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Abstract. The potential basis of a simplified methodology for estimating the inelastic peak floor acceleration 

demand (PFA) of multi-story buildings subjected to seismic excitation is explored. Inelastic single-degree-of-

freedom (SDOF) oscillators are used to find a relation between the lateral strength and the inelastic acceleration 

demand. Effects of positive as well as negative post yielding stiffness and different damping types are assessed. 

Using regression analysis, a simplified approach is proposed to estimate inelastic acceleration demands for use 

within a probabilistic framework. Based on a fundamental mode approximation an existing approach for 

predicting elastic PFA demands is extended to inelastic multi-story structures. Pros and cons of this 

methodology are discussed, and further developments are recommended. 
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1 INTRODUCTION 

 

Several procedures have been developed to estimate the peak floor acceleration (PFA) demand in 

elastic buildings under earthquake excitation. Employing either an equivalent lateral force procedure 

(ELFP) or modal response spectrum analysis López-García et al. (2008) suggested a method to 

estimate modal spectral acceleration demands. Transforming the modal response quantities into the 

geometric domain using the well-known square-root-of-square-sum (SRSS) method leads to PFA 

estimates. Taghavi and Miranda (2008) introduced an extended modal combination method, based on 

a modified complete-quadratic-combination (CQC) rule (Wilson et al. 1981). They quantified the 

correlation between peak ground acceleration (PGA) and modal floor acceleration, and proposed 

improved correlation coefficients. In ATC-58-1 (2012) estimation procedures are codified for elastic 

behaviour of different types of load bearing structures, such as moment resisting as well as braced 

frames. These procedures even allow the assessment of the central tendency and dispersion of the PFA 

for probabilistic studies. In a further study, Chaudhuri and Hutchinson (2004) compare actual PFA 

demands in inelastic buildings with recommendations in actual design standards (FEMA P-750 2009, 

UBC 1997). They obtained a nonlinear distribution of the PFA over the building height, and based on 

these outcomes they propose an S-shaped distribution. However, standards propose a linear variation 

of the PFA, thus, underestimating this response quantity in most of the building stories. Generally, 

recommendations and codes in the US (FEMA P-750 2009, UBC 1997, IBC 2012) refer to the 

standard ASCE/SEI 7-05 (ASCE 2006). The European earthquake design standard (EN 1998-1 2011) 

does not provide the professional engineer with any information regarding PFA. Recently, within the 

Global Earthquake Model (GEM) (Porter et al. 2012) an approach was developed for elastic buildings, 

based on a first mode approximation with explicit consideration of the level of PGA. Results show that 

the proposed procedure may lead to accurate enough results if the structure is not too tall and behaves 

elastically. 
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All the aforementioned methodologies require elastic structural behaviour. The only alternative for use 

in the inelastic range is the cumbersome application of nonlinear dynamic analysis. The motivation for 

this paper is to introduce a middle path, resembling the application of nonlinear static procedure by 

using an analytical relation between the intensity of the record and the inelastic acceleration demand 

of a single-degree-of-freedom (SDOF) system, which is comparable with the methodology introduced 

by Ruiz-García and Miranda (2007) for displacement demands. To keep the application as simple as 

possible the single-mode GEM approach is modified taking into account nonlinear structural 

behaviour. Relations derived by means of regression analysis on acceleration demands of nonlinear 

SDOF systems are used to predict PFA demands of inelastic multi-degree-of-freedom (MDOF) 

buildings. As an example, the extended procedure is applied to a six-story generic frame and 

subsequently evaluated. 

 

 

2 SYSTEM RESPONSE STUDY 

 

This section contains several studies of peak acceleration demands of inelastic SDOF systems as well 

as inelastic MDOF structures seen through incremental dynamic analysis (IDA) (Vamvatsikos and 

Cornell 2005). All mechanical systems are subjected to the 44 records of the ATC63 far-field record 

set (FEMA P-695 2009). 

 

2.1 Single-degree-of-freedom system analysis 

 

The motivation for studying an inelastic SDOF system with bilinear hysteretic behaviour is to find a 

simple analytical relationship between the intensity measure (IM), defined by the elastic spectral 

acceleration Sae , and the corresponding inelastic peak absolute acceleration demand Pai as a function 

of the system period T. Elastic characteristic structural parameters are the period T (respectively the 

circular frequency ω) and the damping ratio ζ. Yield strength Fy and kinematic hardening coefficient α 

characterize the hysteretic properties. Initially, 5% mass-proportional damping and linear elastic-

perfectly plastic behaviour (i.e. α = 0) is assumed.  

 

2.1.1 Relation between inelastic peak acceleration demand and elastic spectral acceleration 

For a given intensity defined by the elastic spectral acceleration Sae the corresponding peak 

acceleration of the SDOF system Pai is recorded. To generalize the outcomes, both quantities are 

normalized by means of the corresponding quantities at onset of yield Say and Pay ,  
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resulting in the lateral strength ratio Re and the peak acceleration demand ratio Ri , respectively. Note 

that Say is related to the yield displacement Sdy according to  

 

  
Say 

2Sdy  (2) 

 

As an example, in Figure 1 Re is plotted against Ri for an SDOF system with period T = 1.00 s 

subjected to the 44 records of the ATC63 far-field ground motion set. Gray curves are single record 

IDA curves, and red lines highlight the corresponding median and 16th and 84th percentiles. For Re ≤ 

1 respectively Ri ≤ 1 and the plotted relation is linear with unit slope because the oscillator responds 

elastically. At an Re value slightly larger than 1.0 the curves exhibit a more or less pronounced kink, 

and subsequently the relation between Re and Ri tends to be almost linear, however with increased 

slope although the response is now inelastic. 
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Figure 2 depicts the median Re - Ri relationship as a function of the oscillator period T in the inelastic 

response domain (i.e. Re ≥ 1, Ri ≥ 1). The considered period range 0.10 s ≤ T ≤ 3.00 s covers the most 

common civil engineering structures. For better understanding the contour plot shows the median 

inelastic peak acceleration demand Ri for a specific period T and lateral strength ratio Re. In general, 

short periods return the highest Ri values. Around T ≈ 0.50 s Ri is a minimum, for periods T > 0.50 s Ri 

increases for given Re with respect to T. Note the linear trend along the Re-axis for any specific period. 

 

 

Figure 1. Re - Ri relation for an SDOF system with period T = 1.00 s. 

 

 

Figure 2. Re - T - Ri relation (median). 

 

2.1.2 Central tendency 

Since an almost linear relation between the lateral strength Re and the inelastic acceleration demand Ri 

has been revealed, the following analytical equation for the median Re - T - Ri relation is introduced: 
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Coefficients a1 and a2 define the slope and the intercept along the Re-axis for given T: 

 

  
a j (T )  c j,1e

c j,2 ln(T )
 c j,3 e

c j,4 ln(T )
,    j 1,2  (4) 

 

Parameters cj,k are estimated by linear regression analysis and listed in Table 1 for the median. 
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To quantify the quality of this analytical approximation the relative error with respect to the numerical 

outcomes, defined as  
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is evaluated. Figure 3 shows the analytical Re - T - Ri approximation according to Eq. (3), and the 

relative error of this approximation. Thereby, a positive error indicates an overestimation of the 

inelastic acceleration demands. The relative error is largest (i.e. 5%) for Re close to 1 in the entire 

period range 0.4 s ≤ T ≤ 3.0 s in the domain of transition from the linear to the nonlinear regime (see 

Figure 1). For stiff short period systems errors become also larger along the entire Re-axis. All other 

domains exhibit a small error in central tendency. 

 
Table 1. Parameters cj,k to estimate central tendency. 

 j cj,1 cj,2 cj,3 cj,4 

1 0.0031 -1.8756 0.0581 0.4414 

2 1.0210 -0.0428 -0.0229 -1.3226 

 

 

Figure 3. Approximation of median Re-T-Ri relation (left) and relative error (right). 

 

2.1.3 Dispersion 

Due to the record-to-record variability the seismic response is in general lognormally distributed 

(Chaudhuri and Hutchinson 2004). Therefore, Eqs (3) and (4) approximate also the 16th (Ri,16) and 

84th (Ri,84) percentiles of the individual inelastic peak acceleration demands Ri , however with 

different coefficients aj(T). A linear regression analysis delivers the corresponding parameters cj,k 

listed in Table 2. 

 
Table 2. Parameters cj,k to estimate dispersion. 

 Estimation of 16th percentile values  Estimation of 84th percentile values 

j cj,1,16 cj,2,16 cj,3,16 cj,4,16  cj,1,84 cj,2,84 cj,3,84 cj,4,84 

1 0.0023 -1.5770 0.0421 0.3585  1.0142 -0.0193 -0.0055 -1.5726 

2 0.0186 -1.2873 0.0607 0.8775  1851.6 -0.3286 -1850.6 -0.3288 
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The measure of dispersion   of a lognormal distributed function is related to the multiplicative 

standard deviation s  according to (Limpert et al. 2001) 
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Figure 4 shows both the surface plot and the corresponding contour plot of the dispersion parameter 

  with respect to Re and T. For short period systems T ≤ 0.25 s the dispersion is largest. Systems 

within the period range 0.25 s ≤ T ≤ 1.50 s exhibit a very small dispersion. 

 

 

Figure 4. Analytical approximation of the dispersion of the inelastic acceleration demand. 

 

2.1.4 Effect of post-yield hardening and damping 

Subsequently, the effect of post-yield hardening on the inelastic acceleration demand of SDOF 

systems is studied. A 5% damped inelastic SDOF system with period T = 1.00 s is subjected to single 

record IDA. Various hardening coefficients in the range of α = [0, 0.05, 0.10, 0.20] are taken into 

account. Additionally, for each oscillator both mass- and tangent-stiffness-proportional damping is 

considered separately to reveal the influence of the underlying viscous damping model on the 

acceleration response. The blue curve of Figure 5 depicts the acceleration demand for the linear 

elastic-perfectly plastic oscillator (i.e. α = 0%). It is readily observed that stiffness proportional 

damping leads in the inelastic response domain to a constant acceleration demand.  

 

This is obvious, because the plastic part of the elastic-plastic stiffness matrix equals the elastic part if 

the system behaves inelastically. This means that the stiffness equals zero and then, exactly then, 

damping also equals zero, because damping directly relates to the stiffness. Thus, for inelastic time 

steps the effective period leads to infinity, Teff   ∞, and as well known, for very long period 

structures the absolute acceleration returns to zero. Hence, the maximum acceleration becomes equal 

to the maximum recorded during the elastic regime. For hardening materials the effect of damping 

does not affect the response significantly. An increase of the hardening coefficient leads to a decrease 

of the difference between the responses based on different damping formulations. 

 

Rayleigh damping is very popular in the analysis of MDOF structures because its implementation is 

easy and efficient. In general, MDOF structures show positive or negative post yielding stiffness. 

Exactly zero stiffness in post yielding is a special case and untypical in realistic structures. Therefore, 

it is not obvious to what extent the aforementioned difference between mass- and stiffness-

proportional damping for an SDOF system translates to the MDOF response. Surely, though, the effect 

will not be as dramatic as in the isolated case of the elastic-plastic system.  
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Figure 5. Mass- (left) vs. tangent-stiffness-proportional (right) damping, positive post-yielding. 

 

 

Figure 6. Mass- (left) versus tangent-stiffness-proportional (right) damping, negative post-yielding. 

 

2.1.5 Influence of post-yield softening 

In this study the same oscillator model but using negative post yielding stiffness coefficients α =  

[-0.20, -0.50] is used to perform a single record IDA. A more realistic moderately pinching hysteresis 

is employed (Ibarra et al. 2005). SEQ shows the effect of different damping types (mass- vs. tangent-

stiffness-proportional) on the entire IDA curve. Stiffness-proportional damping shows the same effect 

for positive as well as negative post-yielding stiffness, because of the direct relation to the stiffness of 

the oscillator. Mass-proportional damping shows slightly increasing inelastic accelerations with 

increasing intensity. This comes out because yielding is not happening at the same time for different 

intensity levels. It seems that inelastic acceleration responses depend on the number of load cycles and 

on the dissipated energy. Thus, it is difficult to find a qualitative explanation for the shape of the entire 

IDA curve. Overall, though, it seems to be an adequate approximation to assume that the inelastic 

peak acceleration is almost equal to the maximum elastic value when the system starts losing strength. 

 

For MDOF structures it is important to note that acceleration does not increase by much, when the 

structure is completely yielded. This means the critical point, regarding loss estimation, is reached 

when the capacity curve of the structure turns from positive to negative stiffness. Then loss will be 

driven by displacement response or by the collapse probability, rather than any increase in acceleration 

values. 
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2.2 Multi-degree-of-freedom systems 

 

MDOF systems are modelled using the generic frames provided by Medina and Krawinkler (2003). In 

these, structural properties are determined by the condition that the first mode shape ϕ1 is linear and 

the fundamental period T1 is proportional to the number of stories N. In this study a flexible six-story 

moment resisting frame serves as load bearing structure, then the fundamental period leads to 

T1 = 1.20 s. Furthermore, is assumed that the bilinear springs (exhibiting 3% strain hardening) located 

at the base and the girder’s ends start yielding simultaneously when applying a lateral force pattern 

corresponding to the first mode shape.  The base shear coefficient is assumed to be γ = 0.10. An IDA 

is performed for the intensity levels Sa (1.20 s, 5%) = [0.10, 1.00, 5.00] g to figure out profiles of 

PFAs, see Figure 7. The profiles are normalized to PGA on the horizontal axis, and to the relative 

height of the structure on the vertical axis. Up to an intensity level of Sa = 0.10 g (blue curves) the 

structure behaves elastically. With increasing intensity level, PFA decreases. This is clearly shown by 

the median (bold curves) response quantities, which agree qualitatively with those derived by Miranda 

and Taghavi (2009). The elastic structure shows maximum PFA at the roof level. With increasing 

intensity the building becomes more and more inelastic, and maximum PFA returns to PGA at the 

base. Note that for increasing intensity the profiles translate from left to right. With increasing floor 

levels PFA decreases, and minimum PFA is approximately between 1/2 and 2/3 of the structure’s 

height. 

 

 

Figure 7. Profiles of peak floor accelerations. 

 

 

3 APPROXIMATION OF ELASTIC PEAK FLOOR ACCELERATION DEMAND 

 

Several authors propose methods to estimate PFA for linear elastic structures. For steel buildings and 

reinforced concrete wall frames López-García et al. (2008) proposed a procedure based on modal 

superposition using either the square-root-of-sum-of-squares (SRSS) method or the complete 

quadratic combination (CQC) method. Neglecting damping forces simplifies their approach, and 

lateral effective seismic forces for the sth floor Fs are obtained either by response spectrum analysis or 

by the equivalent lateral force pattern (ELFP) procedure. Thus, PFA of the sth story is simply the ratio 

of Fs and the corresponding story mass ms: 

 

  

PFAs 
Fs

ms

, s 1,...., N  (7) 

 



L. Moschen, D. Vamvatsikos, C. Adam / VEESD 2013  8 

The results show that approximations of SRSS and CQC are generally close. The problem with PFA in 

comparison to peak floor displacement demands is that each mode is correlated with the base 

acceleration. An extended CQC method presented by Taghavi and Miranda (2008) takes into account 

the correlation between modal peak accelerations and PGA: 

 

  

PFAs  Pas, j
g, j

j1

N

 PGA Pas, j
 f , jk

k1

N


j1

N

 Pas,k
 (8) 

 

where the correlation coefficients are 
  
g, j  to consider the correlation of jth modal peak acceleration 

at story s
  
Pas, j

 with PGA, and 
  
 f , jk  between the jth and the kth modal peak acceleration: 

 

  
g, j 11.2e(3.750.20)1.50

,  f , jk 11.1e(0.720.033)1.25

 (9) 

 

where  is always the smaller of the jth and kth natural circular frequency, i.e.  = min[ j,  k]. A 

very simple but still efficient method, based on a first mode approximation to estimate PFA in the sth 

floor, is proposed for the Global Earthquake Model (Porter et al. 2012), 

 

  
PFAs  PGA1,s(1 Sae(T1, ) PGA)  PFAmax  (10) 

 

where ϕ1 is the fundamental mode shape normalized to the maximum response, and Γ1 is the first 

mode participation factor. PFAmax is the upper limit for PFA related to the structure’s strength when 

the capacity curve turns over to negative stiffness. In the case of the considered six-story generic 

frame no upper limit exists (PFAmax   ∞) because of non-deteriorating material properties, either 

cyclically or in-cycle.

  

In Figure 8 the proposed approximation is compared to the IDA results for the first, fourth and the 

sixth floor (roof). Single record IDAs show the onset of inelasticity at Sae ≈ 0.10 g. Dispersions of the 

GEM method come out from the scaled PGA. On the roof floor dispersions equal zero because of the 

normalization of the first mode shape. The estimation of first floor PFA shows good results. It seems 

that PGA is what mostly affects the first mode approximation for the GEM approximation. 

 

The outcome agrees with the elastic profiles in Figure 7 where PGA dominates PFA. The higher the 

floor level the worse the approximation becomes because of the normalization to the roof response of 

the first mode shape. 

 

 

Figure 8. GEM approximation versus IDA. 



L. Moschen, D. Vamvatsikos, C. Adam / VEESD 2013  9 

4 APPROXIMATION OF INELASTIC PEAK FLOOR ACCELERATION DEMAND 

 

To estimate the inelastic peak floor acceleration demand PFAi,s a modification of the GEM method is 

proposed. Therefore, Eqs (3) and (4) are used to estimate the inelastic peak acceleration Pai , and 

Eq. (10) becomes: 

 

  
PFAi,s  PGA1,s(1 Pai(T1, ) PGA)  (11) 

 

The advantage of using the inelastic acceleration demand is that no restrictions are needed regarding 

an upper limit of intensity level. Figure 9 shows the approximation of the inelastic acceleration 

demand for the first, fourth and sixth floor, respectively (GEMi in the legend for inelastic approach). 

The quality of PFA estimation of the first floor leads to good results for central tendency as well as for 

the dispersions. With increasing number of stories the quality of the inelastic approximation decreases. 

Note that the parameters to estimate the inelastic acceleration demand of the SDOF system are 

determined for an elastic-plastic oscillator, rather than utilizing the actual backbone shape of the 

structure. The global pushover for the six-story generic frame shows a post-yielding stiffness of 

approximately 1.14%. The estimation would become a little better by considering this. It is important 

to note that the proposed method depends only on a single mode. Thus, it makes sense to modify this 

approach and apply an extended modal combination in the next step of this research. 

 

 

Figure 9. Elastic approximation versus inelastic approximation versus IDA. 

 

 

5 CONCLUSIONS 

 

In this paper a methodology for estimating the inelastic peak floor acceleration demand has been 

presented. The elastic-plastic single-degree-of-freedom oscillator excited by the records of the ATC63 

far-field record set serves as mechanical model to record peak acceleration demands. Influence of 

perfectly plastic, hardening and negative post-yielding stiffness on acceleration demand is discussed. 

Effects regarding mass- and tangent-stiffness-proportional damping on inelastic response are shown, 

and consequences to multi-degree-of-freedom (MDOF) structures identified. 

 

Regression analysis is used to determine an analytical solution for relationship between elastic spectral 

acceleration (IM) and inelastic peak acceleration demands (EDP). In a further step, an existing first 

mode approximation procedure to estimate elastic peak floor acceleration demands of MDOF 

structures is modified to predict inelastic peak floor accelerations. In terms of loss assessment, 

professionals need a sufficiently accurate but still effective method to estimate acceleration demands 

in inelastic structures. The proposed method is applied to a six-story generic frame structure. For a 
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first attempt the approximation shows adequate results, but there is still the need to enhance the 

methodology in the future and to test it on several lateral-load resisting systems. Extended modal 

combination methods should lead to better approximations. 
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