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ON THE LIMIT-STATE CAPACITIES OF A 9-STORY BUILDING

THROUGH IDA
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SUMMARY

The influence of the elastic spectral shape on the limit-state capacities of a 9-story steel moment-resisting
frame is investigated through the use of Incremental Dynamic Analysis (IDA). IDA is a parametric analysis
method that has recently emerged to estimate more thoroughly structural performance under seismic loads.
It involves subjecting a structural model to several ground motion records, each scaled to multiple levels of
intensity (measured by the Intensity Measure,IM ), thus producing curves of response parameterized versus
intensity level, on top of which limit-states can be defined and corresponding capacities can be calculated.
When traditionalIMs, such as the peak ground acceleration or the 5%-damped first-mode spectral acceler-
ation, are used, theIM -values of limit-state capacity can display large record-to-record variability. Thus, a
large number of ground motion records has to be used to achieve a given level of confidence in the results.
By testing a multitude of single spectral values as well as scalar combinations of spectral ordinates on the
9-story frame, several candidateIMs are found that significantly reduce such dispersion and consequently
the needed number of records. Furthermore, such results are used to determine the most influential regions
(or periods) of the elastic spectrum for each limit-state of the building. Thus, we are able to observe the
evolution of such influential periods as the seismic intensity and the response of the building increase, from
first yield all the way to global collapse. In conclusion, the ordinates of the elastic spectrum and the spectral
shape of each individual record are found to significantly influence the seismic performance of the building
and they are shown to provide promising candidates for new, more efficientIMs.

INTRODUCTION

An important aspect of Performance-Based Earthquake Engineering (PBEE) is calculating, for a given build-
ing, capacities for the limit-states of interest and their corresponding mean annual frequencies of exceedance.
A promising method that has been developed to meet these needs is Incremental Dynamic Analysis (IDA).
It involves performing nonlinear dynamic analyses of the structural model under a suite of ground motion
records, each scaled to several intensity levels designed to force the structure all the way from elasticity to
final global dynamic instability (Vamvatsikos [1]). Thus, we can generate IDA curves of the structural re-
sponse, as measured by a Damage Measure (DM , e.g., peak roof drift ratio or the maximum peak interstory
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(a) Thirty IDA curves versus PGA
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(b) Thirty IDA curves versus Sa(T1,5%)

Figure 1. IDA curves for a T1 = 2.4s, 9-story steel moment-resisting frame with fracturing connections
plotted against (a) PGA and (b)Sa(T1,5%).

drift ratio θmax), versus the ground motion intensity level, measured by an Intensity Measure (IM , e.g., peak
ground acceleration, PGA, or the 5%-damped first-mode spectral accelerationSa(T1,5%)). Subsequently,
limit-states (e.g., Immediate Occupancy or Collapse Prevention in FEMA [2, 3]) can be defined on each
IDA curve and the corresponding capacities can be calculated. The resulting capacities are then summa-
rized, e.g., into appropriate fractile capacities, combined with probabilistic seismic hazard analysis results
and integrated within a suitable PBEE framework to allow the calculation of the mean annual frequencies
of exceeding each limit-state (Vamvatsikos [4]).

It is an unavoidable fact that the IDA curves and, correspondingly, the limit-state capacities display large
record-to-record variability even for the simplest of structures, e.g., oscillators (Vamvatsikos [5]). This
observed dispersion is closely connected to theIM used; someIMs are moreefficientthan others, better
capturing and explaining the differences from record to record, thus bringing the results from all records
closer together. Compare, for example, Figures1a and 1b, where thirty IDA curves of a 9-story steel
moment-resisting frame are plotted using PGA andSa(T1,5%), respectively, as theIM . In both cases the
variability from record to record is indeed remarkable, especially considering that the thirty records were
chosen to represent a scenario earthquake and belong to a narrow magnitude and distance bin (Table1).
However, PGA (Figure1a) is proven to be deficient relative toSa(T1,5%) (Figure1b) in expressing the
limit-state capacities of the 9-story; it increases the variability between the curves and, correspondingly, the
dispersion of capacities everywhere on the IDAs. On the other hand, even the improvement achieved by
Sa(T1,5%) still leaves something to be desired, as dispersions remain in the order of 40% – 50%.

Why should we search for such a betterIM? There is a clear computational advantage if we can select ita
priori , before the IDA is performed. By reducing the variability in the IDA curves we need fewer records
to achieve a given level of confidence in estimating the fractileIM -values of limit-state capacities and the
mean annual frequencies of limit-state exceedance. Typically, a reduction of theIM -capacity dispersion
by a factor of two means that we need four times fewer records to gain the same confidence in the fractile
IM -capacity results (e.g., Vamvatsikos [4]); we could get same quality results by using about eight instead
of thirty records. Obviously, the computational savings would be enormous.



Table 1. The suite of thirty ground motion records used.

No Event Station φ ◦ 1 Soil2 M3 R4 (km) PGA (g)

1 Loma Prieta, 1989 Agnews State Hospital 090 C,D 6.9 28.2 0.159
2 Northridge, 1994 LA, Baldwin Hills 090 B,B 6.7 31.3 0.239
3 Imperial Valley, 1979 Compuertas 285 C,D 6.5 32.6 0.147
4 Imperial Valley, 1979 Plaster City 135 C,D 6.5 31.7 0.057
5 Loma Prieta, 1989 Hollister Diff. Array 255 –,D 6.9 25.8 0.279
6 San Fernando, 1971 LA, Hollywood Stor. Lot 180 C,D 6.6 21.2 0.174
7 Loma Prieta, 1989 Anderson Dam Downstrm 270 B,D 6.9 21.4 0.244
8 Loma Prieta, 1989 Coyote Lake Dam Downstrm 285 B,D 6.9 22.3 0.179
9 Imperial Valley, 1979 El Centro Array #12 140 C,D 6.5 18.2 0.143

10 Imperial Valley, 1979 Cucapah 085 C,D 6.5 23.6 0.309
11 Northridge, 1994 LA, Hollywood Storage FF 360 C,D 6.7 25.5 0.358
12 Loma Prieta, 1989 Sunnyvale Colton Ave 270 C,D 6.9 28.8 0.207
13 Loma Prieta, 1989 Anderson Dam Downstrm 360 B,D 6.9 21.4 0.24
14 Imperial Valley, 1979 Chihuahua 012 C,D 6.5 28.7 0.27
15 Imperial Valley, 1979 El Centro Array #13 140 C,D 6.5 21.9 0.117
16 Imperial Valley, 1979 Westmoreland Fire Station 090 C,D 6.5 15.1 0.074
17 Loma Prieta, 1989 Hollister South & Pine 000 –,D 6.9 28.8 0.371
18 Loma Prieta, 1989 Sunnyvale Colton Ave 360 C,D 6.9 28.8 0.209
19 Superstition Hills, 1987 Wildlife Liquefaction Array 090 C,D 6.7 24.4 0.18
20 Imperial Valley, 1979 Chihuahua 282 C,D 6.5 28.7 0.254
21 Imperial Valley, 1979 El Centro Array #13 230 C,D 6.5 21.9 0.139
22 Imperial Valley, 1979 Westmoreland Fire Station 180 C,D 6.5 15.1 0.11
23 Loma Prieta, 1989 Halls Valley 090 C,C 6.9 31.6 0.103
24 Loma Prieta, 1989 WAHO 000 -,D 6.9 16.9 0.37
25 Superstition Hills, 1987 Wildlife Liquefaction Array 360 C,D 6.7 24.4 0.2
26 Imperial Valley, 1979 Compuertas 015 C,D 6.5 32.6 0.186
27 Imperial Valley, 1979 Plaster City 045 C,D 6.5 31.7 0.042
28 Loma Prieta, 1989 Hollister Diff. Array 165 –,D 6.9 25.8 0.269
29 San Fernando, 1971 LA, Hollywood Stor. Lot 090 C,D 6.6 21.2 0.21
30 Loma Prieta, 1989 WAHO 090 –,D 6.9 16.9 0.638

1 Component 2 USGS, Geomatrix soil class 3 moment magnitude 4closest distance to fault rupture

Additionally, it is speculated that increasing the efficiency of theIM , may also lead to improvedsufficiency
as well. A sufficientIM produces the same distribution of demands and capacities independently of the
record selection, e.g., there is no bias in the fractileIM -capacities if we select records with low rather than
high magnitudes or if the records do or do not contain directivity pulses (Luco [6, 7]). The goals of efficiency
and sufficiency are not necessarily tied together as the former aims at reducing the variability in the IDA
results while the latter at reducing (or eliminating) their dependance on record characteristics other than the
IM . Still, using a more efficientIM will bring the results from all records closer, and similarly bring close
the IDA curves of records coming from different magnitudes or containing different directivity pulses, thus
reducing the importance of any magnitude or directivity dependance.

While Sa(T1,5%) is found to be both efficient and sufficient for first-mode-dominated, moderate period
structures when directivity is not present (Shome [8]), it is not necessarily so for other cases (Luco [6, 7]).
Therefore, it is important to try and improve ourIMs beyond the capabilities ofSa(T1,5%). Figure2 may
provide some clues; therein we have plotted the 5%-damped acceleration spectra of thirty records, chosen to
represent a scenario earthquake and appearing in Table1. The spectra have been normalized bySa(2.4s,5%),
i.e., the value ofSa(T1,5%) at the first-mode periodT1 = 2.4s of the 9-story building that we are using as
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Figure 2. The 5%-damped elastic acceleration spectra for the thirty records of Table1, normalized
by their value at the first-mode period of the 9-story building.

an example. There is obviously much variability in the individual spectra that cannot be captured by just
Sa(T1,5%). A structure is not always dominated by a single frequency, and even then, when the structure
sustains damage its properties change. Thus, spectral regions away from the elastic first-mode period,T1,
may become more influential. By taking the differences in the individual spectral shapes into account, we
may be able to reduce the variability in the IDA curves and come up with an overall betterIM .

Such information may be incorporated into theIM by using appropriate inelastic spectral values (Luco
[6, 7]). This seems to be a promising method, as it directly incorporates the influence of the record on
an oscillator that can yield and experience damage in a way similar to the structure. Still, in the context
of PBEE, the use of inelastic spectral values requires new, custom-made attenuation relationships. On the
other hand, using the elastic spectral values allows the use of the attenuation laws available in the literature.
Therefore, there is still much to be gained from the use ofIMs based on elastic spectra.

Actually, studies by Shome [8], Carballo [9], Mehanny [10] and Cordova [11] have shown that the elastic
spectral shape can be a useful tool in determining an improvedIM . Shome [8] found that the inclusion of
spectral values at the second-mode period (T2) and at the third-mode (T3), namelySa(T2,5%) andSa(T3,5%),
significantly improved the efficiency ofSa(T1,5%) for tall buildings. Carballo [9] observed greatly reduced
variability in theDM demands when spectral shape information was included by compatibilizing a suite
of records to their median elastic spectrum. In addition, Mehanny [10] and Cordova [11] observed an
improvement in the efficiency ofSa(T1,5%) when an extra period, longer than the first-mode was included
by employing anIM of the form Sa(T1,5%)1−β Sa(c ·T1,5%)β (with suggested valuesβ = 0.5, c = 2).
Additionally, they presented some evidence suggesting that sufficiency may be improved as well, since the
new IM made the IDA curves of several near-fault records practically indistinguishable, regardless of the
directivity-pulse period. Motivated by such encouraging results, we are going to use the methodology and



tools developed by Vamvatsikos [1, 4] to better investigate the potential of incorporating elastic spectral
shape information toIMs to reduce the dispersion in IDA results.

METHODOLOGY

For our investigation into the potential use of the elastic acceleration spectrum we have chosen a centerline
model of a 9-story steel moment-resisting frame with fracturing connections designed for Los Angeles
according to the 1997 NEHRP provisions (Lee [12]). The model incorporates ductile members, shear panels
and realistically fracturing Reduced Beam Section connections, while it includes the influence of interior
gravity columns and a first-order treatment of global geometric nonlinearities (P-∆ effects). Essentially, it
is a first-mode-dominated structure that has its fundamental mode at a period ofT1 = 2.4sec, accounting for
84.3% of the total mass, hence allowing for significant sensitivity to higher modes.

To perform IDA we used the suite of thirty records representing a scenario earthquake, as introduced earlier
in Table1. These belong to a bin of relatively large magnitudes of 6.5 – 6.9 and moderate distances, all
recorded on firm soil and bearing no marks of directivity (Vamvatsikos [13]). Each of these records was
appropriately scaled to cover the entire range of structural response, from elasticity, to yielding, and finally
global dynamic instability. At each scaling level a nonlinear dynamic analysis was performed and a single
scalar, the Damage Measure (DM ), in our caseθmax, was used to describe the structural response. The
scaling level and the associated ground motion intensity can be expressed by the selectedIM , which will
initially be Sa(T1,5%) for our investigation. By interpolating such pairs ofSa(T1,5%) andθmax values for
each individual record we get the thirty continuous IDA curves shown in Figure1b.

While usually only a handful of distinct limit-states of practical value would be defined on the IDA curves
(e.g., Immediate Occupancy or Collapse Prevention in FEMA [2, 3]), we will proceed to define numerous
limit-states: They will be at givenθmax values to represent the capacity of the structure at successive dam-
aged states and levels of response. Finally, the appropriateSc

a(T1,5%)-values will be calculated, i.e., the
values ofSa(T1,5%)-capacity for each record and each limit-state. Our ultimate goal is to minimize the
dispersion in theIM -values of capacities for each limit-stateindividually by selecting appropriate spectral
values or functions of spectral values to be theIM . As a measure of the dispersion we will use the standard
deviation of the logarithm of theIM -capacities, which is a natural choice for values that are approximately
lognormally distributed (e.g., Shome [8]).

Fortunately, no further dynamic analyses are needed to change fromSa(T1,5%) to other IMs and per-
form this dispersion-minimization; all we need to do is to transform each limit-state’sSc

a(T1,5%)-values
in the coordinates of the trialIMs and calculate their new dispersion. For example, if we want the dis-
persion of the capacities in PGA terms, then for each unscaled record (or at a scale factor of one) we
know both the PGA andSa(T1,5%)-values and the former can be appropriately scaled by the same factor
that the value ofSc

a(T1,5%) implies; e.g., for the 9-story building, the unscaled record #5 (Table1) has
Sa(T1,5%) = 0.114g and PGA= 0.279g, while global instability occurs atSc

a(T1,5%) = 0.49g, represent-
ing a scale factor of 0.49/0.114≈ 4.3. Hence, theIM -capacity at the global instability limit-state in PGA
terms is PGAc = 4.3 ·0.279= 1.20g. Similarly we can accomplish such transformations for anyIM based
on elastic spectral values. Thus, we are taking full advantage of the observations in Vamvatsikos [4], by
appropriately postprocessing the existing dynamic runs instead of performing new ones.

The adopted approach in evaluating the candidateIMs is very different from the one used by Shome [8],
Mehanny [10], Cordova [11] and Luco [6]. There, the focus is on demands, i.e.,DM -values, all four studies
looking for a single “broad-range”IM that will improve efficiency for all damage levels of a given structure.



On the other hand, our search will be more focused, zeroing on each limit-state separately to develop a
“narrow-range”IM that will better explain the given limit-state rather than all of them. Thus, we are able to
follow the evolution of suchIMs as damage increases in the structure, hopefully gaining valuable intuition
in the process. Still, since we use onlyθmax to define the structural limit-states, our observations may or
may not be applicable when limit-states are defined on other structural response measures (e.g., peak floor
accelerations).

The focus of our investigation will be on the efficiency gained by incorporating elastic spectrum information
in theIM . We will start by investigating single spectral coordinates. This does not constitute an investigation
of spectralshapeper se as it focuses on the use of just one value at one period. Still, it will provide a
useful basis as we later expand our trialIMs to include scalar combinations of two or three spectral values.
Another important issue will be the robustness offered by eachIM , i.e., how much efficiency it retains when
the user selects spectral values other than those chosen by the dispersion-minimization process. This is a
key question when trying to identifya priori an appropriateIM in order to take advantage of its efficiency
and use fewer records in the analysis. We are not aiming to provide the final answer for the besta priori
IM , but rather to investigate the efficiency and the potential for practical implementation offered by several
promising candidates.

USING A SINGLE SPECTRAL VALUE

The use of a single spectral value, usually at the first-mode of the structure, i.e.,Sa(T1,5%), has seen
widespread use for IDAs, having being incorporated into the FEMA [2, 3] guidelines and used through-
out most of our research. Obviously, it is an accurate measure for SDOF systems or first-mode-dominated
structures in the elastic range. However, when higher modes are important or the structure deforms into the
nonlinear range, it may not be optimal. There seems to be a consensus that when structures are damaged
and move into the nonlinear region, period lengthening will occur (e.g., Cordova [11]). In that sense, there
may be some merit in looking for elastic spectral values at longer, or in general different, periods than the
first-mode. Therefore we will conduct a search, across all periods in the spectrum, to determine the one that
most reduces the variability in theIM -values of limit-state capacities.

Some representative results for the 9-story building are presented in Figure3, for the limit-states appearing
in Figure4 at θmax equal to 0.5% (elastic), 5% (inelastic), 10% (close to global collapse) and+∞ (global
instability). The building has significant higher modes, as evident in Figure3a, since the first mode is not
optimal even in the elastic region. While all three modes,T1, T2 andT3, seem to locally produce some
dispersion reduction, the overall best single periodτ is somewhere betweenT1 andT2, at τ ≈ 1.2s. As the
structure becomes progressively more damaged, the optimal period lengthens to higher values, to finally
settle close toT1 when global instability occurs. Actually, there is a whole band of periods around the
optimalτ, from 1.1s to 1.7s, that will display low dispersions. As we move away from elasticity and closer
to global collapse, this band around the optimal period increases in width and migrates to higher periods
as well so that practically any period from 1.7s to 2.5s will achieve relatively low dispersion when close to
collapse.

In Figure5 the results are summarized for all limit-states, showing the gradual lengthening of the optimal
period, fromτ = 1.2s in the elastic range up to aboutτ = 2s when global collapse occurs. Similarly, in Fig-
ure6 the optimal dispersion thus achieved is compared versus the results when using PGA andSa(T1,5%).
As expected, PGA is the worst choice for any limit-state, while the optimal spectral ordinate is clearly the
best of the three. For all threeIMs the dispersion generally increases as the building accumulates damage but
while it does so in a gradual manner for PGA and for the optimal ordinate, this is not the case forSa(T1,5%).
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(b) θmax = 0.05
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(c) θmax = 0.1
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(d) Global Instability

Figure 3. Dispersion of theSc
a(τ,5%) values versus periodτ for four different limit-states for the

9-story building.
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Figure 4. The fractile IDA curves and capacities for four limit-states (Figure3) of the 9-story building.
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versus the limit-state definition,θmax.

While Sa(T1,5%) offers dispersions in the order of 45 – 50% for the elastic and most of the inelastic region,
it appears to become almost optimal when the building approaches collapse. Thus, only in the elastic and
near-elastic region does the single optimal spectral value provide improved dispersion reduction, in the order
of an additional 10%. Close to global collapse, no significant gains are realized overSa(T1,5%).

Summarizing our observations, the use of a single optimal spectral value seems to offer some benefits
achieving some dispersion reduction especially in the elastic and near-elastic region for this 9-story building.
Although some single optimal period exists for such first-mode dominated structures and it predictably
lengthens as the structure accumulates damage, it may not be so easy to identify. There does exist a certain
band of periods around the optimal that would provide us with good results, but how is one to choose
appropriately when the useful band of periods seems to lie somewhere betweenT2 andT1, moving from the
former to the latter as damage increases? This might be an easier task for buildings with less influence from
higher modes, but for this 9-story, where higher modes are indeed present, one spectral value is probably
not enough. It would be difficult to picka priori a single period for such a structure as a bad guess could
penalize the dispersion considerably, producing worse results thatSa(T1,5%).

Most probably, the reason behind this apparent difficulty is that both in the elastic and in the nonlinear range
the structure is sensitive to more than one frequencies. Thus, our attempt to capture this effect with just one
period results in the selection of some arbitrary spectral coordinate that happens to provide the right “mix”
of spectral values at the significant frequencies. Looking at all the previous figures, it becomes obvious that
missing by a little will again, in most cases, pump up the dispersion significantly. Obviously, this one period
is not a viable solution for structures that are not completely dominated by the first-mode. On the other
hand, the introduction of additional spectral values, to form a vector or an appropriate scalar combination of
two or more periods, might prove better.

USING A POWER-LAW FORM WITH TWO OR THREE SPECTRAL VALUES

Incorporating more that one spectral ordinate into our candidateIM can be done in two ways: Either by
creating a vector of spectral values or by combining them into a single scalar quantity. The use of vector
IMs has been explored by Vamvatsikos [13] but in our current spectral shape investigation we choose to



focus only on scalar combinations of spectral values and in particular the use of a power law form.

Not surprisingly, it is such a form that Shome [8], Mehanny [10] and Cordova [11] have used to create a
new, more effective scalarIM . While the idea there was mostly driven by the need to be able to use existing
attenuation laws to create hazard curves for the newIM (Cordova [11]), the work done on vectorIMs by
Vamvatsikos [13] provides some clues as to why such forms may achieve significant efficiency.

Formally, we intend to perform a search for the optimally efficientIM of the form

IM≡ Sa(τa,5%)1−β Sa(τb,5%)β

= Sa(τa,5%)
[

Sa(τb,5%)
Sa(τa,5%)

]β

(1)

whereτa andτb are arbitrary periods andβ ∈ [0,1]. Notice the difference with Shome [8] who constrains
both periods to beT1 andT2 respectively, or Mehanny [10] and Cordova [11], who chose to constrain one of
the periods to beT1. Instead, we intend to let the optimization find the best values,τa, τb andβ .

Additionally, we will investigate a power-law form containing three spectral values or, equivalently, a single
spectral value and two spectral ratios:

IM≡ Sa(τa,5%)1−β−γ Sa(τb,5%)β Sa(τc,5%)γ

= Sa(τa,5%)
[

Sa(τb,5%)
Sa(τa,5%)

]β [
Sa(τc,5%)
Sa(τa,5%)

]γ

(2)

whereτa, τb andτc are arbitrary periods,β ,γ ∈ [0,1] andβ + γ ≤ 1.

The optimal two periods for the 9-story building appear in Figure7 over a range of limit-states from elasticity
to global collapse. In elasticity, the two periodsτa andτb actually coincide with the first and second mode
periods,T1 andT2, respectively. As damage increases, one of the periods hovers slightly higher thanT2,
while the other stays close toT1, increases dramatically to an almost 120% higher value when the structure
reachesθmax= 6%, but then it drops again to values somewhat higher thanT1 when close to global collapse.
The optimal value ofβ is always about 0.5, favoring equal weighting of the two periods.

The optimal dispersion achieved with two spectral ordinates is plotted again versus the dispersion when
using PGA andSa(T1,5%) in Figure8. Comparing Figures6 and8 it becomes obvious that the use of
two spectral values reduces the capacity dispersion by a significant amount relative to the use of a single
(optimal) value for all limit-states. Actually, the dispersion drops from 40% for one optimal period (or even
for justSa(T1,5%)), to less than 25 – 30% when two periods are used.

If we introduce a third spectral value for the 9-story through Equation2, then we come up with the three
optimal periods shown in Figure9 for a range of damage-states. In the regions of elasticity and early
inelasticity, the three optimal periodsτa, τb andτc remain close to the first three modes,T1, T2 andT3. When
θmax reaches approximately 4% the optimal periods suddenly increase. Then, the results seem to favor one
period at about twiceT1, another atT1 and a third atT2. Again, equal weighting seems to be the rule for all
limit-states since the optimal values areβ ≈ γ ≈ 1/3.

With either two or three periods, as seen when comparing Figures8 and10, the dispersion reduction is about
the same; using three instead of two optimal periods allows only an additional decrease of 1 – 4%. It seems
that two spectral values are enough for this first-mode-dominated building and clearly better than just one,
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Figure 8. The dispersions for the 9-story build-
ing when using PGA orSa(T1,5%) versus the op-

timal Sa(τa,5%)1−β Sa(τb,5%)β .
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Figure 9. The three optimal periodsτa, τb, τc as
they evolve withθmax.
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Figure 10. The dispersions for the 9-story build-
ing for PGA and Sa(T1,5%) versus the optimal

Sa(τa,5%)1−β−γ Sa(τb,5%)β Sa(τc,5%)γ .

but the use of three carries a distinct advantage: Their behavior is more stable and predictable than the case
of the two periods, i.e., they seem easier to identify.

When practically implementing suchIMs before the dynamic analyses are performed, it is important that
efficiency remains high even when not using the (unknowna priori) optimal periods. To investigate the
sensitivity of the proposed scalarIMs we have simulated random user choices for the period(s) used for the
single spectral value or the power-law combinations of two or three values. The user is supposed to have
picked periods uniformly distributed within±20% of the optimal values for eachIM and to have selected
equal weighting of spectral values in the power-law (i.e.,β = 1/2 or β = γ = 1/3). Such simulations are
repeated numerous times for each limit-state (i.e., value ofθmax) and the achieved suboptimal dispersion is
calculated for eachIM . In Figure11 we are plotting the 84%-fractile of the suboptimal dispersion for the
single period and the two power-law combinations versus theθmax definition of each limit-state; i.e., we
are focusing on a worse-than-average scenario. For comparison, the dispersion when usingSa(T1,5%) and
when using the optimal three periods power-law is also shown.
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Figure 11. The 84% fractile of the suboptimal dispersion when using a single spectral value ver-
sus a power-law combination of two or three periods for the 9-story building. For comparison, the

dispersion achieved bySa(T1,5%) and the optimal three-periods power-law is also shown.

Clearly, using only one (suboptimal) period is often worse or at most as good as when usingSa(T1,5%), as
originally observed in Figure3. On the other hand, with two, or even better, three periods, equally weighted
in a power-law form, theIM is considerably more robust and relatively reasonable efficiency is maintained.
If we follow our earlier observations and set one value aroundT1, another at aboutT2 and maybe a third
50% or 100% higher thanT1, then weigh them equally (β = 1/2 or β = γ = 1/3), a dispersion of about
30% (down from about 40 – 50% when usingSa(T1,5%)) is easily achieved in contrast to the elusive single
optimal period. In conclusion, it seems that the use of the power-law form with two or three spectral values
helps even when the higher modes are significant. The benefit is not so much in the reduction of dispersion,
rather in the robustness of theIM and the ability to identify ita priori. Further investigation of more
structures is needed before some concrete proposals are made, but the concept looks promising.

CONCLUSIONS

Providing more efficient Intensity Measures (IMs) is a useful exercise, both in reducing the number of
records needed for PBEE calculations but also in improving our understanding of the seismic behavior of
structures. By taking advantage of elastic spectrum information the observed record-to-record dispersion
was nearly halved for some limit-stateIM -capacities of the investigated 9-story building. While several
methods exist to incorporate elastic spectral values inIMs we only focused on the use of single optimally-
selected spectral values and power-law combinations of two or three optimal spectral values. Not all can-
didates can achieve similar degrees of efficiency and not all of them are suitable for usea priori; it may be
quite difficult to select the appropriate periods (or spectral values) before we complete our dynamic analy-
ses. Using a single optimal spectral value does not seem to provide much advantage for the 9-story building



as it has some higher-mode influence. However, spectralshapeis important: using two or even three spec-
tral values seems to improve the efficiency but also the robustness of theIM to the suboptimal selection of
periods. Still, before suchIMs are adopted significant work remains to be done; we need to investigate more
structures, both with less and more higher mode influence and more ground motion records, probably ones
with important local spectral features, e.g., soft soil or directivity influence. Thus we will be able to better
select the appropriateIM that will be both efficient and sufficient for a given structure and site.
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