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ABSTRACT 
 

This paper presents uniform risk spectra for systems with lateral negative stiffness, such as free-standing, 

restrained or curved-end rocking blocks. The spectra are constructed using a simplified system, the Zero 

Stiffness Bilinear Elastic system, which can satisfactorily predict the response of different systems with 

negative lateral stiffness. The paper offers the step-by-step methodology for the construction of the spectra. It 

presents the construction and discussion of the spectra for a site in Athens, Greece using two distinct intensity 

measures: Peak Ground Velocity and Peak Ground Acceleration.  
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INTRODUCTION 

 

Rocking has been extensively studied over the last half century (Agalianos et al., 2017; Aghagholizadeh & 

Makris, 2018; Dar et al., 2018; Dimitrakopoulos & Giouvanidis, 2015; Giouvanidis & Dimitrakopoulos, 2017; 

Housner, 1963; Makris & Vassiliou, 2013, 2014; Sieber et al., 2020; Thomaidis et al., 2020; Vassiliou et al., 

2016, 2017; Vassiliou 2018; Zhang et al., 2019). However, it was only recently that the concept became 

increasingly popular and it was proposed as a seismic design method for resilient structures (Mashal & 

Palermo, 2019; Reggiani Manzo & Vassiliou, 2022; Rios-Garcia & Benavent-Climent, 2020; Sideris et al., 

2014a, 2014b, 2015; Thonstad et al., 2016). A rocking column can reduce the forces transmitted to the 

foundation and, if designed with appropriate detailing (Mashal & Palermo, 2019; Reggiani Manzo & Vassiliou, 

2021; Thonstad et al., 2016), present low-damage even after being subjected to its design earthquake. 

The linearized lateral force-deformation relation of a free-standing rocking block presents negative stiffness 

and can be completely defined by two parameters: its uplifting force and maximum top horizontal displacement 

(Fig. 1a). The introduction of flexible non-prestressed restrainers increases the block’s maximum horizontal 

displacement, while prestress also changes its uplifting force (Liu & Palermo, 2017; Makris & Vassiliou, 2015; 

Mashal & Palermo, 2019; Reggiani Manzo & Vassiliou, 2021; Sideris et al., 2014a, 2014b, 2015; Thomaidis 

et al., 2022; Thonstad et al., 2016; Vassiliou & Makris, 2015; Zhou et al., 2019). The block’s uplifting force 

and maximum horizontal displacement can also be controlled by designing its ends in a curved shape (Fig. 1c) 

(Bachmann et al., 2017, 2019) or by adding damping or inerter devices (Aghaghoziladeh, 2020; Makris & 

Aghaghoziladeh, 2019; Thiers‐Moggia & Málaga‐Chuquitaype, 2019, 2020, 2021). 

In seismic design, the current state of practice is to design structures using the uniform hazard spectrum (UHS), 

which define the seismic actions. Recently, Luco et al. (2007) proposed the Uniform Risk Spectra (URS), 

which does not provide seismic actions with uniform probability of exceedance (as the former), but it goes one 
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step further and provides seismic actions that results in structures with uniform risk of damage and/or collapse. 

Both spectra represent key tools in practice that facilitate the seismic design of structures with positive 

stiffness. On the other hand, structures with negative stiffness cannot be designed using such spectra (Makris 

& Konstantinidis, 2003), and their design still depends on time history analyses. 

 

 

 

Figure 1. (a) Free-standing rigid rocking block; (b) restrained rigid rocking block; and (c) curved-base 

rigid rocking block. 

 

Looking for simplified methods, Kazantzi et al. (2021) have offered normalized response prediction and 

fragility assessment expressions that can be employed within a probabilistic framework to assess or design 

simple rocking systems (Vamvatsikos & Aschheim, 2016). Following another approach, Reggiani Manzo & 

Vassiliou (2019, 2021) proposed a proxy system, the Zero Stiffness Bilinear Elastic (ZSBE) oscillator, which 

can be used to estimate the displacement demand of rocking systems with the same uplift force, but different 

maximum horizontal displacements. This simplified system reduces the number of variables in the rocking 

problem and allows the construction of a single spectrum for a range of negative stiffness systems: free-

standing rocking frames, restrained rocking frames, or rocking frames with curved ends. 

This paper further develops this simplified spectrum by considering the uncertainties inherent to seismic 

actions. It presents uniform risk spectra for a site in Athens, constructed using the ZSBE proxy, as well as the 

step-by-step methodology for its construction.  

 

 

ZSBE AS A PROXY FOR NSBE 

 

The Negative Stiffness Bilinear Elastic System 

 

The Negative Stiffness Bilinear Elastic (NSBE) system can describe the dynamics of free-standing (Fig.1a), 

restrained (Fig.1b), and curved-based (Fig.1c) rocking structures, or any other deformable system that presents 

negative post-uplift stiffness and does not exhibit hysteretic damping.  Fig. 2 presents the NSBE oscillator, 

and its displacement-restoring force relationship. Up until uplift, the system behaves as a linear single degree-

of-freedom system, representing any deformability the system might present before uplifting. After uplifting, 

the tangent stiffness becomes negative (kneg). The displacement capacity (ucap) is defined not by material failure, 

but by the displacement that causes zero restoring force. Therefore, the displacement capacity of an 

unrestrained column measured at its top is equal to its width. 

 



 
Figure 2. (a, b) NSBE system representation; and (c) its displacement-restoring force relationship. 

 

Based on its displacement-force relationship (Fig. 2c), the oscillator’s equation of motion is: 
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The only source of energy dissipation in the system is impact damping, which is assumed to happen 

instantaneously. This assumption is valid for rocking structures with protected ends and no extra damping 

mechanism but might deviate from reality when the column ends are not protected (Kalliontzis et al., 2016, 

2020). When the system is returning to its original position and its displacement equals to the uplift 

displacement (uup) (i.e. when the system is “downcrossing” uup), the integration is halted, and its post-impact 

velocity is calculated by a coefficient of restitution (rc): 
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A coefficient of restitution equal to 0.95 is assumed, corresponding to relatively slender structures. It is known 

that the coefficient of restitution, as defined in Equation 3 and by Housner (1963), depends mainly on the 

slenderness of the column and consequently on the column’s uplifting force. However, the uplifting force can 

also be changed without varying the coefficient of restitution by prestressing the rocking column (Makris & 

Vassiliou, 2015; Vassiliou & Makris, 2015). 

 

The Zero Stiffness Bilinear Elastic System 

 

Fig.3a presents the displacement-force relationship of the ZSBE system. The system follows the same equation 

of motion and assumptions of the NSBE system when its displacement capacity tends to infinity, resulting in 

a system with zero post-uplift stiffness (kneg = 0). 

The ZSBE oscillator can be used as a proxy for the prediction of the response of the NSBE oscillator (Reggiani 

Manzo & Vassiliou, 2019, 2021). Hence, studying the response of a ZSBE system of a given fup and uup suffices 

for the description of the response of all NSBE of the same fup and uup, independently of their ucap. Therefore, 

spectra providing umax of the ZSBE system as a function of fup for a given uup can be used for the design of 

NSBE systems. Fig.3b presents such a spectrum, extracted from Reggiani Manzo and Vassiliou (2021). It 

refers to uup = 0.0005m and it gives the median response for a set of ground motions selected and scaled as 

discussed therein. Herein, a uup = 0.0005m was also used to denote a quasi-rigid ZSBE system. 

 



 

Figure 3. (a) Displacement-restoring force relationship of the ZSBE system; and (b) spectrum obtained 

using the ZSBE proxy. 

 

 

METHODOLOGY FOR CONSTRUCTING THE UNIFORM RISK SPECTRA FOR NSBE SYSTEMS 

 

Uniform hazard spectra (UHS) are widely adopted in seismic codes for the design of conventional structures. 

The UHS provides values of the (pseudo)spectral acceleration at different periods for a given mean annual 

frequency (MAF) of exceedance. Single-degree-of-freedom structures of a given period designed to reach 

“failure” (e.g. significant damage or life safety) at precisely the spectral acceleration value denoted by the UHS 

for this period would do so with the MAF (or equivalently the return period) that characterizes the UHS, 

assuming their response could be calculated without any uncertainty (Luco et al., 2007); typically, however, 

this is only the case for elastic oscillators and perfect knowledge. Any deviation from this strict norm results 

in increased MAFs, i.e., unconservative designs. Given the significant uncertainties inherent in nonlinear 

response, record-to-record variability, higher modes, geometry, and materials, this has become a well-known 

problem of intensity-based approaches. It is traditionally tackled by conventional design codes through ad hoc 

safety factors and overdesign, leading to the advent of performance-based seismic design (PSBD, 

(Vamvatsikos & Aschheim, 2016; Krawinkler et al., 2006)).  

Given the computational complexity of early PSBD approaches, Luco et al. (2007) tried to strike a middle 

ground by proposing the Risk-Targeted or Uniform Risk Spectrum (URS). The URS provides seismic actions 

that at least results in elastoplastic single-degree-of-freedom systems with uniform risk of damage or collapse, 

partially mitigating some of the inaccuracies of the UHS when applied to realistic systems (Spillatura, 2018). 

Therefore, given the practicality of the URS for seismic design, this paper demonstrates how to produce them 

for ZSBE systems. 

Using the ZSBE proxy, the proposed URS is a plot of the displacement demand of the system as a function of 

its normalized strength, in which all ordinates of the plot present the same MAF of exceedance (Fig. 4b). The 

URS can also be interpreted as an iso-MAF contour plot of the seismic risk surface, which is a three-

dimensional plot of the annual probability of exceeding a displacement demand for a range of systems with 

different normalized uplifting forces (Fig. 4a). 

The calculation of the probability of exceedance is performed using the risk integral (Cornell et al., 2002): 

 

 ( ) ( ) ( )|LS C CEDP EDP P EDP EDP IM d IM  =  =    (4) 

 

in which λLS is the mean annual frequency (MAF) of exceeding (i.e., violating) a limit state (LS), P(EDP > 

EDPC | IM) is the fragility function, which represents the probability that the engineering demand parameter 

(EDP) exceeds the capacity threshold of EDPC associated with LS for any given level of the ground motion 

intensity measure (IM) and λ(IM) is the MAF of exceeding a given value of IM, which can be retrieved from 

the site-specific seismic hazard curve. Note that Equation 4 gives a single-point of the seismic risk surface. To 



construct the complete surface, the equation has to be evaluated for several limit states and a range of systems 

with different normalized uplifting force (i.e. fup/(mg)). 

 

 

Figure 4. (a) Seismic risk surface with an iso-MAF contour plot highlighted; and (b) Uniform Risk 

Spectrum. 

 

 

Intensity measures (IMs) 

Given that all outputs of the risk assessment are conditioned on the chosen IM, it is extremely important to 

choose it wisely (Kazantzi & Vamvatsikos, 2015). However, no consensus exists in the engineering 

community of which IM is the most adequate for rocking structures. To guarantee hazard computability, two 

commonly used IMs in vulnerability studies are employed herein, namely the PGA and PGV. Both are 

employed in their geomean form, denoted henceforth as PGA  and PGV , and calculated as the geometric 

mean of the PGA and PGV, respectively, from the two horizontal components (x, y) of the ground motions:  

 

 x yPGV PGV PGV=   (5) 

 

 x yPGA PGA PGA=   (6) 

 

 

Site-specific seismic hazard curve 

 

 

The risk assessment was conducted for a site in Athens, Greece (Vamvatsikos et al., 2020). The seismic hazard 

curves for both IMs were assessed via Probabilistic Seismic Hazard Analysis (PSHA (Cornell, 1968)). For the 

hazard calculations, the open-source platform OpenQuake (2016) was used with the 2013 European seismic 

hazard model (ESHM13, (Woessner et al., 2015)). From the available logic tree branches of ESHM13 only the 

area source model and the Boore Atkinson 2008 GMPE (Boore & Atkinson, 2008) were employed. Since no 

site-specific data for the soil condition were available, a uniform “rock” soil type was assumed (VS30 = 800 

m/s) in the present study. 

 

 



 

Figure 5. Seismic mean hazard curve for a site in Athens, Greece, using (a) PGV  and (b) PGA  as IM. 

 

Fragility curves 

 

Incremental dynamic analyses (IDA) (Vamvatsikos & Cornell, 2002) were carried out to obtain the fragility 

functions for each predefined limit state and system. A set of 105 firm-soil ordinary (no-pulse, no-long-

duration) ground motions were selected from the PEER database (PEER NGA Database, 2005; Chiou et al., 

2008). When adopting PGV  as IM, the ground motions were gradually scaled in PGV levels of: 

( ) ( ) ,1:0.5: 20 25:5: 200PGV =  cm/s. For the PGA , scaling was employed in specific levels of: 

( ) ( ) ( ) 0.001, , ,0.0025:0.0025:0.0225 0.025:0.005:0.195 0.20:0.05: 2PGA=  g. 

The ZSBE system’s model considers only planar response. Therefore, the nonlinear dynamic analysis was 

carried out only for one of the components of each ground motion (arbitrary component). The component was 

chosen once randomly, and then used for all analyses. After carrying out the analyses for all different scales 

and ground motions, the fragility function per limit state and system can be easily obtained on an EDP or and 

IM-basis approach (Bakalis & Vamvatsikos 2018). In this paper, the former was employed. For each IM-step 

value (stripe), the probability of exceeding the deterministic EDP capacity threshold was calculated as: 
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Note that for smaller values of PGV and PGA , a finer discretization was adopted because low PGV or PGA 

ground motions might lead to smaller EDP values, but they also have large probability of occurrence, hence 

resulting in significant contribution to the convolution of the risk integral (Equation 4). 

The maximum horizontal displacement of the system (udem) was adopted as the EDP. To construct the seismic 

risk surface (Fig. 4a), fragility curves were constructed for several limit states and a range of systems with 

different normalized uplifting force. Herein, 3002 thresholds were evaluated, ranging from 0 to 3 m, in steps 

of 0.001 m. To be able to depict uplift, the threshold 0.0005 m was also included. The nonlinear analyses were 

carried out for systems with normalized uplifting force varying from 0.1 to 1.0, in steps of 0.05. 

 

Risk Integral 

 

The last step for obtaining the probability of exceedance (λLS, Equation 4) was to combine the structural 

response (i.e. fragility curves) with the seismic hazard at each location. The evaluation of the risk integral for 

all 3002 thresholds and 301 systems with distinct normalized uplifting force, resulted in the seismic risk 

surface. Herein, the URS with 2%, 10% and 50% probability of exceedance in 50 years are presented. These 

probabilities correspond to a MAF of 0.0004, 0.0021 and 0.0139 per year, as given by Equation 8, in which 

MAF can be converted to probability of exceedance (PT) in a specific period of time (T), and vice versa, via 

the cumulative distribution function of the exponential distribution: 
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UNIFORM RISK SPECTRA 

 

Fig. 6 presents the URS with 2%, 10% and 50% probability of exceedance in 50 years, constructed using 

PGV and PGA  as IM, respectively. As expected, for both IMs, the displacement demands are increased when 

moving from the less frequent hazard levels (i.e., 2% in 50 years) to the most frequent. 

Observing the spectra constructed for the same probability of exceedance, but different IMs, one can infer that 

the PGA -based spectra predict larger displacement demands than the spectra that adopt PGV  as IM. The 

larger displacement demands could be a consequence of the higher variance that Ground Motion Prediction 

Equations (GMPE) for PGA  present in comparison to GMPEs for PGV .  From Equation 4 it follows that 

distributions with fatter tails, once convolved with the fragility curves, lead to larger risk values. 

 

 

Figure 6. Uniform risk spectra for rocking structures with 2%, 10% and 50% probability of exceedance in 

50 years, constructed using (a) PGV and (b) PGA  as IM. 

 

 

CONCLUSIONS 

 

Using the Zero Stiffness Bilinear Elastic (ZSBE) system as a proxy for rocking systems, this paper constructed 

uniform risk displacement demand spectra for rocking structures, which could be used for their preliminary 

design. After explaining the methodology for constructing the spectra, the paper presented spectra for a site in 

Athens, Greece, which were constructed using two distinct intensity measures ( PGA  and PGV ).  
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