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ABSTRACT 

In this paper an extended complete quadratic combination rule for quick assessment of peak floor 

acceleration demands (PFA) of elastic structures subjected to seismic excitation is proposed. The 

simplification from time history analysis to the response spectrum method is shown in detail. Based on 

a relative acceleration formulation combined with nonlinear optimization techniques cross correlation 

coefficients are determined to estimate relative and absolute PFA demands. For estimation of central 

tendency and dispersion of the seismic response, regression equations are derived to provide a simple 

implementation of the method in civil engineering design practice. Application of the proposed 

procedure to a 24-story moment resisting generic frame structure shows the improvement compared to 

common response spectrum methods.  

INTRODUCTION 

In seismic loss assessment there is a need for a simple but still sufficiently accurate method to predict 

peak floor acceleration (PFA) demands for reasons outlined in the following. 

 Peak floor accelerations are used to define building content losses, typically accounting for a 

significant percentage of the total loss. 

 Application of methods of nonlinear dynamics analysis such as incremental dynamic analysis 

(IDA) (Vamvatsikos and Cornell, 2002)) is still a challenge. Nonlinear dynamic analysis requires 

a high level of knowledge on issues such as modeling of nonlinear component behavior, viscous 

damping, and numerical procedures, etc., and interpretation of results needs experience. 

Furthermore, commercial software still needs further improvements to make nonlinear time 

response history analysis methods more appealing for the design engineer. 

 Simpler methods of analysis may be approximate in nature, yet they can offer a wealth of 

information that can be exploited without incurring a large computational cost. Thus, they can 

make current assessment methods (e.g. ATC-58-1, 2012) accessible to practicing engineers. 

In the present paper a modified response spectrum method is proposed to predict peak floor 

acceleration demands of elastic, regular, plane moment resisting frame structures. PFA demands are 

the basis of floor acceleration spectra used to assess acceleration sensitive contents and nonstructural 

components. 

López-García et al. (2008) give an excellent overview of PFA demand assessment. From an 

evaluation of codified methods such as proposed in ASCE 7-10 (2010) and EN 1998-1 (2013) they 
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come to the conclusion that these methods lead in many case to inappropriate PFA demand 

predictions. PFA demands are either over-predicted, resulting in uneconomic design, or 

underestimated with consequences such as structural/nonstructural damage and risk of life safety in a 

severe earthquake event. For instance, dividing the lateral story force obtained according to equivalent 

lateral force pattern method (ELFP) by the corresponding story mass leads to inappropriate PFA 

predictions (López-García et al., 2008). Methods based on response spectrum analysis using various 

modal combination rules such as SRSS and CQC also fail in many cases to predict the median PFA 

demand (López-García et al., 2008). Furthermore, Chaudhuri and Hutchinson (2004) and Miranda and 

Taghavi (2009) show that procedures based on seismic actions on rigid nonstructural components lead 

to unrealistic PFA estimations. 

Other guidelines and recommendations, such as ATC-58-1 (2012), provide simplified equations 

for assessing peak response quantities of elastic and inelastic structures that lead in general to more 

adequate response predictions. However, each simplification comes along with restrictions in 

application. For instance, the procedure described in ATC-58-1 (2012) is limited to structures with 15 

stories, and for each generic type of lateral load bearing system (shear wall, moment resisting frame or 

brace frame) a different formulation is provided. 

In summary, most of the available procedures fail to provide realistic PFA demands, the 

physical interpretation of the outcomes is questionable, and/or the limitations for application are too 

narrow. Alternatively, Taghavi (2006) and Taghavi and Miranda (2008) propose a modified CQC rule 

in terms of the response spectrum method to predict absolute acceleration demands of elastic 

structures. The benefit of the modified CQC method is a clearly defined mathematical/physical model 

without any limitations, and the delivered response predictions are sufficiently accurate. In a more 

recent study on PFA demand prediction by Pozzi and der Kiureghian (2008) it is proposed to consider 

the contribution of truncated modes, equivalent to the static correction method (Chopra 2012). 

In the present study an extended CQC rule for absolute PFA demand prediction, based on a 

relative acceleration formulation, is proposed. As an alternative to average power spectra density of 

ground motions, nonlinear optimization techniques and regression analysis are used to derive 

analytical expressions for cross correlation coefficients. As a showcase a 24-story moment resisting 

generic frame according to Medina (2003) that is subjected to the records of the far field ground 

motion set defined in FEMA P695 (2009) is considered.  

FUNDAMENTALS 

Consider a planar regular N-story generic frame structure subjected at its base to a random signal, such 

as a ground motion defined by the acceleration series ( )gw t . The coupled set of equations of motion 

of the multi-degree-of-freedom (MODF) system with the masses concentrated at the beam-column 

connection reads (Chopra, 2012): 

 

 ( ) ( ) ( ) ( )gt t t w t   Mu Cu Ku Me  (1)  

 

In this equation ( )tu  is the vector of displacements relative to the base related to the dynamic degrees-

of-freedom, M is the mass matrix, K is the stiffness matrix, and e denotes the quasi-static influence 

vector. It is assumed that the orthogonality properties of the mode shapes , 1,...,i N , of the 

undamped system also hold for damping matrix C. This can be achieved by defining the damping 

matrix C according to Rayleigh as a linear combination of matrices M and K, or alternatively, by 

assigning a damping ratio to each modal equation individually (Chopra, 2012). In the present study, 

each mode is damped equally with 5%. 

Solving the equations of motion at each time instant, i.e., time history analysis, leads to the 

“most accurate” approximation of the real behavior of the earthquake excited structure. This requires a 

tool for dynamic structural analysis, and a set of recorded ground motions representative for the 

location of the building. In many cases, however, the earthquake excitation is simply characterized by 

a response spectrum. Thus, response spectrum analysis (RSA) (Chopra, 2012) is an attractive 
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alternative method to predict seismic demands that is less elaborate since it can be conducted with 

static tools of structural analysis.  

The basis of RSA is an expansion of vector u  in terms of modal contributions (Chopra, 2012), 

 

 

1

( ) ( )
N

i i

i

t q t



u   (2) 

 

where , 1,...,i N , are the mode shapes, and iq  are the generalized or normal coordinates. Using 

this equation, the coupled set of equations of motion represented by Eq. (1) are transformed to a set of 

N uncoupled equations with modal coordinates iD  (Chopra, 2012), 

 

  (3)  

 

each uncoupled equation being in the form of the equation of motion of an SDOF system, 

 

 2( ) 2 ( ) ( ) ( )i i i i i giD t D t D t w t        , 1,...,i N  (4)  

 

These equations can be solved for iD  with standard methods of dynamic analysis. Then, the 

physical coordinates are determined through Eqs. (3) and (2). For instance, the absolute acceleration 

demand is determined according to  

 

  (5)  

 

The first sum of Eq. (5) is the contribution due to relative acceleration, and the second sum is the 

participation of the ground acceleration to the absolute acceleration. When combining the modal 

responses to the total response the number of considered modal contributions n is usually much 

smaller than N. If all modes are included (n = N), the second term of Eq. (5) is equal to ( )gw te . 

MODIFIED MODAL RESPONSE SPECTRUM ANALYSIS 

In modal response analysis, the peak value of each modal coordinate iD  is determined through a 

response spectrum. Modal combination of the single modal contributions to the total peak response in 

physical coordinates is, however, not straightforward, since a response spectrum does not contain 

information about sign and the phase shift of modal peak responses. Consequently, traditional modal 

superposition rules, such as the SRSS rule (Rosenblueth and Elorduy, 1969) and the CQC method 

(Wilson et al., 1981), were developed to assess relative peak response quantities such as the maximum 

displacement relative to the base.  

When estimating the profile of PFA demands (i.e., the absolute acceleration) in terms of a 

modal superposition procedure, the peak ground acceleration (PGA) must be taken into account 

(Taghavi, 2006; Taghavi and Miranda, 2008; Pozzi and der Kiureghian, 2008). This becomes obvious 

when applying to Eq. (5) an extended complete quadratic combination rule (Taghavi, 2006): 
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  (6)  

 

In this equation the first term is the modal combination of the relative modal peak floor acceleration 

demands, where 
( ) ( )
, ( )
rel rel

iaa iS S T  is the spectral relative acceleration at the ith structural period iT , 

and ip  denotes the peak factor ratio, respectively, corresponding to the ith mode. Coefficient ij  

quantifies the cross correlation between ith and jth modal contribution. The second term of Eq. (6) is 

the contribution from the correlation of the PGA with the relative modal spectral accelerations 

, 1,...,i i n . The corresponding cross correlation coefficients and peak factors ratios are denoted as 

ig , igp , and gp , respectively. Subscript g refers to quantities of the PGA. The PGA may be 

considered as a rigid mode, and thus, cross correlation coefficients ig  are vector elements, whereas 

coefficients ij  are the elements of a matrix. The last term of Eq. (6) expresses the correlation of the 

PGA with itself. However, for a physical interpretation peak factor ratios may be seen as conversation 

factors between spectral- and total acceleration and they depend on relative height of a floor in the 

structure as discussed later. 

 

Approximation of the relative acceleration response spectrum 

Eq. (6) is based on the response spectrum of relative acceleration (relative with respect to the base). 

Codified spectra are, however, given in terms of (absolute) spectral pseudo-acceleration demands, 
( )

( )
abs

aS T . Assuming that ( )f T  is a known adjustment function, the relation between the absolute 

and relative spectral peak acceleration demands is given by 

 

 
( ) ( )

( ) ( ) ( )
rel abs

a aS T S T f T    (7)  

 

Subsequently, as an example the adjustment functions ( )f T  are derived for the 44 records of 

the FEMA P695 ground motion set (FEMA P695, 2009) as the difference of absolute and relative 

spectral peak accelerations. In Fig. 1 gray lines show the adjustment functions for the 44 records 

plotted against period T . The corresponding statistical quantities, i.e., median and 16th and 84th 

percentiles are plotted in red. For practical application it desirable to have for ( )f T  an analytical 

expression available. Inspection of the empirical data leads to the conclusion that the statistical 

quantities of the adjustment function can be approximated by a linear combination of two exponential 

terms, 
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1
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k

k

f T e


 




    (8)  

 

Subsequent regression analysis yields the appropriate coefficients 0 , ,1k  and ,2k  ( 1,2k  ) 

depending on the statistical quantity as listed in Table 1. Figure 2 depicts in blue these smooth 

analytical fits of the adjustment functions. 

Table 1. Regression coefficients for analytical approximation of the adjustment function 

Percentile 0  1,1  1,2  2,1  2,2  

16th -2.28 3.55 1.87 2.40 1.87 

50th -3.35 1.04 0.53 6.36 2.73 

84th -4.72 4.48 0.52 3.59 4.58 
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Figure 1. Adjustment function for single records (gray), statistics (red), and fitting (blue) 

 

Identification of cross correlation coefficients 

The cross correlation coefficients and the corresponding peak factors of Eq. (6) are a priori unknown 

variables. In the traditional CQC combination rule as proposed in Der Kiureghian (1981) cross 

correlation coefficients are defined as the ratio of cross-spectral moments of the power spectra. In this 

approach the peak factors are neglected. Der Kiureghian (1981) conducted a first order approximation 

of the cross-spectral moments, yielding the traditional CQC modal combination rule.  

Taghavi (2006), however, shows that for the assessment of PFA demands peak factors cannot 

always be neglected. Therefore, Eq. (6) is re-written in terms of peak factor ratios: 

 

  (9)  

 

While other researchers (Taghavi, 2006; Taghavi and Miranda, 2008; Pozzi and Der Kiureghian, 

2012) use approximated power spectra of the ground motions to find analytical expressions for cross 

correlation coefficients, in the present study, alternatively, nonlinear optimization techniques in 

combination with regression methods are applied. Therein, in a first step the profile of relative peak 

floor acceleration demands ( ( )rel
PFA ) is estimated. Then, based on this estimate the absolute PFA 

demands ( PFA ) are derived. 

 

Correlation coefficients for the relative PFA demand 

Upfront it is necessary to reduce the number of variables for the optimization process, and thus, in the 

first term of Eq. (9) representing relative peak floor acceleration demand, the cross correlation 

coefficients and the peak factors are condensed to a single variable *
ij ,  

 

 *

2

i j
ij ij

g

p p

p
    (10)  

 

Then, the relative peak floor acceleration demand reads: 

   (11)  
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Subsequently, using nonlinear optimization analysis (i.e., the function fminunc of MatLab, 

2013) cross-correlation coefficients *
ij  of Eq. (11) are identified. In this analysis, the profiles of 

relative acceleration demand ( )rel
PFA  are given quantities that are determined upfront for several test 

structures through time history analysis. For instance, taking into account n modes of an N-story 

structure (exhibiting with N dynamic degrees-of-freedom) 2n  combinations of *
ij  can be identified.  

Initially, for three different generic frames with different number of stories (i.e., N = 6, 12, and 

24, respectively, exhibiting a fundamental period of 1 0.2T N  and a linear fundamental mode shape 

subjected to two earthquake records of the FEMA P695 ground motion set cross correlation 

coefficients *
ij  are identified. In Fig. 2 and Fig. 3 the outcomes *

ij  are plotted in two dimensions 

against the inverse of the corresponding periods iT  and jT , i.e. the linear frequencies 1/ iT  and 1/ jT . 

The following characteristics are observed: 

 The magnitude and distribution of the cross correlation coefficients with respect to the frequency 

is independent of the number of stories. With increasing number of stories the contour plot 

becomes smoother because more modes are involved. However, the overall relation between the 

cross correlation coefficients, and frequencies 1/ iT  and 1/ jT  becomes already visible if only six 

modes are included. 

 As expected the cross correlation coefficients are symmetric with respect to the diagonal defined 

by 1/ iT  = 1/ jT , i.e., * *
ij ji  . 

 Comparison of Fig. 2 and Fig. 3 reveals that the cross correlation coefficients based on different 

earthquake records show the same overall trend. In the frequency domain of about 5 Hz the cross-

correlation coefficients exhibit a global minimum. Furthermore, along the diagonal 1/ iT  = 1/ jT  

the cross-correlation coefficients are constant if 1/ iT  = 1/ jT  ≥ 10 Hz, independently of the 

underlying ground motion record. 

 In contrast to the traditional CQC rule, here the cross correlation coefficient *
ii  is not equal to 

one, and negative values are possible, because *
ij  is a combination of the actual cross correlation 

coefficient and peak factor ratios, see Eq. (10). Furthermore, the approximation introduced with 

Eq. (10) leads to the assumption that peak factor ratios do not depend on the relative height of a 

floor in the structure, which is inconsistent with empirical observations (Taghavi, 2006). An 

improvement of the proposed method will be presented in future. 

According to the results of Fig. 2 and 3 it is reasonable to determine *
ij  for each record of the 

FEMA P695 ground motion set. Subsequently analytical expressions for the median and dispersions of 

the cross correlation coefficients *
ij  are derived through regression analysis.  

The regression analysis is conducted in two steps. In the first step only the diagonal members 
*
ii  are approximated by means of a one-dimensional relation. In Fig. 4 markers represent the 

statistically evaluated diagonal cross correlation coefficients with respect to period T. Inspection of 

these numerical outcomes may lead to the conclusion that a linear combination of two hyperbolic 

tangent functions, 

 

 
2

*
0 ,1 ,2 ,3

1

1
tanhii k k k

ik
T

    


   
     

   
  (12) 

 

yields an adequate fit for *
ii . The regression coefficients for this equation are listed in Table 2. 

 

Table 2. Regression coefficients for cross correlation coefficients 
*
ii   

Percentile 0  1,1  1,2  1,3  2,1  2,2  2,3  

16th 2.220 2.054 0 -0.298 0.852 -12.010 0.645 

50th 2.070 1.673 0 -0.254 0.619 -11.670 0.572 

84th 2.090 1.441 0 -0.317 0.385 -11.070 0.405 
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Figure 2. Cross correlation coefficients 
*
ii  for 6- (left), 12- (center) and 24-story frame (right) for the 

Northridge earthquake record (1994, Beverly Hills – Mulhol Station, NGA sequence 953) 

 

 

Figure 3. Cross correlation coefficients 
*
ii  for 6- (left), 12- (center) and 24-story frame (right) for the Kobe 

earthquake record (1995, Shin – Osaka Station, NGA sequence 1116) 

 

Figure 4. Fitting of cross correlation coefficients *
ii  

 

Then, in a separate step, Eq. (12) is expanded to cover also non-diagonal cross correlation 

coefficients *
ij , i j  in the complete frequency space, 
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This equation contains the absolute value of the rotated period l
jT ,  
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  (14) 

 

The second term of Eq. (13) including a hyperbolic function governs the shape of coefficients *
ij  

along the jT  axis, and thus, Eq. (13) covers diagonal as well off-diagonal cross correlation 

coefficients. Additionally, a polynomial of 4th order is added. Note that for high frequency modes the 

proposed polynomial approximation leads to inaccurate results. Thus, in a future study the regression 

equation needs to be improved. The required regression coefficients are listed in Tables 2 and 3. 

 

Table 3. Coefficients for cross correlation coefficients *
ij  (in [‰]) 

Perc. 1,0  1,1  1,2  1,3  1,4  2,0  2,1  2,2  2,3  2,4  

16th -36.11 48.24 84.29 -11.03 0.46 -205.90 304.00 -68.58 3.99 -0.01 

50th -4.11 -104.90 115.50 -14.10 0.56 -167.00 160.70 -65.28 7.22 -0.31 

84th 39.92 -246.50 182.40 -22.78 0.95 -149.10 -185.90 22.14 0.39 -0.19 

 

In Figs 5, 6 and 7 the analytical approximation, *
,ij fit , of regression coefficients *

ij  according 

to Eq. (13) (left subplot), the corresponding outcome, *
,ij num , of the optimization analysis (central 

subplot), and the relative error between the analytical fit and the empirical data,   

 

 

* *
, ,

*
,

100 [%]
ij fit ij num

ij num

err
 




  (15)  

 

is depicted. Fig. 5 shows the outcome for the 16th percentile, Fig. 6 the median, and Fig. 7 the 84th 

percentile. In the right subplot of Figs. 5, 6, and 7 a positive error indicates that the analytical 

regression coefficient over-estimates the corresponding quantity from the optimization analysis. The 

error plots of Figs. 5 and 6 exhibit errors of more than ±200%, however, only locally concentrated in 

certain domains. This can be attributed to the fact that in these domains the denominator of Eq. (15) is 

close to 0. In contrast, the relative error of the 84% percentile value depicted in Fig. 7 does not show 

local peak error values.  
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Figure 5. Cross correlation coefficients *
ij  for the 16th percentile. Analytical approximation (left), numerical 

solution from optimization analysis (center), and relative error (right) 

 

 

Figure 6. Cross correlation coefficients *
ij  for the median. Analytical approximation (left), numerical solution 

from optimization analysis (center), and relative error (right) 

 

 

Figure 7. Cross correlation coefficients *
ij  for the 84th percentile. Analytical approximation (left), numerical 

solution from optimization analysis (center), and relative error (right) 
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Correlation coefficients for the absolute PFA demand 

The last two terms in Eq. (9) acknowledge the contribution of the PGA to the absolute PFA demand. 

Specifically, the second term of Eq. (9) represents the cross correlation between the PGA and the 

relative spectral peak acceleration 
( )
,
rel

a iS  in terms of the extended CQC rule. Therefore, the 

corresponding cross correlation coefficients need to be identified. In the same manner as for cross 

correlation coefficients *
ij  describing the modal interaction of the relative PFA demand according to 

Eq. (10) also for the combination of 
( )
,
rel

a iS  and PGA a modified cross correlation coefficient *
ig , 

 

 * ig
ig ig

g

p

p
    (16)  

 

is defined. In an optimization analysis, analogous to the one to identify coefficients *
ij , coefficients 

*
ig  are obtained. Like *

ij , they tend to be independent of structural and modal properties. Fig. 8 

shows with discrete markers the outcomes for median, 16th and 84th percentile of the response. These 

discrete values are subsequently analytically approximated according to exponential function: 
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e


 


    (17)  

 

The regression coefficients are listed in Table 4. Fig. 8 shows also these analytical approximations of 
*
ig  proving that Eq. (17) is sufficient accurate to reflect these cross correlation coefficients.  

 

 

Figure 8. Fitting of cross correlation coefficients 
*
ig  

 

Table 4. Coefficients for cross correlation coefficients 
*
ig  (in [‰]) 

Percentile 1,1  1,2  2,1  2,2  

16th -1119.00 -210.40 -17.25 274.70 

50th 150.70 12.16 -1214.00 -370.10 

84th 272.60 98.00 -1279.07 -586.40 

STEPS OF THE PROPOSED MODIFIED RESPONSE SPECTRUM METHOD 

The steps for predicting the PFA demands of an elastic multi-story frame structure according to the 

proposed modified response spectrum method can be summarized as follows. 

1. Create a model of the structure and perform modal analysis. 

2. Select the appropriate design pseudo-acceleration response spectrum ( )aS T . In the present study 

the pseudo-acceleration spectra for the 5% damped SDOF oscillator subjected to the 44 records of 

the FEMA P695 far-field record set (FEMA P695, 2009) are utilized. 
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3. Estimate from the pseudo-acceleration spectra the relative acceleration response spectra using the 

adjustment function defined by Eqs. (7) and (8). 

4. Determine cross correlation coefficients *
ij  according to Eq. (13). The profile of relative peak 

floor acceleration demands, ( )rel
PFA , is approximated according to Eq. (11). 

5. Estimate the cross correlation coefficients *
ig  with Eq. (17) to account for the cross correlation 

between the spectral relative accelerations and the PGA. 

6. Use Eq. (9) to estimate the profile of absolute peak floor acceleration demands, PFA. 

APPLICATION 

The proposed method is applied to a very flexible 24-story generic frame structure with a fundamental 

period of 1T  = 4.80 s. This structures exhibits periods in a broad range. 5% viscous damping is 

assigned to each mode.  

Figure Fig. 9 shows the profiles of relative (left subplot) and the absolute (right subplot) peak 

floor acceleration demands normalized with respect to the PGA. Gray lines correspond to the PFA 

profiles of time history analysis for the single records of the 44 records of the FEMA P695 ground 

motion set. As reference serves the median of these individual outcomes that is depicted in red. Black 

lines represent the outcomes of the proposed extended CQC method. i.e. the median peak floor 

acceleration profiles of relative and absolute acceleration demands. The results of the traditional SRSS 

modal combination rule are shown in blue. 

It is readily observed that the relative and absolute PFA demand prediction of the proposed 

modified CQC procedure is much closer to the actual response obtained from time history analysis 

than the outcomes of the traditional SRSS method without increase of the computation cost. While the 

SRSS method leads to a biased approximation of relative PFA demands, for the proposed CQC 

method only a few modes are required for a sufficiently accurate assessment. Particularly from the 

base up to 80 % of relative height the SRSS method underestimates the absolute PFA demands by 

more than 50%, which is unacceptable even for gross seismic loss assessment. In contrast, the 

modified CQC method leads to distinct improved prediction of this quantity.  

 

 

Figure 9. Profiles of normalized median peak floor acceleration demands, relative (left) and absolute (right) peak 

floor accelerations demands 

SUMMARY AND CONCLUSIONS 

Based on an extended CQC modal combination rule, a modified responses spectrum method for 

estimation of peak floor acceleration demands in elastic structures has been proposed. The absolute 

acceleration demands are determined from the acceleration demands relative to the base, the PGA, and 

the cross correlation between the two latter quantities. For the records of the ground motion set cross 

correlation coefficients, which consider the cross correlation both between the modal contributions of 
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relative acceleration and between the modal relative accelerations and the peak ground acceleration, 

are identified through optimization analysis. The outcomes are subjected to a regression analysis to 

yield analytical expressions of these coefficients. In an application to a 24-story frame the basic idea 

as well as the accuracy of this method is demonstrated. Compared to other empirical formulations and 

codified methods this method exhibits a clear physical interpretation, and it is not restricted to a 

specific type of lateral load bearing structure and/or to specific construction materials. A planned 

comprehensive study of real frame structures serves to evaluate the limits of the proposed procedure in 

combination with a static pushover estimation method also developed by the authors (Moschen et al., 

2013). The benefit is a more accurate assessment of PFA demands of inelastic structures. 
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