an indiregpach that has not seen much use beyond
ATC-40 [7]. Therefore it will not be the focus afiloproposed approach.

Summing up, the constraints placed upon NSPs byatiget displacement approximation
method essentially limit its ability to provide allfdistribution of response for a given level
of intensity and hence capture the seismic inpodoaness. As a result, the static pushover
itself is only used as a method to determine thd#rakvalue (median or mean) of intensity
measure (IM) capacity that anchors the fragilityvey while the dispersion around it is typi-
cally an assumed constant value, regardless afgberi deformation. This has the undesirable
effect of providing only a rough approximation betconsiderable record-to-record variabil-
ity, while not offering any insight into the additial dispersion due to aleatory and epistemic
sources inherent in modeling, analysis and threstalues of EDP capacity.

Recent advances iRu-T relationships have offered at least two viablaasst for intro-
ducing record-to-record variability back into NSBtimates. The first is the work of
Vamvatsikos and Cornell [8] on SPO2IDA, a spreadstevel tool that allows estimating the
median and dispersion of ductility for complex quiakar capacity curves that may incorpo-
rate a negative stiffness segment, e.g. dueAcoPmaterial in-cycle degradation and a resid-
ual strength branch, similar to the post-peak respoof a braced or infilled frame. The
second approach comes from Ruiz-Garcia and Mir@@ididnat have offeredR-u-7 (or, more
precisely Cr-u-T, where Cr = u(R)/R) expressions with dispersion information for epast
plastic oscillators. Such tools offer substantiaiyproved information that can be used to in-
ject probability back into traditional NSPs.

3.1 Probabilistic basis of fragility

Fragility curves have been around for a long tideing back to the early work in the nu-
clear industry, e.g., Kennedy and Ravindra [10jouin case, the probabilistic formulation that
will be adopted to represent the fragility curveegdoack to at least the concepts forming the
backbone of the SAC/FEMA framework (Cornell et &l1]) that have also appeared in the
earlier or later work of many researchers, for epl@nShinozuka et al [12], Choi et al [13]
and Kazantzi et al. [14]. Following in their foaps, the fragility function is defined as the
probability function of the limit-state capaci@/being exceeded by the demdndor a given
intensity level (i.e. IM-value)s. It may be defined for an entire building or faryeof its sto-
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ries. In both cases, if demand and capacity areesgpd in terms of intensity levels, then we
get the simplest representation of fragility:

Rs(9=P(C<D|s)=P(s <s|s)=F(s|s) (1)

wheres; is the (random) IM-value of capacity that when eedaed signals violation of the
limit-state and F[-] is the cumulative distributitmction (CDF) of its arguments. Essentially,
the fragility curve then becomes the CDFsgkvaluated at the intensity lewv&llt is usually
assumed thag; is lognormal, leading to the simple expression of:

Ins—In§
Rs(9) =0 ———— 2
(s) ( 7 j 2)

where §, is the median IM-value of capacity ajfig the corresponding dispersion (standard

deviation of the log-data). While conceptually sleyghese two parameters may become dif-
ficult to evaluate as the results of structurallgsia are in terms of EDP given the level of IM,
rather than vice-versa.

Therefore, a more intuitive format is based ondkpression of both demand and capacity
in terms of the engineering demand parameter shased to test for limit-state violation.df
is the corresponding EDP capacity ahithe structural demand (both random variables) the

Ps(s)=P(C<DJs)=P(6,<0]s) (3)

Again, it is assumed that both demand and capacgyognormal with mediané(s) ,éc and

dispersiongyq, foc, respectively.

Then, considering that the sum (or difference) of two normal vasablalso normal, and
assuming that demand and capacity are independent (see also the théeeemsion in Cor-
nell et al. [11]) the following well-known result comes up (ekennedy and Ravindra [10]):

Iné(s)—In HCJ @

Rs(s) =@
Voo

Following the work of Cornell et al. [11], a power law approxiorats assumed for the
median EDP demand given IM, which is valid as long as tietste has not approached the
global instability region:

d(s)~a-s (5)

Then, by introducing the above into Eq. (4) a simpler approxamanhay be derived for fra-
gility that resembles the earlier IM formulation:

F,LS(S)ch[lna+ blns—lnécJzq)llns—(lnéc—lna)/b] 6)
B+ SR AL

Now, it becomes obvious by comparing Eq. (2) and (6) that #aian and dispersion of the
IM value of capacitys,, may be estimated as:

i éc 1/b
&= [EJ (7)
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fo =Bt P ®

In order to introduce the effect of epistemic utaiety, it is assumed that demand and ca-
pacity maintain their medians but acquire additiatispersion offuss andpusc, respectively.
This is typically referred to as the “first-ordessamption” and it causes the overall dispersion
of Eq. (8) to become instead:

Pro = B B B+ P ©)

The dispersiongyc, fuss andpugc are essentially parameters of the problem thad rebée
provided and cannot be easily determined by a gmpmputational analysis. For example,
Kazantzi et al. [15], Liel et al [16], Dolsek [1A,amvatsikos and Fragiadakis [18] offer a
number of computational methods for estimaifiygy when dealing with models having un-
certain parameters. Similarly, the median EDP cd#pag best determined by experimental
data, post-earthquake surveys or expert judgmenth® other handy, b andgyy can be rea-
sonably approximated, ideally by multiple dynammalgses (e.g. incremental dynamic analy-
sis, IDA, Vamvatsikos and Cornell [19]) or, in margses, with a simple static pushover. The
latter will be the focus of the proposed method.

3.2 Estimation in a pushover setting without global collapse

The “central value” of roof (or generally contrabdae) displacement response correspond-
ing to any level of spectral acceleration intens8y = s can be estimated as follows (e.g.
EN1998 [5], ASCE/SEI 41-06 [4]):

n ~ T2

Ot =ICi—-S 10
roof R47Z'2 ( )
wherel is the first-mode participation factor (estimafed the first-mode shape normalized
by the roof displacement}, is the equivalent SDOF system period a}kdis the median ine-

lastic displacement ratio for the given strength r&id&onsidering that the pushover results
offer practically a one-to-one mapping between any local EDP and dhalisplacement,
with the possible exception of isolated spots in the negstiffeess region, we can represent

the median roof drift as a function of the corresponding median E@.Ri,wf = 010 @).

Then we can use the pushover results to easily estimadgdheorresponding to the median
capacity valuet, and solve for the corresponding median seismic intensity:

A 4r* A
=———0 0o \O: 11
§= e il (11)
For the mediarCg, one can use SPO2IDA for practically any shape of capacity curve, or
resort to the simpler relationships provided by Ruiz-Garcia andnda [9], valid for elasto-
plastic systems:

s _A(R)_,  R-1

C 12
"R 7912718 (12)

An appropriate value foR for use with Eq. (12) should generally correspond to a value of
seismic intensity close to the region of interest, or, in othedsyeclose to the median EDP-
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oof (06)/5y. A poten-

tial solution would be to prescrid&in = wim in the sense of the equal displacement rule, but
this would grossly overestimate bdihandg,q for shorter periods. A much better solution is
to setu = wim in EQ. (12) and solve the resulting quadratic egpion forR. Sinceb and the
dispersionfy tend to increase witR (rather than remain constant), it is best to takmiat
estimate (a form of biased fitting) at a reduceldi@asay at 85% of the resultiigvalue

value of capacity. In terms of ductility, this mayesthe value ofy,,, = o,

R, = max{ 0.425(1— C+/CP+ 202y —1) + 1) 1.0}, wherec=7912T"*  (13)

A lower limit of 1.0 has been imposed for performarpoints close to yielding as the 85%
reduction taken above may maRg, become less than 1.0.

Thanks to the proportionality betwe€g andd..r/ S, a useful locab can be estimated
through Eq. (12) by interpolating in log-space besw the yield point ai(R) = (1,1) and the
value of the median atR;n,. This is equivalent to the ratio of the logs df thtter two values,
which can be easily estimated from Eq. (12) abbyetaking the log of both sides and then
dividing by IR

) m(l Rl]
b NARR) _ . 7912T*" (14)
In I%im In I%im

In the limiting case oRim = 1, signifying elastic response, the sldpe always set to 1.0.
Strictly speaking, this is theslope corresponding to the roof displacementhéndase of in-
elastic response, proportionality should be loca#iiid betweers,.s andé for the abové to
be usable for the latter. Otherwise more carefidrpolation will need to be performed close
to the median value &f.

Finally, the needed conditional demand dispersian also be estimated from either
SPO2IDA [8], or the work of Ruiz-Garcia and Miran@. Then, the dispersion éfq is the
same as the dispersion®©, as they are proportional:

1 1
+
5876 11749T + 0.

Oty = Oincy = 1957{ }{1— ex- 0739R,, -]y (15)

If proportionality holds in the vicinity of betweend;o andd, then they both share the
same dispersion. This is a reasonable assumptairgémerally makes sense for most situa-
tions. Otherwise, it is best to estim@ig as one half of the difference between the 16 &hd 8
percentiles ob at the given intensity level:

_ In 984 —In 916 _ In 6[3roof eXF(O-In Sroof )]_ In 9[5roof eXF(_ O Sroof )]
2 2

whered[-] represents the inverse mapping offered by tehpver between roof drift and the
EDP of choice.

Note that when multiple EDPs are used to definend-ktate, where exceeding any one of
them signals violation, the above framework shdvat they will generally offer the sarfgy
dispersion to the fragility curve. As long as ngrsficant differences are introduced by the
other aleatory and epistemic contributions to tispetsion between the different EDPs, then
we only need to define the appropriate median Bitgrcapacity that corresponds to the EDP
that governs, i.e., use the one whésenedian capacity corresponds to the lowest roof dis
placement. This is for example the case of usiegstbry drifts to determine the limit-state:

Pay (16)
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Separate checks for each story can be convenimplgced by a single check of the maxi-
mum drift over all stories, as long as all stohase about the same drift capacity and the lim-
it-state is considered to be violated if any stdrift exceeds it (which is the usual choice).
Even if the dispersions corresponding to each EBfErdignificantly, the above statements
are still true as long as the dispersion corresjpgnit the governing EDP is the highest. Oth-
erwise, all EDPs may need to be taken into accdontexample via the formulation dis-
cussed in Choi et al [13], to incorporate issuesarfelation. It is noted however that such
considerations are mostly an issue for taggingiegiobns, where assigning a single damage-
state to an entire building makes sense. Seismegdgsessment is best performed through a
fine-grained application of fragility, at the stooy even component level that allows a more
accurate calculation of cost. Furthermore, stradtunon-structural and content damage is
best considered separately rather than throughmamom damage-state. Thus, it is not envi-
sioned that multiple EDPs will become important widkefining such localized damage-states.

In summary, a simple algorithm for estimating fligicurves for an elastoplastic system
and for any limit-state defined by a single sc&BP under the assumptions presented above
can be cast as follows:

1. Run a static pushover analysis in order to obtaéncipacity curve and the correspond-

ing results for the EDP needed for limit-state wigitn.

2. Fit the pushover curve via an elastoplastic idadiin

From the pushover results estimajg, (éc , 1.%., the median roof displacement corre-
sponding to the median EDP capacity.

Estimate the median IM capacit§, from Eq. (11) and (12)

w

Estimateb from Eq. (14)
Estimateyy from Eq. (15) or (16)
Evaluate the fragility dispersion according to E&).or (9).

N o o &

Use of SPO2IDA only changes steps 4-6, where idsséd&q. (12), (14) and (15) to esti-
mateCg, b andpyq, respectively, direct numerical results are talkem the SPO2IDA tool.

In any case, the overall fragility curve is defingdthe median IM capacity and the corre-
sponding total dispersion, according to Eq. (2this very simple scheme that needs no itera-
tions and no assumptions about record-to-recorcidity. Moreover, it is fully compatible
with nonlinear dynamic analysis results, as longha@sassumptions of the pushover analysis
hold, theR-x-T relationship is accurate enough for the capacitye employed (see also De
Luca et al. [20] on fitting) and the limit-statenst close to the region of global dynamic in-
stability.

3.3 Introducing global collapseinfor mation

The phenomenon of global dynamic instability malyappear if adequate modeling of P-
A and/or material in-cycle degradation has been eyepl, or, at the very least, some ultimate
ductility capacity has been imposed a posterioriten pushover results. Such modeling op-
tions generate a distinctive plateau on the IDAsesrin IM versus EDP co-ordinates (for ex-
ample the region beyond the ductility of 5 in Figuta). This corresponds to an explicit
simulation of the results of global collapse. Thestimation of the fragility for limit-states
that occur close to this region cannot be religidyformed with the aforementioned proce-
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dure. To be more precise, if the corresponding areditensity capacitg. is higher than the

16% spectral acceleration collapse capacity @eR-value of about 2.3 in Figure 4b), the
power-law approximation of Eq. (5) is no longer @ete. Thus, additional steps need to be
taken when defining the fragility curve to ensunattcollapse (which by default violates all
limit-states) is taken into account.

First, the values o€r, b andpyy should only be based on intensities that dirgotBcede
the 16% value of capacity. In other words, theyusthdoe based on non-collapse responses
(ideally, higher intensities should also be incldidg taking into account only non-collapse
data points but this definition is only usable whiscrete dynamic analyses are available).
Then, the probability of collapse needs to be diyancorporated by conditioning on collapse
and non-collapse (Jalayer and Cornell [21]):

Rs(9=P(C<D|sNC)-(1-R.(9))+ R(9) (17)

wherePc(s) is the probability of collapse, or simply, thadility of the global collapse limit-
state andP(C<D]s, NC) is the fragility curve determined with the prouee presented earlier.

Note that due to the nature of global instabilgynplified assumptions fail to deliver the
desired fidelity if an EDP basis is chosen for aating the collapse fragilitiPc(s). The ap-
pearance of multiple “infinite” values of EDP dueinhdividual collapses (Figure 4a) means
that the distribution of EDP at a given intensignoot be characterized by a lognormal. On
the contrary, an IM basis is perfectly adequatdpgsormality still holds. Thus, the collapse
fragility can only be defined via Eg. (1), whosegmaeters are directly provided by SPO2IDA.
Note here that this is different from other defomits of collapse where the model happily
goes on forever (i.e., the IDA curves never flalin Figure 4a) and collapse is retro-actively
defined by some EDP capacity. Such cases may et thfe fidelity and accuracy of the
above formulation, yet they have the advantageeofgpconveniently handled with the origi-
nally presented approach, without needing to séglgraccount for global instability.

10 T T T 10 T T

- — |IDA curves — fractiles of p given R
2. 9t @ flatline capacities B 3 9p = =+ fractiles of R given

(& ol | n° 8 ® fractiles of capacities

© =~ [
[%p] ©
(%)
1|3|: 7L -
- o

S 6f s 6 16% IDA of p|R 5 N
S E or 84% of R 84% capacity
e 5r g 5 7
g £ \

o 4t = 4 0 g 1
3 S 50% IDA of IR 50% capacity
g 5 3 s or Rlu 1
s c 16% capacity
j=2} s a 2

S o g 84% IDA of u|R

aql 21 or 16% of R|u

0 i i i i i 0 i i i i i
0 1 2 3 4 5 6 0 1 2 3 4 5 6
ductility, p = &/ 8 ¥4 ductility, p = /8 ¥4
(a) (b)

Figure 4: (a) Forty IDA curves and (b) their sumization into 16/50/84% fractiles for an SDOF systdine
EDP is ductility and the IM i§,(T1) normalized by its yield-level value. Th&bo fractiles EDP|IM curves are
practically identical to the (%)% IM|EDP curves (Vamvatsikos and Cornell [19]).

4 CONCLUSIONS

A simplified method has been presented for extngcfiiagility curves via the static pusho-
ver method preferentially coupled with simplifietick models for optimal application to
large sets of buildings. The methodology allows #teurate estimation of the record-to-
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record variability and the introduction of any dgxhal source of uncertainty, without need-
ing to resort to ad hoc assumptions. It is thugpknand reliable enough to be applicable to a
large number of buildings and become useable tomatng fragility not just for a single but
for an entire class of structures, as requiredfglication with the Global Earthquake Model.
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