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ABSTRACT: Introducing a fast and accurate method to estimate the seismic demand and capacity of first-mode
dominated multi-degree-of-freedom (MDOF) systems by approximating the Incremental Dynamic Analysis
(IDA) through the Static Pushover (SPO) analysis. While the computer-intensive IDA would require several
nonlinear dynamic analyses under multiple suitably-scaled ground motion records, the simpler SPO helps ap-
proximate the MDOF system with a single-degree-of-freedom (SDOF) oscillator whose backbone matches the
structure’s SPO curve far beyond its peak. Thanks to the empirical equations implemented in the SPO2IDA
software, the summarized IDA curves of the resulting system are effortlessly generated, enabling an engineer-
user to obtain accurate estimates of seismic demands and capacities for limit-states such as global dynamic
instability. Using a nine-storey building as a case study, the methodology is favorably compared to the full IDA.

1 INTRODUCTION

At the core of Performance-Based Earthquake Engi-
neering (PBEE) lies the accurate estimation of the
seismic demand and capacity of structures, a task that
several methods are being proposed to tackle. One
of the promising candidates is IDA (Vamvatsikos &
Cornell, 2002b), a computer-intensive procedure that
has been incorporated in modern seismic codes (e.g.
FEMA, 2000) and offers thorough demand and ca-
pacity prediction capability, in regions ranging from
elasticity to global dynamic instability, by using a
series of nonlinear dynamic analyses under suitably
multiply-scaled ground motion records. Still, profes-
sional practice favors simplified methods, mostly us-
ing SDOF models that approximate the MDOF sys-
tem’s behavior by matching its SPO curve, coupled
with empirical equations derived for such oscillators
to rapidly obtain a measure of the seismic demand
(FEMA, 1997). Such procedures could be extended to
reach far into the nonlinear range and approximate the
results of IDA, but for their using oscillators with bi-
linear backbones that only allow for elastic perfectly-
plastic behavior, and occasionally positive or neg-
ative post-yield stiffness (e.g. Miranda, 2000, Nas-
sar & Krawinkler, 1991). With the emergence of the
SPO2IDA software (Vamvatsikos & Cornell, 2002a),
empirical relations for full quadrilinear backbones are
readily available, which, when suitably applied to the
MDOF SPO, allow us to accurately approximate the
full IDA and investigate the connection between the
structure’s SPO curve and its seismic behavior.

2 IDA FUNDAMENTALS

To illustrate our methodology, we will perform IDA
for a centreline model of a 9-storey steel-moment re-
sisting frame designed for Los Angeles according to
the 1997 NEHRP provisions (Lee & Foutch, 2002).
The model incorporates ductile members, shear pan-
els and realistically fracturing Reduced Beam Section
connections, while it includes the influence of interior
gravity columns and a first-order treatment of global
geometric nonlinearities (P-∆ effects). Essentially, it
is a first-mode dominated structure that has its funda-
mental mode at a period ofT1 = 2.3 sec, accounting
for 84.3% of the total mass, hence allowing for some
significant sensitivity to higher modes.

We have also compiled a suite of twenty ground
motion records that have been selected to represent a
scenario earthquake (Vamvatsikos & Cornell, 2002c);
the moment magnitude is within the range of 6.5–6.9,
they have all been recorded on firm soil and show
no directivity effects. IDA involves performing a se-
ries of nonlinear dynamic analyses for each record by
scaling it to several levels of intensity that are suitably
selected to uncover the full range of the model’s be-
havior: from elastic to yielding and nonlinear inelas-
tic, finally leading to global dynamic instability. Each
dynamic analysis can be characterized by at least
two scalars, an Intensity Measure (IM ), which rep-
resents the scaling factor of the record (e.g. the 5%-
damped first-mode spectral accelerationSa(T1,5%))
and a Damage Measure (DM ), which monitors the
structural response of the model (e.g. maximum peak
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Figure 1. 16%, 50%, 84% fractile IDAs and limit-state ca-
pacities
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Figure 2. The median IDA compared against the SPO gen-
erated by an inverted-triangle load pattern

interstorey drift ratioθmax or peak roof drift ratio
θroof).

By suitably interpolating between the results of the
dynamic analyses, we can plot on theDM -IM axes
an IDA curve for each record. The twenty IDA curves
that are thus produced can then be summarized into
the 16%, 50% and 84% fractiles, as presented in Fig-
ure 1 and explained in detail by Vamvatsikos & Cor-
nell (2002c). Additionally, limit-states such as Im-
mediate Occupancy and Collapse Prevention (FEMA,
2000), or the global dynamic instability (evident by
the characteristic flattening, termed theflatline, on
each IDA) can be easily defined on the curves. Fi-
nally, by combining the results of IDA with a haz-
ard analysis within a proper probabilistic framework,
we can estimate the mean annual rates of exceeding
each limit-state (Vamvatsikos & Cornell, 2002b), one
of the ultimate goals of PBEE. Still, the calculation of
the full, twenty-record IDA requires about 24 hours of
computing on a single 1999-era processor, something
that may be beyond the practicing engineer.

A path to a simpler solution appears if we choose
to plot the SPO of the MDOF system onθmax ver-
susSa(T1,5%) axes, where the total base shear is di-
vided by the total mass and scaled to match the elastic
part of the IDA by an appropriate factor (that is equal
to one for SDOF systems). By thus plotting the SPO
curve versus the median IDA curve on the same graph
(Fig. 2), we observe that both curves are composed of
the same number of corresponding and distinguish-
able segments (Vamvatsikos & Cornell, 2002b). The
elastic segment of the SPO coincides by design with
the elastic IDA region, having the sameelastic stiff-
ness, while the yielding and hardening of the SPO
(evident by its non-negative slope up to the peak)
forces the median IDA to approximately follow the
familiar equal displacementrule for moderate period
structures, by maintaining the same slope as in the
elastic region. Past the peak, the SPO’s negative stiff-

ness appears as a characteristic flattening of the IDA,
the flatline, that eventually signals global collapse
when the SPO curve reaches zero strength. This ap-
parent qualitative connection of the SPO and the IDA
drives our research effort to provide a simple proce-
dure that will use the (relatively easy-to-obtain) SPO
plus some empirical quantitative rules to estimate the
fractile IDAs for a given structure, providing the IDA
curves at a fraction of the IDA computations.

3 SPO2IDA FOR SDOF SYSTEMS

Based on the established principle of using SDOF os-
cillators to approximate MDOF systems, we have in-
vestigated the SPO-to-IDA connection for simple os-
cillators. The SDOF systems studied were of mod-
erate period with moderately pinching hysteresis and
5% viscous damping, while they featured backbones
ranging from simple bilinear to complex quadrilinear
with an elastic, a hardening and a negative-stiffness
segment plus a final residual plateau that terminated
with a drop to zero strength. The oscillators were ana-
lyzed through IDA and the resulting curves were sum-
marized into their 16%, 50% and 84% fractile IDA
curves which were in turn fitted by flexible paramet-
ric equations (Vamvatsikos & Cornell, 2002a). Hav-
ing compiled the results into the SPO2IDA tool, avail-
able online (Vamvatsikos, 2001), an engineer-user is
able to effortlessly get an accurate estimate of the per-
formance of virtually any moderate-period oscillator
without having to perform the costly analyses, almost
instantaneously recreating the fractile IDAs in nor-
malized coordinates ofR = Sa(T1,5%)/Sy

a(T1,5%)
(whereSy

a(T1,5%) is the Sa(T1,5%)-value to cause
first yield) versus ductilityµ.

4 SPO2IDA FOR MDOF SYSTEMS

Adopting an approach similar to FEMA 273 (FEMA,
1997) we can use the SDOF IDA results generated
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Figure 3. Fourθroof SPOs produced by different load pat-
terns.

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

drift ratio, θ roof  or θmax

ba
se

 s
he

ar
 / 

m
as

s 
(g

)

SPO in θroof
SPO in θmax

 

Figure 4. The most-damaging of the four SPO curves,
shown in bothθroof andθmax terms.
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Figure 5. Approximating the most-damaging of the four
θroof SPO with a trilinear model.
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Figure 6. The fractile IDA curves for the SDOF with the
trilinear backbone, as estimated by SPO2IDA.

by SPO2IDA to approximate the seismic behavior
of the first-mode dominated MDOF system. This en-
tails using an SDOF oscillator having the structure’s
fundamental period, whose backbone closely matches
the SPO of the MDOF building. The resulting frac-
tile IDA curves for the SDOF system only need to
be properly rescaled from theirR, µ coordinates to
predict the fractileθroof IDAs and additionally, us-
ing the SPO, can be transformed to estimate the frac-
tile θmax IDAs. While the methodology may seem
straightforward, the ability of SPO2IDA to extend the
results well into the SPO’s post-peak region pushes
the method to its limits and poses several challenges
that have to be overcome.

4.1 Defining the SPO
While for an SDOF system the SPO is uniquely de-
fined, this is not the case for the MDOF; depend-
ing on the load pattern selection, one may generate
several different SPO curves, as evident in Figure 3.

Therein we have plotted theθroof SPOs for the nine-
storey building subjected to four different load pat-
terns, producing four quite different SPOs. Beginning
from the outermost SPO to the innermost, we observe
the following:

1 A load pattern that is proportional to the first-mode
shape times the storey masses is the most opti-
mistic of the four, as it predicts the highest strength
and roof drift ratio,θroof≈ 0.32, before system col-
lapse occurs.

2 If instead of just the first mode we use a Square-
Root-Sum-of-Squares (SRSS) combination of the
first two mode shapes we get the second most op-
timistic curve, where the maximum strength has
dropped significantly, but the roof drift ratio at col-
lapse remainsθroof≈ 0.32.

3 By changing the load pattern at the peak of the
previous SPO to a uniform one, i.e. a shape that
is directly proportional to the storey masses and
resembles an SRSS of the first two mode shapes



of the damaged structure at the peak of the SPO,
we uncover a severer drop towards collapse, with
zero-strength occurring atθroof≈ 0.25.

4 If instead of the uniform we impose in the post-
peak region a triangular pattern (the minimum
force being at the roof-level), it surprisingly pro-
duces the severest SPO of all, with global collapse
happening atθroof≈ 0.14, less than half of the pre-
diction generated by the pure first-mode load pat-
tern.

In essence, the choice of the load pattern has a sig-
nificant effect on the calculated SPO curve and evi-
dently, each of the four possible realizations pictured
in Figure 3 will produce a different estimate for the
seismic demands and capacities. As shown for sim-
ple oscillators by Vamvatsikos & Cornell (2002a), if
we progress from the outermost SPO to the innermost
one, the estimates ofDM demands past the SPO peak
will monotonically increase, and correspondingly the
estimatedIM -capacity for any limit-state that lies be-
yond the peak will decrease.

In general, the use of a rigid load pattern con-
strains the deformed shape of the structure, allowing
it to withstand higher lateral loads and carry them
to higher ductilities. Since structures usually col-
lapse following a least-energy, least-resistance path,
it makes sense to assume that a similar approach will
render the best results for our approximating method,
i.e. the SDOF oscillator whose backbone mimics the
worst-caseSPO will correctly approximate the dy-
namic behavior of the true MDOF model. Actually,
we should expect that in the post-peak region, the
further an SPO lies from the worst-case one, the
more unconservative results it will produce, gener-
ating upper-bound estimates of limit-state capacities
and lower-bound estimates of demands.

Such intuition is confirmed by comparing the de-
formed shapes of the structure produced by the var-
ious SPO and IDA curves. While the median IDA
deformed shape shows that in the post-peak region
most of the deformations are concentrated on the up-
per floors, only the most-damaging of the four SPOs
manages to produce a similar deformation pattern.
The other three load patterns seem to concentrate de-
formations mostly at the lower floors, thus not forc-
ing the structure through the most-damaging, least-
energy path as the dynamic analysis does. Hence, we
choose to focus our efforts and all calculations to fol-
low only on the most-damaging of the four SPOs.

Unfortunately there is no obvious recipe to help
us arrive at the worst-case SPO. It is hard to predict
in advance what load pattern will be the most appro-
priate, especially if one does not have a priori the dy-
namic analysis results to confirm that the dynamic and
static deformed shapes match. Fully adaptive schemes
may prove to be able to find the least-energy path
to collapse, several candidates having been proposed
at least by Gupta & Kunnath (2000) and Krawin-

kler & Seneviratna (1998), but none of the proposed
schemes has been sufficiently tested and verified in
the post-peak region, where good accuracy matters
the most for all limit-states that lie close to global dy-
namic instability. A simpler, viable solution for reg-
ular structures involves using a pattern proportional
to the SRSS of several mode shapes times the storey
masses or a code-supplied pattern, at most up to the
peak of the SPO (i.e.θroof ≈ 0.02 or θmax≈ 0.04 in
Figure 4), and consequently testing at least three con-
figurations in the post-peak region : A triangle (max-
imum force at the first floor), a uniform and an in-
verted triangle (maximum force at the roof, i.e. almost
a continuation of the pre-peak pattern). By perform-
ing these three basic pushovers we get sufficiently
broad coverage and can pick a load pattern that will
provide a good enough approximation to the overall
most damaging, worst-case SPO.

Once we have an acceptable estimate of the worst-
caseθroof SPO, it is a simple matter to approximate
it with a piecewise-linear backbone, in our case a tri-
linear elastic-hardening-negative model (Fig. 5), and
process it through SPO2IDA. Instantaneously we will
get estimates of the fractile IDAs for the SDOF with
the matching trilinear backbone, as shown in Figure 6.

4.2 Estimating the IDA elastic stiffness
SPO2IDA will provide us with accurate estimates of
the SDOF system fractile IDAs, but the results will
be in dimensionlessRversusµ coordinates, and need
to be properly scaled toSa(T1,5%) versusθroof or
θmax axes. Therefore, we need to determine for each
x%-fractile,x∈{16,50,84}, the values ofSa(T1,5%),
θroof and θmax that correspond to its yield point,
namely Sy

a,x%(T1,5%), θ y
roof,x% and θ y

max,x%. Obvi-
ously, for an SDOF system, the equivalent task is triv-
ial, as the backbone directly provides us with the yield
displacement and also the yield base shear, which
when divided by the total mass will result to the value
of Sy

a(T1,5%), common for all fractiles. This is much
harder for an MDOF system, mainly due to the ef-
fect of the higher modes; some records will force the
structure to yield earlier and some later, at varying
levels ofIM andDM . By assuming that the SPO ac-
curately captures at least the median valueθ y

roof,50%,
the problem reduces to just estimating the elastic stiff-
ness (IM /DM ) of the medianθroof andθmax IDA, or,
even better, the elastic stiffness of all three fractile
θroof andθmax IDAs, kroof,x% andkmax,x% respectively.

Since such a task involves dynamic linear elastic
analysis, there are several ways to perform it, a non-
exhaustive list presented here in order of decreasing
accuracy but increasing ease-of-computation:
1 Select a suitable suite of records and perform

elastic response spectrum or timehistory analysis
for each record to determine the peak roof and
storey drifts. Directly estimate the 16%, 50% and
84% fractiles of the sample of elastic stiffnesses,
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Figure 7. Generating the fractile IDAs from nonlinear dynamic analyses versus the MDOF SPO2IDA approximation.

Sa(T1,5%)/θroof and Sa(T1,5%)/θmax, calculated
for each ground motion.

2 Select a suitable suite of records, get their 16%,
50% and 84% spectra, perform response spectrum
analysis for each and use theθroof andθmax elas-
tic stiffness calculated as the 16%, 50% and 84%
elasticθroof andθmax IDA stiffness respectively.

3 Using the median spectrum provided by the seis-
mic code, perform response spectrum analysis.
Use the calculatedθroof andθmax elastic stiffness
as an estimate for the median IDAθroof andθmax
elastic stiffness. Assume no variability exists in
the elastic stiffness, i.e. letkroof,x% = kroof,50% and
kmax,x% = kmax,50%

4 Approximate the medianθroof and θmax elastic
stiffness by dividing any elastic SPO level of base
shear by the effective first-mode mass times the
corresponding elasticθroof or θmax value respec-
tively. Assume no variability exists in the elastic
stiffness.

Although only the first method is an exact calcula-

tion of the elastic IDA stiffnesses, hence the method
of choice for the calculations to follow, little accu-
racy is to be sacrificed if we use the simpler second
method. The last two methods are useful mostly for
shorter buildings with insignificant higher mode ef-
fects, since, in a manner similar to FEMA (1997),
they neglect the variability in the elastic stiffness. Ul-
timately, the selection of the estimating procedure is
a trade-off between speed and accuracy, and depends
solely on each user’s needs.

4.3 Putting it all together

Having determined the appropriate elastic stiffnesses
for the fractile IDAs, all that remains is to prop-
erly de-normalize and scale the SPO2IDA results,
from R versusµ coordinates, intoSa(T1,5%) ver-
susθroof andθmax axes. Since the SPO has been ap-
proximated with a trilinear elastic-hardening-negative
model (Fig. 5), yield-point values of base shear,θroof
andθmax, namelyFy, θ y

roof,spoandθ y
max,spo, are read-

ily available. We will assume that eachx%-fractile



IDA, x∈ {16,50,84}, yields at about the same value
of Sy

a,x%(T1,5%), but at differentθ y
roof,x% andθ y

max,x%,
hence we get:

Sy
a,x%(T1,5%) = θ y

roof,spo·kroof,50% (1)

θ y
roof,x% = Sy

a,x%(T1,5%)/kroof,x% (2)

θ y
max,x% = Sy

a,x%(T1,5%)/kmax,x% (3)

Using Equations 1–3, we can easily rescale the re-
sults of SPO2IDA and bring them inSa(T1,5%) ver-
susθroof axes to generate theθroof fractile IDAs, as
seen in Figure 7b, which clearly compare very well
against the real IDAs in Figure 7a.

If all that we want is an estimate of theIM -
capacity for global dynamic instability of the struc-
ture, we need not proceed further. On the other hand,
to estimate other limit-state capacities (e.g. Immedi-
ate Occupancy or Collapse Prevention), we need the
IDAs expressed in otherDM s, usuallyθmax. The SPO
curve actually provides the means for such a transfor-
mation thanks to the directθroof-to-θmax mapping it
establishes when expressed inθroof andθmax coordi-
nates (Fig. 4), a concept that has been used at least
in FEMA 273 (FEMA, 1997). The variation that we
propose involves shifting theDM axis of the SPO
for eachx%-fractile, scaling theθroof values of the
SPO byθ y

roof,x%/θ y
roof,spo and theθmax SPO values

by θ y
max,x%/θ y

max,spo, thus providing a customθroof-to-
θmax mapping that will correctly transform demands
for each fractile, recognizing the variability in elastic
stiffness.

The results are visible in Figure 7d and compare
favorably with the real IDA estimates in Figure 7c.
Indeed, the estimated IDAs seem to slightly overes-
timate capacities and underestimate demands, mostly
an effect of having just an approximation rather than
the real worst-case SPO. Still, the approximation is
good enough considering the±20% bootstrap stan-
dard error that exists in estimating the fractiles from
the twenty-record full IDA. Yet, regarding ease-of-
computation, if we assume that a single 1999-era pro-
cessor is used, the analysis time is reduced from 24
hours for the MDOF IDA, to only several minutes for
the Static Pushover and the elastic response spectrum
analyses not to mention the practically instantaneous
SPO2IDA procedure. Thus, we have achieved a fast
and inexpensive estimate of the MDOF dynamic be-
havior at only a little cost in accuracy, the results, at
least for this structure, lying within the statistical er-
ror (caused by the record-to-record variability) of es-
timating the fractile IDAs from MDOF dynamic anal-
yses.

5 CONCLUSIONS
A new approximate method for estimating the seis-
mic demands and capacities of first-mode dominated
structures has been presented. Based on the Static

Pushover and building upon software able to ac-
curately predict the Incremental Dynamic Analysis
curves for SDOF systems, it can estimate, with rea-
sonable accuracy, the fractile IDA curves of first-
mode dominated MDOF systems. Several novel con-
cepts are derived in the process, perhaps the most im-
portant being that of the worst-case, most-damaging
SPO and its connection to the IDA. Using such
an SPO curve plus a few elastic response spectrum
analyses, the engineer-user is able to generate accu-
rate predictions of the seismic behavior of complex
MDOF structures within a fraction of the time needed
for a full IDA.
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