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Abstract. The Targeted Nonlinear Dynamic Procedure is introduced to offer a practical 

evaluation of the seismic performance of structures. Building upon the SAC/FEMA closed-

form probabilistic framework it can incorporate all important sources of variability and can 

be calibrated for conservatism. The hazard curve is combined with the nonlinear dynamic 

analysis performed for each limit-state using one or two levels of the intensity measure. This 

is either the elastic first-mode spectral acceleration or the more sufficient inelastic spectral 

displacement. From the suite of ground motion records only “targeted” subsets are used that 

are optimally selected to estimate the median and dispersion of the structural response. The 

simple factored demand and capacity checking format employed allows for a seamless inte-

gration with current engineering practice, while rational safety factors add the required de-

gree of conservatism to account for epistemic uncertainties both for ductile and brittle modes 

of failure. Using a four-story reinforced concrete frame as an example, the proposed ap-

proach is shown to provide a relatively simple means to account for important sources of var-

iability in nonlinear response history analysis. It offers powerful analysis options to a 

knowledgeable user in a format that can be upgraded incrementally and can provide an ex-

cellent introduction to sophisticated analysis techniques with more precisely controlled levels 

of conservatism. 
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1 INTRODUCTION 

The assessment of the seismic performance of structures is a fundamental problem in per-

formance-based earthquake engineering (PBEE) that necessitates a compromise between cost 

and accuracy. Each method that has been proposed achieves a different balance between these 

two requirements, offering different advantages for the consideration of the engineer-user.  

At the lower end of the hierarchy of methods, nonlinear static procedures (NSPs) offer 

considerable computational simplicity but at a certain cost in fidelity. They have limitations 

when predicting various engineering demand parameters (EDPs) for most structures. Also, as 

currently formulated, the nonlinear static procedures cannot treat uncertainty explicitly in es-

timating EDPs. These limitations are evident from comparisons with results from nonlinear 

response history analyses (NRHA).  

NRHA methods lie at the opposite end of the scale, offering improved accuracy at the cost 

of requiring results from many ground motions to properly account for record-to-record vari-

ability. One example is incremental dynamic analysis (IDA [1]) which offers unparalleled ac-

curacy but necessitates multiple nonlinear dynamic analyses under a suite of ground motion 

records scaled to several levels of the intensity measure (IM). Simpler NRHA implementa-

tions in the guidelines do exist, but they are mostly concerned with finding a single ―central‖ 

value of response (e.g. a mean or median) for a certain seismic hazard level while completely 

ignoring the effect of record-to-record variability and epistemic uncertainty. This has led to 

the familiar prescriptions such as taking the maximum of three records or the mean of seven 

to determine a representative ―central‖ response level. More recent developments, such as the 

Scaled NDP [2] also offer dispersion estimates but still do not provide a modern PBEE basis. 

Thus, practical implementation of complex NRHA methods, such as IDA, is impeded by the 

computational cost, while the simpler versions often seem to lack proper rigor in the wake of 

recent PBEE developments. We aim to offer a better alternative that strikes a favorable com-

promise between these two ends.  

From the results of the work on the ATC-76-6 project [3] and its direct predecessors 

(FEMA 440/440A [4,5]), a Targeted Nonlinear Dynamic Procedure (Targeted NDP) is formu-

lated conceptually as outlined herein. Although experience with this procedure is limited, it is 

expected to be more broadly applicable than predecessor nonlinear static procedures with re-

gard to structural irregularities, component hysteretic behavior, and site-dependent ground 

motion characteristics (e.g. type of source mechanism and proximity to fault). At the same 

time, it is simpler and considerably less costly than IDA while obviously paying for it with 

lower accuracy. The mitigating factor though is that it is formulated to take into account epis-

temic uncertainties, including its inherent errors, and wherever possible shift them in such a 

way as to incur higher conservatism throughout its range of application. Furthermore, this im-

plied conservatism is, to a certain degree, user-defined and can be tuned to properly cover a 

variety of safety requirements. 

2 PROPOSED METHODOLOGY AND APPLICATION 

In brief, the Targeted NDP the method is composed of 6 basic steps. At its basis lie the 

formation of a multi-degree-of-freedom model and its equivalent single-degree-of-freedom 

model, the use of subsets of records and the determination of response via NRHA: 

1. Inelastic MDOF and equivalent SDOF models 

2. Seismic shaking hazard and intensity measure selection 

3. Stability assessment 

4. Record set and subset selection 

5. Nonlinear response history analyses and statistics of EDPs. 
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6. Safety checking 

The procedure utilizes a multiple-degree-of-freedom model of the structure capable of cap-

turing inelastic behavior and degradation at a component and system level. First mode pusho-

ver analysis of the model produces a capacity boundary for an equivalent-single-degree-

freedom representation of the structure that is used to assess the potential for dynamic insta-

bility. Based on the characteristics of the structural mode, the seismic shaking hazard at the 

site of the structure is evaluated. This offers the fundamental consideration of uncertainty and 

naturally conveys the expected seismic threat level. 

In the procedure described herein, two options for an intensity measure are available for 

scaling the ground motion records for use in nonlinear response history analyses of the 

MDOF model. The traditional approach, best suited when site specific ground motion records 

are available, is to scale records to match the spectral acceleration associated with a specific 

hazard level at the fundamental period of vibration of the model. This approach is sometimes 

referred to as Sa(T1) scaling. The alternative option is to use the peak displacement of the 

ESDOF model at the hazard level as the basis for scaling the ground motion records. This op-

tion allows use of a larger range of ground motion records and is sometimes referred to as Sdi 

scaling.  

At present we will focus on the application of the more familiar basis of Sa(T1) scaling: 

Two subsets of scaled ground motions are selected and median EDP’s and related dispersions 

are estimated based on the results of nonlinear response history analyses of the MDOF model. 

Finally, this data is used to develop statistical representations of EDP demand and related ca-

pacities and perform safety checking in the Demand and Capacity Factored Design format 

introduced by FEMA-350/351 [6,7]. 

In the following pages the methodology will be presented in detail using the assessment of 

a 4-story reinforced concrete moment-resisting frame designed for California as an illustrative 

example. 

2.1 Inelastic MDOF and equivalent SDOF models 

First, a model representing the mechanical behavior of the structure to be assessed is creat-

ed. The model must be capable of representing important potential inelastic mechanisms and 

degradation of strength and stiffness as well as P-Delta effects. The building under considera-

tion is a 4-story reinforced concrete moment-resisting frame (RCMRF) building designed 

according to the 2003 IBC [8] that was developed as an archetype in FEMA-P695 [9] (see 

Haselton [10]). 

The structural model was formed using the OpenSees platform and it is shown in Figure 1. 

It has accurate representation of the nonlinear behavior of beams and columns while it also 

incorporates nonlinear modeling of the beam-column joints. A leaning column has been 

included to supply any additional P-Delta forces. This is a first-mode dominated structure 

with a fundamental period of T1 = 0.86 sec. 

Conventional static pushover analysis was performed using a first-mode load pattern to de-

velop the capacity curve of the structure shown in Figure 2. The structure was pushed well 

into the nonlinear range, beyond its maximum base shear capacity, to allow observation of the 

negative stiffness region. The resulting pushover curve is in turn fitted via a trilinear elastic-

hardening-softening backbone that will serve as the capacity boundary of the equivalent 

SDOF (ESDOF) model that will be used for stability assessment. 
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Figure 1: The four-story RC moment resisting frame building (reproduced from [8]). The bay width is 9.1m (30ft) 

and the story heights are 4.6m (15ft) for the first story and 4.0m (13ft) for the higher ones.  

 

Figure 2: Capacity boundary (pushover curve) of the equivalent single-degree-of-freedom system fitted to the 

results of a first-mode pushover of the 4-story reinforced concrete moment frame building model. 

2.2 Seismic hazard and intensity measure selection 

As the next step, the seismic shaking hazard at the site of the structure is defined, allowing 

for the analysis results to be expressed probabilistically. Hazard may be determined from a 

site-specific probabilistic seismic hazard analysis. For sites within the United States, Sa(T1, 

5%) hazard data are available on the USGS website (www.usgs.gov). 

Figure 3 presents an example of such data for the 4-story reinforced concrete frame struc-

ture at T1 = 0.86 sec, which corresponds to the first-mode period. Mean hazard information is 

preferred over median data because the higher mean hazard curve also incorporates the im-

portant effect of epistemic uncertainty in the seismic hazard, as described in Cornell et al. [11]. 

Use of the mean hazard curve effectively allows the considerable uncertainty in seismic haz-

ard to be addressed at this stage in a transparent way that simplifies the assessment process 

and avoids the need to explicitly account for seismic hazard uncertainty in subsequent steps. 

http://www.usgs.gov/
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Determining the seismic hazard goes hand-in-hand with selecting the intensity measure 

that will be used to scale the ground motion records for NRHA. Two possible choices have 

been considered for application with the Targeted NDP, namely the elastic spectral accelera-

tion Sa and the inelastic spectral displacement Sdi. 

Scaling ground motions to Sa(T1, 5%) is most appropriate where site-specific hazard data, 

including ground motion records, are available. Since seismic hazard data are readily availa-

ble in terms of Sa, it naturally offers a very simple assessment path. Still, it is plagued by is-

sues of sufficiency, in so far that it cannot describe adequately important seismological 

parameters. This may introduce a bias in the estimation of performance that is generally con-

servative. On the other hand, as stated by Tothong and Cornell [12], Sdi offers advantages over 

Sa(T1, 5%) in that Sdi removes the so-called peak-valley effects associated with period elonga-

tion during nonlinear response. It can reduce the potential bias in scaling the amplitude of 

ground motions, thus simplifying record selection by avoiding strong emphasis on other 

ground-motion record properties such as epsilon [13], Mw, and distance. It is thus less restric-

tive than Sa(T1, 5%) scaling as far as the selection of acceptable ground motion records. The 

disadvantage of the use of Sdi as an intensity measure is the need to compute a custom-made 

Sdi hazard curve that depends upon the characteristics of the ESDOF system. This may be 

achieved, e.g., by a probabilistic seismic hazard analysis performed using attenuation relation-

ships for Sdi (e.g., Tothong and Cornell [14]), or by using the ESDOF itself to determine the 

Sdi from the Sa(T1, 5%) hazard [3]. 

We will presently not expand further into this process which can cut down on the con-

servative bias induced by Sa(T1) to provide a closer estimation that is more suitable for accu-

rate assessment. Thus we will proceed with Sa as the intensity measure, which is also the 

simpler version of the Targeted NDP. 

 

Figure 3: Seismic hazard curve for the intensity measure Sa(T1, 5%) for T1=0.86s. 

2.3 Stability assessment 

Lateral instability occurs when lateral resistance degrades due to damage caused by seis-

mic shaking. NRHA of the MDOF system is considered the most accurate approach for as-

sessing the likelihood of lateral instability. However, several simpler approaches based on 

pushover analysis may be used for this purpose—it seems that evaluation of lateral instability 
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by pushover analysis may be more robust than evaluation of nonlinear response via NSP more 

generally, possibly due to the response at collapse being dominated moreso by a single mode 

than at lower levels of nonlinear response. Each of these pushover-based approaches makes 

use of the capacity boundary determined from nonlinear static pushover analysis.  

One approach uses the percentile IDA curves obtained from either explicit NRHA of the 

ESDOF oscillator or SPO2IDA [15] relationships (the rightmost panels of Figures 4 and 5) to 

assess the median and distribution of collapse capacity—collapse due to lateral instability is 

considered to occur when the 16/50/84% IDA curves have zero slope, which indicates the cor-

responding percentile value of pseudo-spectral acceleration at which lateral displacements 

increase without limit. In case of the NRHA analyses, the record suite that will be selected for 

the formation of subsets for NRHA in the following section may be used for this purpose. In 

case of SPO2IDA though, no records are needed, as the software tool [16] is capable of in-

stant delivery of the needed collapse capacity values in the form of the 16/50/84% percentile 

values of the allowable strength reduction factor. 

  

Figure 4: Complete set of 44 IDA curves and the summary 16
th

, 50
th

, 84
th

 percentile IDA curves in Sa-Sdi coordi-

nates as produced by nonlinear response history analysis for the equivalent single-degree-of-freedom fitted to a 

4-story reinforced concrete moment frame building model.  

 

Figure 5: Percentile IDA curves in R-μ and Sa-Sdi coordinates as produced by SPO2IDA [14] for the equivalent 

single-degree-of-freedom fitted to a 4-story reinforced concrete moment frame building model. 

A second approach to assess the median collapse capacity does so by means of a maximum 

limit on strength reduction factor Rdi , developed through a large number of SDOF simulations 

in FEMA P440A [5]. In this approach, Rdi = Sa /Say, where Sa = the median spectral accelera-

tion causing instability and Say = the strength of the oscillator, expressed as a spectral accel-

eration. Terms used in Equation 1 are defined in Figure 6.  
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Figure 6: The backbone characteristics used in the FEMA 440A equation for maximum strength factor, Rdi, to 

avoid dynamic instability. 

2.4 Record Set and Subset selection 

Nonlinear response history analyses of the MDOF model of the structure can be 

implemented at a given hazard level either by using a moderately large pool (greater than 30) 

of ground motion records or, more economically, by selecting subset(s) of ground motion 

records to estimate index values of the demand parameter distributions. The use of record 

subsets here follows the initial ideas presented by Azarbakht and Dolsek [17,18]. The ground 

motion records used in the nonlinear response history analyses are individually scaled to the 

target Sa or target Sdi level, according to our choice of intensity measure.The target pseudo-

spectral acceleration level Sa(T1), symbolized as Sa
des

, is determined from the Sa hazard curve 

at the desired mean annual frequency of exceedance. 

When using Sa as the intensity measure of choice, sufficiency (Luco and Cornell [19]) be-

comes an important issue. Thus, ground motion records for this approach ideally should be 

epsilon-consistent (Baker and Cornell, [13]) to obtain unbiased response quantity estimates. 

Nevertheless, ignoring this issue generally will lead to conservative estimates. A simple alter-

native to better control the level of conservatism is to select ground motions for which the 

scale factor applied to each natural (corrected) record is between 0.4 and 2.5. In our case, the 

far-field set of 44 records selected for FEMA-P695 [9] will be used. These motions are 

generally consistent with the smoothed elastic response spectrum for this site, needing scale 

factors within the suggested limits for reaching the design value of spectral acceleration, Sa
des

, 

given by Sa(T1, 5%) at the designated hazard level of 10% in 50yrs. 

Median values of demand parameters are estimated using a subset of records whose spectra 

individually and collectively best approximate the median (50
th

 percentile) spectrum; these 

records comprise record subset A. Where estimates of dispersion are sought, records are 

selected whose spectra individually and collectively best approximate a desired higher level 

of response spectrum (taken as the 84
th

 percentile in this discussion); these records comprise 

subset B.  
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Figure 7: The 5%-damped 16,50,84% Sa spectra of the 44 records scaled to match the set median at T1=0.86sec. 

 

Figure 8: The 1,3,5 and 7 best record subsets A as selected to optimally match the 50% scaled-spectrum of Fig-

ure 7 in the regions of interest. 

 

Figure 9: The 1,3,5 and 7 best record subsets B as selected to optimally match the 84% scaled-spectrum of Fig-

ure 7 in the regions of interest. 
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Subsets are selected using the elastic response spectra determined for the entire suite of 

ground motion records, scaled either to the target Sa value or to the target Sdi value. The scaled 

elastic response spectra determined for the entire pool are used to generate 50
th

 percentile 

(median) and 84
th

 percentile spectra of Sa as a function of T. Subsets of ground motion records 

are selected based on how well the corresponding elastic spectra match the median or 84
th

 

percentile spectral amplitudes over a relevant period range. For records scaled to the target Sa, 

investigations in ATC-76-6 [3] suggest that spectral matching should be done over a period 

range defined by the two intervals, designed to capture both the higher mode effects and the 

expected lengthening of the ―first-mode‖ after yielding. In the case of Sdi scaling, the period 

range need not extend up to and past the first-mode period as the use of Sdi is expected to 

directly take into account the lengthening of the ―first-mode period‖ of the structure that 

occurs as inelastic response develops. Thus, the period range of interest becomes: 
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The lower period is Ti determined as a function of the number of stories Nst > 1, where 

 
st

Ni ceil , ―ceil‖ being the ceiling function that rounds up to the nearest higher integer.  

To properly describe the subset selection method, the following symbols are introduced: 

The operator [.]D,x% denotes the x percentile of dataset D, while the designations ―sub‖ and 

―all‖ are used to distinguish the subset and the full set. Then, the selection method for Sa-

scaling may be formally defined as follows: Minimize the sum of the absolute relative 

differences from the median of the elastic spectrum of the ground motion suite within the 

period range RT. Formally: 
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A proper optimization to select the true optimal subsets would be cumbersome, involving a 

difficult combinatorial optimization problem. In its place, a simplified selection procedure is 

introduced that can be easily implemented, e.g. in a spreadsheet: 

1. For a given x% (50/84%) fractile to be estimated, calculate the ―signed‖ and 

―unsigned‖ objective values S
i
x% and U

i
x% for each i-th record by adapting 

Equation (3) with and without the absolute value, respectively: 
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2. Separate the records into two lists: A ―negative‖ and a ―positive‖ list according to 

the sign of the ―signed‖ objective value. Sort each in ascending ―unsigned‖ value. 

3. Merge the two lists by selecting records alternatively from each: Start from the 

―positive‖ list and pick the record with the lowest ―unsigned‖ value, then similary 

proceed with the ―negative‖ list to pick the second record. Remove them from the 

lists. 

4. Continue with step 3 until the desired subset size is reached. 
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The above algorithm should be applied twice, first for x = 50% to determine subset A to 

estimate the median response and then for x = 84% to determine subset B and allow 

determination of the response dispersion. The use of 7 to 11 records in each subset appears to 

be adequate for many cases. There is no restriction to the maximum size of subset A or B, 

apart from a logical limitation of about one third the total number of records employed. The 

reason is that the subsets should always be small enough so that no single record appears in 

both A and B. Thus, for a minimum pool size of 30 records, the maximum suggested 

corresponding subset size is 10 for each subset. Due to the approximate nature of the results 

obtained with record subsets, wherever greater accuracy is required, larger subsets may be 

selected from an even larger pool size, or the entire pool of records may be used, disregarding 

subsets entirely. 

The results of applying the selection algorithm for the 4-story RC building appear in 

Figures 8 and 9, showing the progressive selection of the 1/3/5/7 best records for subsets A 

and B, respectively. Obvioysly, the proposed method adopts a structure-dependent fitting 

range and a simple selection algorithm exploiting the relative robustness of the percentile 

estimators to run more efficiently. It also employs an integral over relative differences rather 

than plain differences. Since higher differences generally appear at the lower end of the 

spectrum, this distinction means that plain differences will tend to weigh lower periods more 

heavily than relative differences. Thus, the presented algorithm strives for more equal 

weighting across periods. Of course, it is conceivable that the degree of nonlinearity in the 

structure itself should influence the relative weighting of different areas in the spectrum, 

favoring, for example, the periods above T1 when deep in the post-yield range of response 

versus periods around, e.g., T2 when close to linear elastic behavior. This points to the 

expectation that, for the sake of simplicity, the proposed selection method may not be equally 

efficient at all intensity levels. 

2.5 Nonlinear response history analyses and EDP statistics 

Having selected the two subsets A and B, the corresponding two groups of nonlinear 

response history analyses are peformed. Estimates of median values of each engineering 

demand parameter (EDP) are given as the median of the demand parameter values obtained 

using record subset A as follows: 

  
%50,50 Ai

EDPEDP   (6) 

However, the estimation of the 84% needs more care, as the errors can be much higher than 

with estimates of the median. Consider that for a given scale factor (or intensity level) record 

subsets A and B have sizes NA and NB, respectively. Then, a relatively conservative estimate 

of the 84% can be made by taking the maximum of three distinct values: 

1. [EDPi]B,50%, the median of EDP values obtained using subset B 

2. [EDPi]max(A,B),50%, the median of the NB largest EDP values from both subsets A and B 

3. [EDPi]A+B,84%, the 84% of the EDP values from subsets A and B pooled together. 

Care should be exercised though: the 3
rd

 estimate is intended to be useful only for large 

samples, as it can become too conservative for small subset sizes, smaller than 20% of the 

total size NT (e.g. NB less than about 9 relative to a full set size of 44). On the other hand, it 

has to be used for larger subsets as the use of medians in the first two estimates will tend to 

underestimate the 84
th

 percentile. Therefore, the combined, multi-part estimate of the 84% 

EDP is: 
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Median and 84
th

 percentile values are ―counted‖ values, typically obtained by linear 

interpolation between the two closest values of the sample. Any collapses, assuming they are 

less than 10% of NT, are still considered in the calculations as having an infinite EDP. The 

dispersion (aleatory randomness) in the demand parameter is thus estimated as  

 )ln()ln(
5084|

EDPEDP
IMEDPDR

   (8) 

If the entire set of ground motion records is used to determine the MDOF response, then, 

allowing for modeling limitations, the evaluation procedure would be expected to introduce 

negligible additional uncertainty (error) in the EDP statistics. On the other hand, if the more 

efficient subsets are used, there is additional (non-negligible) error to consider that depends 

on the number of records employed in each subset and the EDP type itself. To represent this 

error, it is suggested that additional epistemic uncertainty dispersion is introduced in the 

safety checking given by  
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Examples of global EDPs are maxima over the entire building such as the maximum story 

drift or the peak roof drift over all stories; examples of story-level EDPs are story drifts and 

floor accelerations, and examples of component-level EDPs are member forces and section 

rotations. 

In addition, to the two groups of NRHA corresponding to subsets A and B, in order to 

approximate the general shape of the IM to EDP relationship, one more group of analyses is 

needed. The determination of the mean annual frequency of exceedance of a demand 

parameter, or the required strength to ensure the capacity meets or exceeds the demand within 

limits implied by the mean annual frequency of exceedance at a given confidence level, 

necessitates the estimation of response for at least one additional seismic intensity level.  

When multiple intensity levels are being evaluated simulatenously (e.g., at the 50%, 10% and 

2% in 50 year hazard levels) then the results at the next highest (if available) intensity level 

(lower probability, Po) can be used for this purpose. 

Alternatively, if the performance assessment is being made at only a single performance 

level (i.e., only one value of probability Po), median response at a higher intensity level must 

also be determined, using a third subset of records comprising subset A scaled by a factor of 

1.10 or larger. If the median capacity EDP-value for which we are testing is EDPC then if 

IM
des

 (e.g. Sa
des

 for Sa-scaling) is the level of IM where we previously run subsets A and B, we 

can now rerun subset A at IM’ = IM
des

 · EDPC / EDP50. By virtue of Equation (6), the new set 

of results yields its median, EDP’50, to be used in the following section. 
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Figure 10: The mean Sa-hazard curve and the power-law approximation in the region of the 475 year intensity 

level.  

2.6 Safety checking 

Design decisions ultimately require ascertaining that a design satisfies performance 

expectations, and this often requires comparison of seismically induced demands with the 

capacities associated with the materials and components that form the structure. Although 

structural engineers are accustomed to treating uncertainty in demands and capacities in 

ultimate strength design for non-seismic loads, seismic design practice generally has 

neglected uncertainty, particularly on the demand side. 

The Demand and Capacity Factored Design (DCFD) format developed by Cornell et al 

[11] is meant to be used as a check of whether a certain performance level has been violated. 

It cannot provide an estimate of the mean annual frequency of exceeding a given performance 

level. Instead, it was designed to be a checking format that conforms to the familiar Load and 

Resistance Factor Design (LRFD) format used in all modern design codes to check, e.g., 

member or section compliance. It can be represented by the following inequality: 

    
TUxRCRTUxRPoR

KEDPEDPKFDFC  expexp
5050,
 , (10) 

where FCR is the factored capacity and FDRPo is the factored demand evaluated at the proba-

bility Po associated to the selected performance objective. The subscript R denotes that they 

only include aleatory uncertainties. Correspondingly, EDPC is the median EDP capacity de-

fining the performance level (for example, 2% maximum interstory drift for a Life Safety lim-

it-state) and EDP50 is the median demand evaluated via subset A at the IM intensity level that 

has a probability of exceedance equal to Po. For example, Po = 0.0021 ≈ 1/475 for a typical 

10% in 50 years Life Safety performance level. The capacity and demand factors φR and γR 

are similar to the safety factors of LRFD formats and they are defined as: 

 










2

2

1
exp

CR

EDP

R
b

k
  (11) 
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 










2

2

1
exp

DR

EDP

R
b

k
 , (12) 

βDR is the demand record-to-record (aleatory) variability, determined according to Equation 8 

from the results of NRHAs of subsets A and B. βCR is the aleatory variability in the EDP-

value of limit-state capacity that can be determined, e.g., from experimental tests. The param-

eter k is the slope of the hazard curve when plotted in log-log coordinates and depends on lo-

cal seismicity and site characteristics. The slope may be derived by taking a straight-line 

approximation to the hazard curve in log-log coordinates, as shown in Figure 10. The approx-

imation should closely fit the hazard curve in the region [0.25Sa
des

, 1.5Sa
des

], as suggested by 

Dolsek and Fajfar [20]. On the other hand, following Jalayer and Cornell [21], b is estimated 

by taking advantage of the additional group of NRHAs performed with subset A at increased 

intensity IM’. Specifically, let EDP’50 denote the median demand parameter at the higher IM’ 

level, then the log-slope, b, of the median demand parameter curve is estimated as follows: 

 
)/ln(

)ln()ln(
5050

desEDP
IMMI

EDPPED
b




   (13) 

The epistemic uncertainty in demand and capacity is introduced by the total uncertainty dis-

persion 

 22

CUDUTU
  . (14) 

The two components of βTU are βDU and βCU to address epistemic uncertainty in the demand, 

e.g., due to modeling parameters, and also on the EDP capacity. Any value determined or 

provided for βDU should be inflated by βSubU, which represents epistemic uncertainty 

associated with using record subsets to estimate demand, as given by Equation (9). The final 

βDU value should be estimated by taking the square root of the sum of the squares of the 

individual components. Figure 11 provides an illustrative breakdown of the sources of 

variability included in the assessment and how they influence the parameters of Equation 

(10). 

Finally, to ensure the factored capacity, FCR, exceeds the factored demand, FDRPo, with the 

designated MAF at a confidence level of , we include Kx. This is the standard normal variate 

corresponding to the desired level . Values of Kx are widely tabulated, and can also be easily 

calculated by the NORMINV function in Excel. For example NORMINV(0.9,0,1) yields Kx = 

1.28 for = 90%, while NORMINV(0.5,0,1) produces Kx = 0 for = 50% confidence.  

Equation (10) allows a user-defined level of confidence to be incorporated in the 

assessment. This is a quality that may prove to be very useful since different required levels of 

confidence can be associated with ductile versus brittle modes of failure or local versus global 

collapse mechanisms. The significant consequences of a brittle or a global failure often 

necessitate a higher level of safety and can be accomodated with an appropriate higher value 

of Kx. This is fundamental in the practical application of the FEMA-350/351 [6,7] guidelines 

where different suggested values of the confidence level are tabulated for a variety of 

checking situations. 
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Figure 11: Breakdown of the total dispersion βΤ to its four contributing sources. The circled items are the com-

ponents used for the targeted NDP format. 

3 ILLUSTRATIVE ASSESSMENT 

The interstory drift capacity limit of 2% is subject to both aleatory randomness and 

epistemic uncertainty. The aleatory randomness is associated with natural variability of 

earthquake occurrence while epistemic uncertainty is associated with our incomplete 

knowledge of the seismotectonic setting (i.e. the hazard), the building and its properties. 

Uncertainty in the hazard is addressed by using mean rather than median hazard information 

(Cornell et al. [10]). The latter two sources cause the true capacity limit to be lognormally 

distributed with dispersions (standard deviation of the natural log of the data) that are 

assumed here to be βCU = 30% and βCR = 20%. Furthermore, based on relevant results (e.g., 

Liel et al [22], Dolsek [23] and Vamvatsikos & Fragiadakis [24]), we set the base value of 

βDU at 20% as a possible estimate of dispersion due to epistemic uncertainty, associated 

mainly with the modeling parameters. Since we are using subsets A and B with 7 records each 

and assessment is peformed via a global EDP (interstory drift) this base value is inflated by 

βSubU = 0.6 / sqrt(7) = 23%. Other sources of uncertainty that have not been accounted for may 

increase such estimates considerably.  

Assessment based on Sa(T1) follows the basic steps discussed in the previous section. The 

first step is to determine the Sa(T1, 5%) design point corresponding to the 10% in 50 years 

design level. This corresponds to a mean annual frequency (MAF) of λ = - ln(1 - 0.10)/50 = 

0.00211 or 1/475 years, resulting in Sa
des 

= 0.62g. The stability assessment performed via 

SPO2IDA (Figure 5b) clearly shows that there is insigificant chance of global collapse at this 

intensity level, as the 16% value of collapse capacity is approximately 1.7g >> 0.62g. 

Now, a straight line is fitted to the hazard curve in log-log coordinates within the ―region 

of interest‖, defined by Sa = k0·Sa
-k

. This region, according to the suggestions in Dolsek & 
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Fajfar [20], should be defined over the interval [0.25Sa
des

, 1.5Sa
des

]. The region is extended 

further into the lower intensities since these are the ones that have the higher probabilities of 

exceedance. The resulting fit appears as a red dashed line in Figure 10, corresponding to a 

slope of k = 2.14. From its relationship with the hazard curve we can tell directly that we will 

be overestimating the hazard more or less for any value of Sa. This observation implies that 

the Sa-based approach will result in a conservative evaluation. 

Ground motion records are individually scaled to the Sa
des

 level in the first set of nonlinear 

dynamic analyses. The maximum interstory drift response θmax, determined in each nonlinear 

dynamic analysis is the only engineering demand parameter (EDP) of interest in this example. 

Out of the total 14 nonlinear response history analyses, only one did not converge, signifying 

the occurrence of global dynamic instability. Such results are not to be excluded from the 

analyses. They may be considered to correspond to infinite EDP reponse and thus contribute 

to the estimation of the percentile values of the sample; use of percentiles is robust to 

infrequent infinite values. The median of the maximum interestory drift values obtained with 

subset A is θmax,50 = 0.0115. Subset A together with B provide θmax,84 = 0.0153 via Equation 

(7). Thus, dispersion can be estimated as  

βDR = βθmax|Sa = lnθmax,84 – lnθmax,50 = ln(0.0153) – ln(0.0115) = 29%  

If, on the other hand, collapse has been observed for more than 10% of the records, the 

probability of collapse should be considered explicitly with an alternative format (see Jalayer, 

[25]).  

To estimate the slope of the median θmax versus Sa diagram, a second set of nonlinear 

dynamic analyses were done using ground motion records scaled to 1.10·Sa
des

 to determine the 

median value θmax,50(1.10). Using the full set of 44 records resulted in a median value of θ’max,50 

= 0.0124. These median values allow the slope of the median EDP curve to be estimated as  

83.0
)10.1ln(

)0115.0ln()0124.0ln(

)10.1ln(

)ln()ln(
50max,50max,










b . 

In this case, an assumption of b = 1, as originally suggested by FEMA-350/351 [6,7], would 

be slightly unconservative. 

Finally, factored demand and factored capacity are estimated as: 

FDRPo =  θmax,50 exp(0.5·k·βθmax|Sa
2
/b) = 0.0115 exp (0.5 · 2.14 · 0.29

2
 / 0.83) =  0.0128 

FCR =  θmax,C exp(-0.5·k·βCR
2
/b) = 0.02 exp (-0.5 · 2.14 · 0.2

2
 / 0.83) = 0.0190 

If exceedance of the 2% maximum interstory drift is assumed to involve a ductile mechanism 

for this building that may only produce some local problems, the probability of exceedance 

can be evaluated (for the purposes of this example) at a 50% confidence level. This corre-

sponds to a lognormal standard variate of Kx = 0, effectively discounting in its entirety the det-

rimental effect of epistemic uncertainty. Thus, the evaluation inequality becomes: 

FCR > FDRPo · 1,   

or equivalently, 0.0190 > 0.0128, which is satisfied. A result of FCR = FDRPo, would have in-

dicated that the capacity is equal to the demand induced in the building, on average, at least 

once every 475 years, at a 50% level of confidence. The actual result indicates that the capaci-

ty exceeds the demand induced in the building at a longer mean recurrence interval. 

In some circumstances a higher level of confidence for a given recurrence interval may be 

desired in evaluating factored capacities, especially if involving a brittle or a global collapse 

mechanism that will have severe consequences on the building occupants. For illustration 
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purposes, let us assume that this is indeed the case in this situation. For a confidence level of 

90%, the lognormal standard variate is Kx = 1.28 and the evaluation inequality becomes: 

FCR > FDRPo exp (Kx · βTU) = 0.0128 · exp(1.28 · sqrt(0.3
2
+0.2

2
+0.23

2
)) = 0.0221 

Since the factored capacity of 0.0190 is lower than the factored demand of 0.0221 the re-

sult is not satisfactory at the 90% confidence level. This clearly indicates that while the struc-

ture may be adequate at the 10% in 50yrs level if it presents a ductile low-consequence failure, 

like plastic beam hinging, it should not be considered safe if the failure mode examined is, 

e.g., a shear failure with important consequences. 

4 CONCLUSIONS  

The Targeted Nonlinear Dynamic Procedure has been introduced as an alternative to the 

nonlinear static procedure, offering a higher level of accuracy in seismic performance assess-

ments within a practical format. It uses both a realistic MDOF model and its equivalent SDOF 

to achieve inexpensive calculations. Lateral stability assessment is performed on the equiva-

lent SDOF, while the expensive MDOF is selectively used for nonlinear response history 

analysis. This is achieved by employing small subsets of ground motion records appropriately 

selected to match the 50/84% elastic spectra to efficiently estimate the median and the disper-

sion of seismic demand. The final results are integrated with seismic hazard information using 

the practical SAC/FEMA format to check for limit-state violations.  

It is a powerful alternative to typical pushover-based methods that properly incorporates 

both epistemic and aleatory sources of variability while it offers a user-controlled level of 

confidence in safety checking. Thus, it allows proper consideration of different modes of fail-

ure (e.g., brittle versus ductile) according to their expected consequences. While not as accu-

rate as modern PBEE approaches, it is nevertheless designed to err on the conservative side 

and offer an inexpensive and user-friendly method that can serve as an introduction to more 

sophisticated analysis techniques. 
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