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Abstract. Yield Frequency Spectra (YFS) are employed to enable the direct design of a structure subject to a set 
of performance objectives. YFS offer a unique view of the entire solution space for structural performance. This 
is measured in terms of the mean annual frequency (MAF) of exceeding arbitrary ductility (or displacement) 
thresholds, versus the base shear strength of a structural system with given yield displacement and backbone 
capacity curve. Using publicly available software tools or closed-form solutions, YFS can be nearly 
instantaneously computed for any system that can be satisfactorily approximated by a single-degree-of-freedom 
oscillator, as in any nonlinear static procedure application. Thus, stated performance objectives can be directly 
related to the strength and stiffness of the structure. The combination of ductility (or displacement) demand and 
its mean annual frequency of exceedance that governs the design is readily determined, allowing a satisfactory 
design to be realized in a single step.  
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1 INTRODUCTION 
 
Performance-based seismic design (PBSD) has been entering the earthquake lingo more and more in 
recent years. It hinges upon the concept of designing a structure to fulfill target performance 
objectives, typically defined as not exceeding given structural response levels with a mean annual 
frequency higher than the prescribed one. At its most advanced form, one would require specific non-
exceedance rates of economic losses or even casualties, echoing the definition of decision variables 
that are embedded in the Cornell-Krawinkler framework (Cornell and Krawinkler 2005) adopted by 
the Pacific Earthquake Engineering Research (PEER) Center.  
 
Despite the apparent significance of this goal, few steps have been taken towards developing such a 
design process. This comes as no surprise since resolving an inverse problem of design, where the 
functional relationship between the design variables and the performance objectives is not invertible, 
essentially needs iteration. Each iteration for a nonlinear structure means a cycle of redesign and 
reanalysis, where the latter is a full-blown performance-based assessment involving nonlinear static or 
dynamic runs. It is no wonder then that most attempts to represent PBSD have mostly come back to 
discuss assessment instead (see for example fib 2012, FEMA 2006). Any method built on this 
paradigm essentially needs to become an iterated assessment procedure. Conceptual support for such a 
design paradigm is provided by Krawinkler et al. (2006). Many researchers have also chosen to 
improve upon the efficiency of the re-design to achieve a fast convergence, often leading to the use of 
numerical optimization. For example, Mackie and Stojadinovic (2007) have suggested this approach 
for bridges while Fragiadakis and Papadrakakis (2008), Franchin and Pinto (2012) and Lazar and 
Dolsek (2012) have all used optimization techniques for the performance-based seismic design of 
reinforced-concrete structures. A more comprehensive review of such methods can be found in 
Fragiadakis and Lagaros (2011). 
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Despite the undoubtable usefulness of currently suggested approaches, their implementation is not 
trivial by far. The link between a performance objective and the resulting design is fundamentally 
obscure, coming out of numerous steps of numerical analysis. Instead, the Yield Frequency Spectra 
(YFS) are proposed as a design aid, being a direct visual representation of a system’s performance that 
factually links the mean annual frequency (MAF) of exceeding any displacement value (or ductility μ) 
with the system yield strength (or seismic coefficient Cy). Figure 1 presents such an example for an 
elastic-perfectly-plastic oscillator, showing the simplicity of prescribing three performance objectives 
and calculating the required yield strength (seismic coefficient) for the given limiting ductilities.  
Being an “exact” (within some tolerance) solution for a given single-degree-of-freedom system, they 
are the ideal starting point for any practical PBSD application, potentially solving the performance-
based design problem in a single step. 
 

 

Figure 1. YFS contours at Cy = 0.1,0.2,…,1.0 for an elastoplastic system (δy = 0.06m) at Van Nuys, CA, 
overlaid by the design points of three performance objectives for μ =  1, 2, 4 at 50%, 10% and 2% in 50yrs 

exceedance rates, respectively. The third objective governs with Cy ≈ 0.93 and a period of T ≈ 0.51s. 
 
 
2 BASIS OF DESIGN 
 
Far from finding fault with current proposals, it should be recognized that the design of a multi-
degree-of-freedom structure will always involve some level of iteration. Thus, a truly direct 
performance-based design will probably never be realized. The complexity of the system (and the 
problem) will usually see to that. The real question then becomes: How could one cut through the 
design/analysis cycles and start from an initial design that is close enough to the final one to minimize 
said iterations? The obvious shortcut, which actually forms the basis of all current seismic codes, is to 
go through the SDOF system approximation. This will also be our approach. 
 
The essential ingredients of our approach to PBSD are (a) the site hazard and (b) some assumption 
about the system’s behavior (e.g. elastic, elastoplastic etc). Comprehensive site hazard representation 
that is compatible with current design norms can be achieved by the seismic hazard surface, a 3D plot 
of the MAF of exceeding any level of spectral acceleration for the full practical range of periods 
(Figure 2). This is the true representation of the seismic loads for any given site. More familiar 
pictures can be produced from the hazard surface by taking cross-section (or contours). Cutting 
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horizontally at given values of MAF will provide the corresponding uniform hazard spectra (UHS). 
For example, at Po =  –ln(1-0.1)/50 = 0.0021, or a 10% in 50yrs probability of exceedance (Figure 3a), 
one gets the spectrum typically associated with design at the ultimate limit-state (or Life Safety). 
Taking a cross-section at a given period T produces the corresponding Sa(T) hazard curve (Figure 3b). 
Now compounding this information with the capacity curve (i.e. force-deformation relationship 
envelop) of the system is where things start getting interesting.    
 
To illustrate the problem in more detail, let us first attempt a “perfect” elastic design. Suppose that an 
elastic oscillator of given mass M needs to be designed to not exceed a displacement δlim more often 
than a given MAF of Po, for example Po = 0.0021 for a code-compatible safety requirement. We are 
essentially asking for the stiffness, or equivalently the period of this oscillator. Note here that a 
strength requirement would be quite straightforward to resolve, as one would simply take a horizontal 
line at Sa = F/m in Figure 3a and seek the period (or periods) at the intersection(s) with the 
corresponding uniform hazard spectrum. A displacement threshold though is slightly trickier as it 
requires some iteration: 
 
1. Select an initial period T. 
2. Extract Sa(T) from the UHS at Po. 
3. Calculate new period as aST /2 limδπ= . 
4. Go to step 2 until the period converges (i.e. does not change significantly). 
 
The formula employed at step 3 is simply the result of solving for T the well-known relationship 
between the (pseudo) spectral acceleration and the spectral displacement. In an actual structural design 
setting this would probably be replaced by an eigenvalue analysis of the intermediate design resulting 
from loads consistent with the Sa(T) of the preceding step 2.  
 
A simpler solution exists that achieves the same results without any iteration. It involves the pre-
calculation of a set of values of displacement consistent with the UHS spectrum at Po for any period T 
that can then be interpolated to estimate the required period for any desired δlim. An intuitive graphical 
representation of this is actually the displacement spectrum, Sd(T), which allows a direct non-iterative 
solution of the elastic design problem for any limit-state of interest. Unsurprisingly, it is the starting 
point of most (if not all) displacement-design procedures (Priestley et al. 2007). Note that the seismic 
design codes typically do not enter this line of reasoning, despite being based on the acceleration 
rather than the displacement spectrum. This is achieved by virtue of prescribing an initial period that is 
considered to be close enough to the expected value for a given type of structure, thus foregoing the 
need for iterations (and eigenvalue analysis) for most rudimentary design cases. 
 
The aforementioned process is much compounded for application to a nonlinear system. Then, for a 
given capacity curve shape (or system type) we are asked to estimate the yield strength and the period 
T for not exceeding a limiting displacement δ at a rate higher than Po.  Even for an SDOF system, the 
introduction of yielding, ductility and the resulting record-to-record response variability fundamentally 
change the nature of the problem. This is best represented in the familiar coordinates of intensity 
measure (IM), here being the first mode spectral acceleration Sa(T), and engineering demand 
parameter (EDP), i.e., the displacement δ. The structural response then appears in the form of 
incremental dynamic analysis (IDA, Vamvatsikos and Cornell 2002) curves as shown in Figure 4 for a 
T = 1s system with a capacity curve having positive and then a negative post-yield stiffness. Cornell et 
al (2002) have shown that response variability means that additional hazard levels beyond Po need to 
be considered in evaluating the system’s performance. The reason is that values lower than the 
average response for the seismic intensity corresponding to Po appear more frequently (i.e. correspond 
to a higher hazard rate in Figure 3b). Hence, they tend to contribute significantly more to the system’s 
rate of exceeding δ = δlim. Formally, this relationship may be represented by the following integral 
(Jalayer 2003, Vamvatsikos and Cornell 2004): 
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Figure 2. Spectral acceleration hazard surface for Van Nuys, CA.  
 

     

      (a)                                                                    (b)   

Figure 3. (a) Uniform hazard spectra and (b) spectral acceleration hazard curves for Van Nuys, CA. 
 

 

Figure 4. IDA curves for a T = 1s oscillator with a degrading (in-cycle) capacity curve, showing the distribution 
of the spectral acceleration capacity, Sac (normalized by the yield spectral acceleration, Say) and corresponding to 

the collapse ductility of μ = 6. 
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where λ(·) is the MAF of exceeding δ. Sac(δ) is the random limit-state capacity, representing the 
minimum intensity level for a ground motion record to cause a displacement of δ to be exceeded (e.g., 
Figure 4). F(·) is the cumulative distribution function (CDF) of Sac evaluated at a spectral acceleration 
value of s, and H(s) is the associated hazard rate. The absolute value is needed for the differential of 
H(s) because the hazard is monotonically decreasing, thus always having a negative slope.   
 
The seismic code foregoes such considerations through implicit incorporation of two assumptions: (a) 
Using the strength reduction R or behavior factor q to account for the effect of yielding and ductility in 
the mean/median response, (b) ignoring the effect of dispersion, and assuming that the seismic loads 
consistent with Po are enough to guarantee a similar (or lower) rate of non-exceedance of δlim. The 
error due to the above is “covered” by employing various implicit conservative approximations to 
account for the effect of the previous non-conservative assumptions, typically through the selection of 
R (or q) (see for example FEMA P695, FEMA 2009). Thus the inelastic design process becomes 
“identical”, at least in terms of the required steps, with the elastic design process described earlier. 
 
Unfortunately, the magnitude of the assumptions is such that one can never be entirely sure of actually 
achieving the stated objective(s) with any confidence. The margin of safety depends on the site and the 
system characteristics. Even when safe, the design is typically far from optimal: Economy and safety 
are two competing objectives and, given the size of the uncertainty involved in code-based inelastic 
design, common sense necessitates erring on the side of caution, i.e. injecting conservativeness, for 
example through R. Consequently, the designer has no real clue on where exactly his/her design is 
sitting on this wide blurry margin between meeting and failing the presumed performance criteria. 
Even worse, as any calibration for safety has been performed on the basis of the standard code 
assumptions of what an acceptable performance is, it is not possible to accurately inject one’s own 
(stricter) criteria for a better performing structure. Any importance factors used to amplify the design 
spectrum are only a poor substitute. This has actually become common knowledge in the past few 
years, and it is the premise of performance-based design. It other words, this is where the search starts 
for ways to fully incorporate the actual performance of a given structural system and allow its design 
for any desired performance objective. Unfortunately, neither the problem nor the (so far) proposed 
solutions are simple. 
 
As a complete replacement of this hazy picture, we aim to offer instead a practical and theoretically 
consistent procedure that can fully resolve the inelastic SDOF design problem, in the same way that 
the aforementioned iterative process and the associated displacement spectrum do for elastic design. 
This will be built upon (a) Eq. (1) for estimating structural performance, (b) the SPO2IDA R-μ-T 
relationship for estimating the probabilistic distribution of structural response given intensity and (c) a  
yield displacement basis for design, by virtue of being a far more stable system parameter compared to 
the period (Aschheim, 2002). In a graphical format, this solution will be represented by the yield 
frequency spectra. 
 
 
3 ORIGIN, DEFINITION AND USE OF YFS 
 
For a yielding system, the direct equivalent of elastic spectral acceleration or spectral displacement 
hazard curves are the inelastic displacement (or drift) hazard curves. These may be estimated by using 
Eq. (1) to estimate the MAF of exceeding any limiting value of displacement. They have appeared at 
least in the work of Inoue and Cornell (1990) and subsequently further discussed by Bazzurro and 
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Cornell (1998) and Jalayer (2003). While useful for assessment, they lack the necessary 
parameterization to become helpful for design. An appropriate normalization may be achieved for 
oscillators with yield strength and displacement of Fy and δy, respectively, by employing ductility μ, 
rather than displacement δ 
 

yδ
δ

µ = , (2) 

 
and the seismic coefficient Cy instead of the strength 
 

W

F
C y

y = . (3) 

 
For SDOF systems Cy is numerically equivalent to Say(T,ξ) / g, i.e. the spectral acceleration value to 
cause yield in units of g, at the period T and viscous damping ratio ξ of the system. 
 
Up to this point, what has been proposed is not fundamentally different from the results presented by 
Ruiz-Garcia and Miranda (2007) on the derivation of maximum inelastic displacement hazard curves. 
What truly makes the difference is defining δy as a constant for a given structural system, following 
the observations of Aschheim (2002) on its stability as a design parameter. Then, Cy essentially 
becomes a direct replacement of the period T: 
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For a given site hazard, system damping, δy, value of Cy (or period), and capacity curve shape (e.g. as 
normalized in terms of R = F/Fy and μ), a unique representation of the system’s probabilistic response 
may be gained through the displacement (or ductility) hazard curves produced via Eq. (1). By plotting 
such curves of λ(μ), for a range of μlim limiting values and a range of Cy, , we can get contours of the 
inelastic displacement hazard surface for constant values of Cy. By considering the damping, δy and 
the capacity curve shape as stable system characteristics, such curves allow the direct evaluation of 
system strength and period, i.e. the Cy, of such a system for any combination of performance 
objectives defined as Po = λ(μlim), i.e., limiting values of ductility and their maximum tolerated 
exceedance MAF Po as shown in Figure 1.  
 
4 CALCULATION 
 
In the following pages we will discuss how to practically evaluate Eq. (1) either analytically or 
numerically. Two options shall be offered, namely a numerical approach and a simple analytical 
approximation, both capable of achieving accurate point estimates.  
 
4.1 Numerical approach 
 
To get the YFS and the corresponding performance points, one needs to estimate λ(μ) for a range of 
μlim and Cy values. By plotting them on a graph and interpolating, any performance objective within 
the plotted range can be satisfied (see Figure 1). Alternatively, for each performance objective, one 
can estimate only λ(μlim) for a trial value of Cy (or T), estimate the updated value of Cy and then iterate 
until convergence, in essence similarly to the elastic design algorithm presented previously.  
 
Either way, to estimate the MAF of limit-state exceedance Eq. (1) can be numerically evaluated as 
discussed by Baker and Cornell (2005) using the following expression: 
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where si are a number of IM values covering the entire hazard curve from the lowest to the highest 
non-zero MAF values available (at least 50 for reasonable accuracy) and ΔΗ(si) = Η(si) – Η(si+1) > 0, 
due to the monotonically decreasing hazard. 
 
There are only two points that deserve further clarification in the numerical estimation of YFS. First is 
the issue of damping. In order to directly connect Cy = Sa / g, this means that the Sa should be 
expressed in the same damping ratio as the system. Thus, if the system has different viscous damping 
ratio ξ than the damping ratio used to characterize the seismic hazard curve, typically 5%, some 
appropriate modification factor will need to be utilized. Second is the incorporation of uncertainty. If 
one desires to obtain a value of Cy consistent with the mean estimate of the displacement hazard vis-à-
vis epistemic uncertainty, then (a) the mean hazard curve needs to be utilized (Cornell et al 2002) and 
(b) the dispersion of capacities from the R-μ-Τ (reduction factor, ductility, period) relationship has to 
be modified. Adopting the typical first-order assumption (Cornell et al 2002) it is assumed that 
epistemic uncertainty causes the Sac values of capacity to become lognormally distributed with an 
unchanged median of acŜ  but increased overall dispersion (standard deviation of the log data) of  
 

22
ScUScTSc βββ += , (6) 

 
where βSc is the aleatory dispersion, incorporating the effect of the natural variability of Sac (its record-
to-record component provided directly by the R-μ-T), and βUSc is the corresponding dispersion due to 
uncertainty in displacement demand and capacity. This may be approximated as the square-root-sum-
of-squares of the corresponding uncertainty dispersions in μlim and in the system EDP demand itself, 
namely βUθd, βUθc, an assumption that (strictly speaking) loses some accuracy for short periods and 
close to the dynamic instability region. Any aleatory variability in the collapse capacity with 
dispersion βθc, can also be incorporated in the same way into the R-μ-Τ relationship’s demand aleatory 
dispersion. Using the above assumptions, Eq. (1) will provide an estimate consistent with confidence 
somewhat higher than 50%, the exact value depending on the overall dispersion. 
 
4.2 Analytical approach 
 
As an alternative to numerical integration, Vamvatsikos (2013) has provided an accurate closed-form 
solution for the MAF of inelastic response that can be inverted analytically. The first step is to locally 
fit the hazard curve H(s) by a second-order power-law relationship:  
 

( )skskksH lnlnexp)( 1
2

20 −−= , (7) 

 
with k1,k2 > 0 and k2 ≥ 0. The latter indicates the (local) hazard curvature, its introduction being the 
major improvement over the original SAC/FEMA formulation by Cornell et al. (2002). This improved 
fitting, despite being “local” in nature, encompasses a large enough range of values. Thus, it allows 
the back-estimation of values of the IM for a required value of MAF, something that was not practical 
for the previous formulations. This enables the accurate inversion of any assessment formulation that 
is based on such a fit. 
 
The EDP-capacity is assumed to be lognormal, with median cθ̂  and dispersions (standard deviation of 
the log data) equal to βθc and βUθc due to aleatory and epistemic sources, respectively. Τhe distribution 
of EDP-demand given the seismic intensity IM is also assumed to be lognormal with a constant 
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dispersion (standard deviation of the log data) equal to βθd and βUθd, regardless of the level of intensity 
s, and a conditional median )(ˆ sθ  that depends on the IM via a power-law:  
 

bsas ⋅≈)(θ̂  (8) 

 
This is typically obtained by a linear regression in log-log coordinates and, in the framework of IDA it 
can be thought of being an approximation of the median IDA curve. When fitting away from the 
global instability region, the above approximation is accurate enough to allow for a useful 
approximation of the required EDP-capacity to achieve a certain performance level (i.e., MAF) of Po:  
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where  
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For use in obtaining point-estimates of Cy values, a few variable replacements are needed. First, let the 
median EDP capacity cθ̂  be replaced by the desired displacement capacity, or limit, δlim and let μlim = 
δlim / δy be the corresponding ductility. Now, the one thing connecting Eq. (9) to elastic structural 
properties is the coefficient a of the median IDA curve. According to Eq. (8), which can be assumed to 
hold in the elastic range as well, the yield point can be expressed as: 
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where g is the acceleration of gravity. Note that for the second form of the above equation to hold, Say 
must be expressed in the system’s damping ratio. If this is different than the damping ratio used to 
characterize the seismic hazard curve, typically ξ = 5%, some appropriate modification factor will 
need to be utilized to express the hazard curve in terms of the proper damping ratio. By introducing 
the above Eq. (11) into Eq. (10) and performing some algebraic manipulations, the following 
expression appears: 
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where g only serves to make sure that the units come out right. If the hazard curve has been fitted with 
Sa in units of g, then g = 1 should be used. 
 
The above equation is a powerful approximation as long as it is used away from the region of global 
collapse, where the basic assumption of Eq. (8) does not hold.  While the application of Eq. (12) may 
seem straightforward, some iteration may be needed due to the dependence of the hazard curve (and 
the corresponding fit) to the period. It rarely takes more than 3 iterations for the algorithm to converge 
within 5% of the Cy value required for any performance objective. Still, overall errors up to 15% can 
be encountered vis-à-vis the more accurate numerical approach due to the approximations involved in 
deriving Eq. (12). 
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5 EXAMPLE OF APPLICATION 
 
For showcasing our methodology, let us use it to design a 4-story steel moment resisting frame for a 
site in Van Nuys, CA (Fig. 2), with a story height of 3.6m, a total height of H = 14.4m and L=9m 
beam spans. Let us adopt an interstory drift limit for serviceability (SLS) of θlim = 0.75% and a 
limiting ductility of 3.0 for the ultimate limit-state (ULS). The allowable exceedance probabilities are 
50% and 10% in 50yrs, respectively. We shall assume equal drifts occur throughout the height of the 
structure, at least in the elastic region. According to Aschheim (Spectra, 2002), a simple way to 
calculate the yield roof drift (or any story yield drift) of a regular steel moment resisting frame is 
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where ey is the yield strain of steel, h the story height, L the beam span, COF the column overstrength 
factor and dcol, dbm the column and beam depth, respectively. Let ey = 0.18% (for fy = 355MPa steel), h 
= 3.6m, L = 9m, COF = 1.3 (suggested values are 1.2 – 1.5), dcol = 0.6m, dbm = 0.70m. Then, θy = 
0.9%, and the limiting ductility for SLS becomes μlimSLS = 0.84. For a typical first-mode participation 
factor Γ = 1.3, the equivalent SDOF yield displacement is  
 

m10.0=
Γ

=
Hy

y

θ
δ . 

 
Let the dispersions due to epistemic uncertainty be 20% and 30% for SLS and ULS, respectively and 
let’s assume that the system response is roughly elastoplastic. As expected for a moment-resisting 
steel frame the SLS governs. Using either the analytical or the numerical approach we get a result of 
Cy = 0.675 and a period of T = 0.77sec. At this point, we can consider the beneficial effects of 
overstrength and further reduce Cy. For example, if we use a conservative value of, say, 1.50, the 
suggested seismic coefficient would become 0.45. This value can now be applied either within a force-
basis or a displacement-basis for design. In the first case, we can use this as in typical code design to 
determine the lateral loads to be applied on the frame and then proceed as usual. The end result may 
not be perfect, but it is close to fully satisfying the stated objectives, something that is not doable when 
using just a design spectrum as the point of entry.  
 
 
6 CONCLUSIONS 
 
The Yield Frequency Spectra have been introduced as an intuitive and practical approach to 
performing approximate performance-based design. They are a simple enough concept to come with 
an accurate analytical solution, yet they also enable considering an arbitrary number of objectives that 
can be connected to the global displacement of an equivalent single-degree-of-freedom oscillator. For 
this relatively benign limitation, our approach can help deliver preliminary designs that are close to 
their performance targets, requiring only limited reanalysis and design cycles to reach the final stage.  
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