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Abstract. In this paper a robust method for simplified prediction of peak floor acceleration
(PFA) demands in inelastic structural walls is established. In structural walls the plastic mech-
anism is usually confined to the domain straight above the foundation. It is, thus, reasonable to
assume that in wall structures only the response contribution related to the fundamental mode
is significantly affected by inelastic deformations. Based on this assumption, a readily devel-
oped complete-quadratic-combination (CQC) modal superposition rule for elastic median PFA
demand prediction is specialized to inelastic structural walls. In this approach, only the first
mode contribution on the PFA demand is affected by inelastic deformations, related to the lat-
eral strength reduction factor identified from the outcomes of a first mode pushover analysis.
Since the response contribution of the higher modes is assumed to be elastic, for these modes
the relations derived for unlimited elastic structural behavior enter the specialized response
spectrum method. Application on a 12-story shear wall shows the accuracy of the predicted
median PFA demands derived by the proposed procedure.
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1 INTRODUCTION

Assessment of seismic risk within the performance based earthquake engineering (PBEE)
framework requires the prediction of peak floor acceleration (PFA) demands, among other en-
gineering demand parameters. PFA demands are well correlated with damage of acceleration-
sensitive nonstructural components (NSCs) [14]. Any response quantity can be estimated by
means of nonlinear response history analysis (RHA) yielding “exact” solutions. In engineer-
ing practice, however, equivalent static methods are preferred because of low modeling effort,
simple application, and low computational costs. FEMA P-58-1 [12], for instance, provides
simplified procedures for the assessment of PFA demands (mean and dispersion) of different
kind of structures. Comprehensive summaries of PFA assessment methods are found in [5, 6].
The applicability of the available simplified methods for PFA demand prediction is restricted
because of limits on the maximum number of stories, the level of inelasticity, and the irregu-
larity of the considered building. Thus, more robust methods are desirable that can be applied
to a larger class of structures, and simultaneously reduce the error relative to the benchmark
solution obtained from nonlinear dynamic analysis.

Within the scope of the present contribution a simplified procedure for PFA demand pre-
diction in simple inelastic structures is proposed. The approach combines pushover analysis
for predicting the structural strength ratio, and subsequent application of a modified response
spectrum method that yields the median PFA demand of the considered structural system [3, 4].
For reasons of simplicity, this novel approach is elaborated for structural walls, where in gen-
eral the inelastic deformations are confined to the base. The basic idea is that for such simple
structures inelastic deformations are solely related to the fundamental mode, and their effect on
the response contribution related to the higher modes is small. Thus, the contribution of higher
modes on the PFA demand is assumed to be elastic.

Before such a robust simplified method can be established, it is important to understand and
reveal the interdependencies of PFA demands on characteristic structural parameters once a
structure enters its nonlinear regime of deformation. Thus, in the first part of our contribution
the PFA demands of nonlinear single-degree-of-freedom (SDOF) structures are addressed. In
a comprehensive parametric study, using sets of earthquake records and nonlinear time history
analyses, regression relationships between strength reduction, period, viscous damping, harding
ratio and normalized peak total acceleration demand , i.e., the ratio of inelastic total acceleration
to its value at yield, are derived.

These relations are subsequently used to predict the PFA demand related to the fundamental
mode of the considered class of inelastic multi-degree-of-freedom (MDOF) structures. The
contribution of the first mode inelastic median PFA demand is subsequently superposed with
the elastic PFA demands related to the higher modes, using a modified complete-quadratic-
combination (CQC) modal superposition rule, originally derived for unlimited elastic structural
behavior [3, 4].

Application to a 12-story structural wall shows the accuracy of the predicted inelastic median
PFA demands by means of the proposed procedure, when compared to the reference solution
based on nonlinear RHA.

2 NORMALIZED PEAK ACCELERATION DEMAND OF NONLINEAR SINGLE-
DEGREE-OF-FREEDOM SYSTEMS

Consider an inelastic SDOF system characterized by its initial (elastic) period, T (respec-
tively the natural frequency ω), damping ratio, ζ , yield strength, Fy, strain hardening ratio,
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αkin, and the hysteretic material model. The total displacement of the mass, u(t), is the sum of
the displacement relative to the support, ur(t) and the support displacement ug(t) imposed by
the earthquake. In the present study, the considered engineering parameter (EDP), i.e., the peak
total acceleration demand, max (|ü(t)|), and the considered intensity measure (IM), i.e., elastic
5 % damped spectral pseudo-acceleration, Sa, are normalized by means of the corresponding
quantities at onset of yielding, üy respectively Sa,y,

µa =
max (|ü(t)|)

üy
(1)

R =
Sa
Sa,y

(2)

in which µa is the so-called normalized peak (total) acceleration (NPA) demand, and R denotes
the elastic lateral strength ratio. It should be noted here that, traditionally, the ductility demand
of an SDOF system is defined as the ratio of the peak relative displacement to the displacement
at the onset of yielding, µ = max(|ur(t)|)/ury [8, 9]. The spectral pseudo-acceleration at the onset
of yielding, Sa,y, is related to the spectral yield displacement, Sd,y, as [22]

Sa,y = ω2Sd,y (3)

Subsequently, a relationship between NPA demand µa,R-factor and period T of non-degrading
SDOF systems with bilinear respectively peak-oriented (Clough model [19]) hysteretic mate-
rial behavior subjected to a set of ground motion record is derived. The proposed relation is
found by repeated RHA varying period T and the R-factor of the SDOF oscillator subjected the
ground motions of the considered sets discussed later on. Since P-delta effects are neglected,
this analysis is equivalent to incremental dynamic analysis (IDA) [10].

2.1 Characteristic parameter dependences of the normalized peak acceleration demand

At first, the effect of damping on the NPA demand is studied exemplary on perfectly plastic
(αkin = 0) bilinear SDOF oscillators with period T = 1.0 s. The oscillators are subjected to
the 44 records of the FEMA P695 far-field ground motion set [11], referred to as FEMA P695-
FF set (sometimes also as ATC-63 far-field set). The FEMA P695-FF records include seismic
events of magnitude Mw between 6.5 and 7.6, and closest distance to the fault rupture larger
than 10 km. The Joyner-Boore distance is between 7.1 and 26 km. Only strike-slip and reverse
sources are considered. The 44 records of this set were recorded on NEHRP site classes C (soft
rock) and D (stiff soil). Detailed information is provided in [11].

IDAs yield the R− µa relations shown in Figure 1 for four differently damped systems with
damping ratios ζ = 0 %, 1 %, 5 % and 10 %. Gray lines represent the 44 single record IDA
curves, and the corresponding median, the 16 % and 84 % quantiles are shown by black lines.
The dash-dotted line represents the R− µa relation of the equivalent linear system.

Clearly, the inelastic NPA demand is always smaller than the corresponding elastic one. In
the elastic deformation range, i.e., R ≤ 1, the NPA demand and the R-factor are identical,
yielding a record and damping independent R − µa relation. For zero damping, the spectral
pseudo-acceleration Sa corresponds to the total acceleration, and thus, in the complete inelastic
deformation branch (i.e., R > 1) the NPA demand is one, as depicted in Figure 1a. For non-
zero damped systems, the difference between the spectral pseudo-acceleration Sa and the total
acceleration results in the inelastic range in a more or less linear increase of the NPA demand
with increasing R-factor, compare with Figures 1b to 1d. It is furthermore observed that the
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slope of the median normalized acceleration demand m̆a ≡ µa,50% (with respect to the straight
vertical line at µa = 1 in Figure 1) increases with the same factor as the damping ratio becomes
larger, compare the median in Figure 1c with the median in Figure 1d. That is, for instance, the
ratio of µa,50% given R = 6 for ζ = 0.10 and ζ = 0.05 can be approximated as

µa,50%,ζ=0.05 − 1

µa,50%,ζ=0.10 − 1
≈ ζ = 0.10

ζ = 0.05
= 2 (4)

Thus, assuming that for a reference damping ratio ζ∗ the R− µa,50%,ζ∗ relation is available, for
other damping ratios ζ this relation can be approximately expressed according to

µa,50%,ζ = 1 +
ζ∗

ζ
(µa,50%,ζ∗ − 1) (5)

This relation not only holds for bilinear systems but also for non-degrading oscillators with
other cyclic behavior. As an example, Figure 2b shows for the 1.0 s 5% damped oscillator but
with assigned peak-oriented hysteretic loop the IDA curves, which are almost identical with the
ones of the bilinear counterpart system, compare with Figure 1c.
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Figure 1: R-factor with respect to normalized peak acceleration demand µa of perfectly plastic
bilinear (akin = 0) T = 1.0 s oscillator subjected to the 44 records of the FEMA P695-FF record
set. For different damping ratios: (a) ζ = 0, (b) ζ = 0.01, (c) ζ = 0.05, and (d) ζ = 0.10.

In similar fashion, Moschen [5] varied the strain hardening coefficient, akin, in the range
0 ≤ akin ≤ 0.05, and he found again in the post-yield range a virtually linear relationship
between R and µa,50%,akin with a slope proportional to the actual value of akin, compare, for
instance, Figure 1c with Figure 2a, and Figure 2b with Figure 2c. Consequently, with known
R−µa relation for reference hardening ratio a∗kin, the median NPA demand can be approximated
in analogy to Equation (5) as

µa,50%,akin = 1 +
a∗kin
akin

(
µa,50%,a∗kin − 1

)
(6)

Equations (5) and (6) consider the effect of damping ratio and hardening coefficient on the
NPA demand separately. Thus, in the next step, Equations (5) and (6) are combined to express
the R− µa,50% relation as a function of both akin and ζ ,

µa,50% = p

(
1 +

ζ∗

ζ

(
µ∗a,50% − 1

))
+ (1− p)

(
1 +

a∗kin
akin

(
µ∗a,50% − 1

))
(7)
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Figure 2: Impact of different material models on the IDA curves of the ζ = 0.05 mass pro-
portional damped SDOF oscillator with period T = 1.0 s in R − µa coordinates. (a) Bilinear
hysteretic material with hardening coefficient akin = 0.05, peak-oriented hysteretic material
with (b) akin = 0, and (c) akin = 0.05.

with µ∗a,50% ≡ µa,50%,a∗kin,ζ∗ denoting the base case NPA demand for reference damping coeffi-
cient ζ∗ and reference hardening ratio a∗kin. Since both damping and hardening ratio affect the
R− µa relation in the same order, factor p is approximated as p = 1/2.

From now on reference damping ratio is set to ζ∗ = 0.05, and reference hardening ratio to
a∗kin = 0.05.

For all R − µa relations, regardless of damping type, damping ratio, and nonlinear material
properties, the presented relations can be used until the structure has been pushed to the ultimate
lateral strength reduction factor,

Rult =
Sa,ult
Sa,y

(8)

in which Sa,ult is the ultimate spectral pseudo-acceleration defined by the capping strength of
the backbone curve of the material model if P-delta effects are not considered. This study, how-
ever, focuses on SDOF systems (a) with non-degrading material properties, and (b) nonlinear
geometric transformations are neglected. This implies infinite ultimate capacity, Sa,ult →∞.

2.2 Normalized peak acceleration demand for the FEMA P695-FF record set

By now, the the R− µa relation has been discussed for period T = 1.0 s only. Repeating the
analysis for a series periods in the range of 0.1 s to 3.2 s and reference parameters a∗kin = 0.05
and ζ∗ = 0.05 results in the median R − µa − T relation of the nonlinear base-case SDOF
oscillator shown in Figure 3a for R > 1.

To derive more convenient analytical approximations, here the outcomes are shown in terms
of EDP-IM coordinates, in contrast to the traditional representation in IM-EDP coordinates
[10]. Thus, in the contour plot depicted in Figure 3b the contour lines correspond to curves of
constant µa,50%,a∗kin,ζ∗ values (in contrast to the study of [8], where surface plots for R-factors
were used).

Inspection of Figure 3a leads to the conclusion that the R−µa,50%,a∗kin,ζ∗ relation is virtually
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Figure 3: Median normalized peak acceleration demand µ∗a,50% with respect to period T and
R-factor for base case SDOF system subjected to the FEMA P695-FF record set. (a) Surface
plot. (b) Contour plot.

linear regardless of the period. The corresponding linear approximation, µ̃a,50%, reads as

µ∗a,50% ≈ µ̃∗a,50% =

{
1 for R ≤ 1

c(R− 1) + 1 for R > 1
(9)

in which unknown coefficient c represents the slope of µ̃∗a,50%. This coefficient depends on
period T and is in the range 0 ≤ c < 1. At very short periods, slope c of µ∗a,50% is steepest, as
seen from Figure 3.

Equation (9) is the basis of a two-stage fit, using the Levenberg-Marquardt algorithm at each
stage, which is implemented in the curve fitting toolbox of Matlab [13]. In the first stage, the
approximation µ̃∗a,50% (Equation (9)) is fitted to the empirical data, µ∗a,50%, for each individual
period separately. Since in Equation (9) the only unknown parameter is c, to each period an
individual parameter c is mapped, graphically shown by circular markers in Figure 4. Stage two
fits a function c̃ to the discrete parameters c, yielding the two-term exponential equation

c ≈ c̃ = β1e
β2T + β3e

β4T , 0 ≤ c < 1 (10)

In Table 1 coefficients β1, β2, β3, β4 and the corresponding 95 % confidential interval (median
±2σ) are listed. The 2σ bounds represent the 5 % confidence limits of a standardized normal
distributed random variable, which is, for instance, appropriate for the sample mean. Therefore,
it can be used for model validation (equivalent to the χ2-test) in an effort to make a decision if
the analytical model should be accepted or rejected. For detailed information regarding hypoth-
esis testing and model validation it is referred to [21].
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Figure 4: Two-stage fit of slope c̃ based on
the FEMA P695-FF record set.

Table 1: Coefficients β1 to β4 and their
95 % confidence bounds for slope c̃ based
on the FEMA P695-FF record set.

i βi βi − 2σ βi + 2σ

1 1.09 1.07 1.12
2 −20.29 −21.01 −19.57
3 0.07 0.06 0.07
4 0.18 0.16 0.20

0.1

1

1
2

3
4

5
6
1

2

3

4

5

T / s

R

µ̃
a
,5
0
%

(a)

3
.0

0

2
.0

0 1
.5

0

1
.5
0

1.50

1.25

1
.2
5

1.
25

1.10
1.1

0

0.1 1
1

2

3

4

5

6

T / s

R

(b)

Figure 5: Design median normalized peak acceleration demand µ̃∗a,50% with respect to period
T and R-factor for base case SDOF system subjected to the FEMA P695-FF record set. (a)
Surface plot. (b) Contour plot.

The median NPA demand µ̃a,50% for damping coefficient and/or hardening ratio different
from the base case values is found from Equation (7).

2.3 Normalized peak acceleration demand for the Century City record set

Alternatively, an analytical relation for the parameter dependent NPA demand is determined
for the Century City record set [7], which consists of 92 ground motions of the PEER ground
motion database [23]. These records have been selected using a multi-objective optimization
prodecure by minimizing two fitness functions. The advantage is that this record set matches the
design response spectrum and a constant dispersion spectrum of Century City relatively well
over a wide period region. Therefore, a broad class of buildings located in Century City can be
assessed (or designed, respectively) by this record set without conducting record selection with
respect to the fundamental period of every individual structure seperately. This record selec-
tion procedure can be seen as an extension to the existing body of conditional mean spectrum
(CMS) methods [24, 25]. Figure 6 shows the target spectra (bold black lines), the 92 individ-
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ual response spectra (gray lines), and the corresponding statistical quantities (thin black lines)
of the Century record set, which will be used for analyses in the remainder of this paper. For
detailed information of the record selection procedure it is referred to [7, 5].
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Figure 6: Century City records set: Target response spectra (bold black lines), response spectra
of individual records (gray lines), and statistical quantities (lines with markers) for a normal
target dispersion σt = 0.80 [3, 4, 7].

The same procedure as detailed for the FEMA P695-FF record set yields coefficient c as a
function of T shown in Figure 7 with circular markers (individual c-values as outcome of the
fitting first stage) and the black solid line (functional relation resulting from the second stage).
Table 2 lists the corresponding coefficients for evaluation of Equation (10).

As observed, the two-stage fit of c, and consequently, the R− µ̃∗a,50%−T relation is for both
record sets in good agreement, because median spectral shapes and the corner frequencies of
the sets are similar.
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Figure 7: Two-stage fit of slope c̃ based on
the Century City record set.

Table 2: Coefficients β1 to β4 and their
95 % confidence bounds for slope c̃ based
on the Century City record set.

i βi βi − 2σ βi + 2σ

1 2.10 1.64 2.56
2 −18.27 −20.33 −16.22
3 0.09 0.08 0.10
4 0.05 0.00 0.11

3 RESPONSE SPECTRUM METHOD FOR PEAK FLOOR ACCELERATION DE-
MANDS IN INELASTIC WALL STRUCTURES

3.1 Approximate peak floor acceleration demand prediction in elastic structures

One ingredient of the proposed simplified PFA demand prediction of inelastic shear walls
is a modified form of a CQC modal superposition rule for elastic structures, which was more
recently presented in [3, 14, 16]. Accordingly, the elastic median PFA demand of the kth
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degrees-of-freedom of an N DOF structure can be estimated as

pfak =

[
n∑
i=1

n∑
j=1

(
pk
pi

)(
pk
pj

)
φi,kΓiSa,iφj,kΓjSa,jρi,j

+

(
pk
pg

)2

pga2r2n,k + 2pga rn,k

(
pk
pg

) n∑
i=1

(
pk
pi

)
φi,kΓiSa,iρi,g

] 1
2

(11)

in which variables φi,Γi, Sa,i, respectively pi denote the ith mode shape, participation factor,
spectral pseudo-acceleration respectively modal peak factor. Subscript g denotes the corre-
sponding quantities of the ground acceleration, the spectral pseudo-acceleration of the ground
degenerates to the peak ground acceleration, pga. Variable ρi,j represents the correlation coef-
ficient between the ith and the jth modal total acceleration, and ρi,g the correlation coefficient
between the ith modal total acceleration and the ground acceleration. The peak factor of the
response process of the kth degree of freedom is denoted by pk. To reduce the computational
effort, in the response analysis only the first n modes are considered. The truncation error aris-
ing from disregarding the (n+ 1)th to N th mode is reduced through residual vector rn, with its
kth element [3]

rn,k = 1−
n∑
i=1

φi,kΓi (12)

3.2 Approximate peak floor acceleration demand prediction in inelastic wall structures

Subsequently, a first mode approximation for predicting inelastic PFA demands presented in
[17] is extended in an effort to consider also higher modes.

Consider an inelastic MDOF structure, where the plastic mechanism is mainly governed by
the fundamental mode. An example of such simple nonlinear MDOF systems is the family of
regular structural walls that have in common that the plastic zones are confined to the base [18].
It is reasonable to assume that in those structures the portion of the PFA demand related to the
fundamental mode shows a similar performance as inelastic SDOF systems. Thus, this part of
the PFA demand can be determined based on the relations present in the previous section for
inelastic SDOF systems. On the other hand, the PFA demand associated with the higher modes
is assumed to be unlimited elastic, and thus, this portion is determined in analogy to modal
superposition for elastic systems according to Equation (11). The proposed procedure involves
the steps as outlined below.

Structural modeling In the first step a structural model of the considered structural wall is
created. In many cases, an equivalent stick model with a nonlinear rotational spring at the
base, such as shown in Figure 8a, represents appropriately the wall. Spring parameters
cθ0, My0 and αs denote the rotation at the onset of yielding, the corresponding yield
strength, respectively the hardening ratio.

Modal analysis Modal analysis yields the periods and corresponding mode shapes of the struc-
tural model.

Pushover analysis A first mode pushover analysis is conducted to identify the plastic mecha-
nism. From the global pushover curve the R-factor and the global hardening ratio akin
are identified, as shown exemplary in Figure 9b for different R-factors. For a structural
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Figure 8: (a) Planar structural wall and the corresponding stick model with nonlinear rotational
spring at the base, and (b) Clough material model assigned to the nonlinear rotational spring at
the base.

model with a nonlinear spring at the base, the transition between elastic and inelastic de-
formation branch is discontinuous with a kink at the yield displacement. Transformation
of the pushover curve into IM-EDP coordinates of the equivalent SDOF-domain is not
necessary, because the R-factor and akin can be directly read from the pushover curve.

NPA demand related to the fundamental mode With available fundamental period T1 (uti-
lized instead of SDOF system period T ), R-factor and global hardening ratio akin, subse-
quent evaluation of Equation (9) and Equation (7) yields an estimate of the median NPA
demand associated with the fundamental mode, µ(1)

a,50%. Dividing the elastic 5% damped
median spectral pseudo-acceleration at period T1, Sa,1 ≡ Sa(T1), by the R-factor, re-
sults in the median spectral pseudo-acceleration at onset of yielding, Sa,y(T1) = Sa,1/R,
compare with Equation (2). Substituting Sa,y(T1) for total median acceleration of the
fundamental mode at onset of yield ü

(1)
y , i.e., ü(1)y ≈ Sa,y(T1), and multiplying this

quantity by µ(1)
a,50%, yields an estimate of the first mode peak acceleration demand, i.e.,

max
∣∣∣ü(1)50%

∣∣∣ = µ
(1)
a,50%ü

(1)
y , compare with Equation (1).

CQC modal superposition modified for inelastic structures The proposed modal superposi-
tion method PFA prediction in inelastic structures is based on a modification of the CQC
method of Equation (11) for elastic systems. In particular, the elastic 5 % spectral pseudo-
acceleration Sa,i (respectively Sa,j) is replaced by S̄a,i, where Sa,1 is approximated by the

first mode total peak acceleration demand max
∣∣∣u(1)50%

∣∣∣, i.e., S̄a,1 ≈ max
∣∣∣u(1)50%

∣∣∣, and for

the higher modes the elastic spectral pseudo-acceleration is utilized, i.e., S̄a,i = Sa,i.

Furthermore, the median peak factor p1 related to the fundamental mode must be modified
when considering inelastic deformations. Figure 1a shows that for non-hardening SDOF
oscillators the yield acceleration and the peak acceleration are equal, and the standard
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Figure 9: (a) Stick model with load pattern consistent with fundamental mode, and (b) pushover
curves evaluated for different lateral strength ratios.

deviation of this quantity is zero. Therefore, the peak factor, which represents the ratio
between the peak acceleration and the mean square acceleration of a normal stationary
random process [3, 4], is unity, i.e. pi = 1. Preliminary studies have shown that this
relation can also be applied for structures with moderate hardening backbone curve. The
modal peak factors of the higher (elastic) modes, pi, i > 1, and the peak factor of the
response process, pr, can be estimated by the framework for elastic structures provided in
[3, 4], as preliminary studies have shown.

3.3 Application

The proposed modified CQC method for median PFA prediction in inelastic shear walls is
tested on the example of a 12-story regular generic structural wall, with a fundamental period
tuned to the value specified in ASCE 7-10 [20] (T1 = 0.83 s), a parabolic fundamental mode
shape, and a pre-defined lateral strength ratio R. The details on mass, stiffness, and strength
properties can be found in [5]. The structure is assumed to be located in Century City (Los
Angeles, CA; 34.053 66◦ N, 118.413 39◦ W), and thus, empirical relation Equation (10) based
on the Century City record set is used for the subsequent PFA assessment.

The results of the proposed modal superposition procedure are validated with the outcomes
of nonlinear RHA using the 92 ground motions of the Century City record set. Thus, a hys-
teretic relation between load cycles must be specified. In the present study, in the framework
of the lumped plasticity approach to the base spring the Clough material model [19] (a uniaxial
material model with peak oriented hysteresis and infinite ductility), shown in Figure 8b, is as-
signed. This constitutive relation allows to account for reloading stiffness degradation once the
yield strength has been exceeded (compare with the reduced reloading stiffness between points
(6) and (2)).

Figure 10 depicts the profiles of the median PFA demand of the 12-story structural wall for
lateral strength ratios R = 1, 2, 4, 6 (columns 1 to 4). Rows 1 to 3 show the reference solutions
obtained from RHA (solid gray lines), their approximations by the proposed CQC modal com-
bination rule (solid black line), and the common square-root-of-the-sum-of-the-squares (SRSS)
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rule (dashed black line) based on a fundamental mode approximation (row 1), a two-mode ap-
proximation (row 2), and considering all modes up to the 95 % cumulative mass participating
mode (row 3).

The reference solutions for various R-factors reveal that the PFA demands saturate once the
structure startet yielding. This outcome is consistent with findings reported in [26, 27]. In other
words, it can be concluded that with increasing ground motion intensity the related increase of
the median PFA demand is quite low when the yield strength is exceeded. This observation
is consistent with the results previously shown for nonlinear SDOF oscillators. Since for this
12-story structural wall the plastic deformations are concentrated at the base, the elastic PFA
demand related to the higher modes contribute to the total PFA demand in the same order
regardless of the lateral strength ratio.

Subsequently, the PFA demands obtained by the proposed CQC modal combination rule are
discussed in more detail. It is observed that a fundamental mode approximation (first row) does
not approximate appropriately the actual PFA demand. The nonlinearity of the corresponding
median PFA profile is the result of the correlation between modal total acceleration and ground
acceleration, and the corresponding peak factors according to the second and the third term of
Equation (11) [3]. The median PFA profile based on a two-modes approximates closely the
reference solution, as shown in the second row of Figure 10. Consideration of the modes up to
the 95 % cumulative mass participating mode yields an excellent approximation of the median
PFA demand regardless of the lateral strength ratio.

Additionally, the outcomes of the SRSS approach, commonly used in engineering practice
due to its simplicity, are also presented. Equation (11) degenerates to the SRSS rule when
dropping the second and the third term of this equation, as well as the peak factors and the modal
correlation (i.e. i = j). Consequently, the SRSS first mode approximation of the median PFA
profile is affine to the fundamental mode shape, which is in the considered example parabolic,
compare with the dashed lines in the first row of Figure 10. The SRSS rule was developed to
estimate relative response quantities, such as displacements and internal forces, and thus, this
approach underestimates the peak total acceleration demand since the contribution of the PGA
demand is not considered. However, a multi-modal SRSS approximation of the median PFA
demand yields for the the upper floors reasonable predictions of this response quantity, because
the effect of the PGA diminishes with increasing height, see the dashed graphs in the third row
of Figure 10. It should be noted here that the SRSS modal combination rule is deemed to fail
for estimating PFA demands in spatial structures, because closely spaced modes are neglected
[3, 4].
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Figure 10: Profiles of the median PFA demand for the 12-story structural wall. Reference
solution based on RHA (gray lines), the proposed CQC modal combination rule (black solid
lines) and the SRSS approximation (dashed black lines). Results presented for lateral strength
ratiosR = 1, 2, 4, 6 (columns 1 to 4) considering one mode (first line), two modes (second line),
and 95 % cumulative mass participating modes (third line).
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4 CONCLUSION

In this contribution a simple but effective procedure for estimating the median peak floor
acceleration (PFA) demands in inelastic planar wall structures has been presented, based on
readily available concepts, such as pushover analysis and modal combination.

The fundamental idea of this procedure is that for certain MDOF structures such as shear
walls the inelastic PFA demand is primarily related to the fundamental mode, while the con-
tribution of the higher modes on this response quantity remains mainly unaffected by plastic
deformations. In the considered class of MDOF structures the lateral strength ratio can be esti-
mated by nonlinear static procedures, which allows to estimate a reduced spectral PFA demand
associated with the fundamental mode by means of the concept of normalized peak acceleration
(NPA) demand for nonlinear SDOF oscillators derived in the first part of this study. Then, the
reduced spectral peak acceleration demand for this mode enters a modified CQC rule developed
originally for elastic PFA demands. Application to an inelastic 12-story shear wall shows that
this simple procedure yields an excellent approximation of the median PFA demands regardless
of lateral strength ratio.

Because of the simplicity of the proposed framework a clear physical interpretation of PFA
demand prediction becomes possible. This procedure may serve as alternative for codified PFA
assessment methods, which yield in general only a rough prediction of this response quantity.
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