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ABSTRACT:

The hysteretic energy dissipated by systems unéeygguasi-static or dynamic loading is often though
represent a useful measure of their performancenveubjected to earthquake excitation. In generdlerf
hysteresis loops mean higher seismic energy renfoval the structure, which is logically taken topiy better
performance when comparing systems with similargfth. However, such observations are typicallyetam
quasi-static loading tests. Dynamic loading coodsi differ as energy input and energy dissipatiom a
intimately related with the details of the systerhissteresis, in ways that often defy current imuit Using
incremental dynamic analysis on story-level ostmlla with varying hysteresis characteristics, we g@p this
connection in detail. Structural response, as nredsa terms of maximum or residual deformatiorstiswn to
have little connection to the energy absorptioner€fore, hysteretic energy dissipation cannot qtadively
measure seismic performance but perhaps only ssraegeneral indicator.
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1. INTRODUCTION

The hysteretic energy, absorbed by a structuraésysluring a seismic event that is strong enough to
induce a certain amount of nonlinearity to the eysthas been recognized by several researchers as a
potentially useful seismic performance indicatoig(ePark et al. 1987; Bojorquez et al. 2011). In
general, stable hysteretic loops with large enéiggipation capacity at a member level are thotmht
guarantee a better deformation performance of yetes, implying that there is a good correlation
between the dissipated hysteretic energy and #lastic deformation demands. This notion is often
founded on observations made in quasi-static cyeBts, where it seems apparent that between two
systems with similar strength, tested under theeseyclic loading protocol, the one with the higher
energy absorption, i.e., “fuller” hysteresis loogispuld exhibit superior performance. Thus, digsigha
energy is a term that has become synonymous torpahce and it is so pervasive as to become a
key ingredient of modern seismic codes (e.g., EI8]19Blence, at the basis of seismic design, the
definition of the behavior (reduction) factgr(or R) allows that the high strength of a linear elastic
system having zero energy absorption can be sutestiby the equally effective dissipating behavior
of an elastoplastic system with a base shear shrdhgt isq times lower (at least where the equal
displacement rule holds). While there is no questbout the need for ductility, the role of energy
dissipation is still imperfectly understood.

Energy dissipation is typically understood as apror viscous damping, a concept that was perhaps
first introduced by Jacobsen (1960) through egeivainearization techniques. Such methods provide
an estimate of the (average) nonlinear displaceméralastoplastic oscillators by employing an
equivalent linear single-degree-of-freedom (SDOJSyeam characterized by a longer period (estimated
at a secant stiffness) and an increased valuesobws damping. Crucially, the increase in dampéng i
provided as a direct function of the area underfohes-deformation curve of the nonlinear oscilkato

a quantity that is well correlated to the quastissdly dissipated hysteretic energy. It is no wend



then that higher energy dissipation seems to bevalgat to higher damping, ergo better performance.

However, there exists evidence in recent literathat suggests otherwise. For example, Miranda and
Ruiz-Garcia (2002) have shown that using the acaweh under the backbone of an elastoplastic
system to define equivalent damping yields worsailte for maximum displacement estimation
compared to other approaches. A number of recadiest have also explored the effect of the type of
cyclic hysteresis on the seismic performance efcstiral systems. Rahnama and Krawinkler (1993),
Foutch and Shi (1998), Huang and Foutch (2009) lubserved that there is no clear correlation
between the hysteresis type and the ductility delmatbarra et al. (2005) have shown that the
hysteresis type becomes important mainly whenyhtem approaches its global collapse state. Given
that the hysteretic rules largely decide the amainénergy dissipation, questions may be easily
raised. Similarly, when the connection of dissidaémergy and performance is extrapolated from
quasi-static tests to non-stationary loads, charatt of actual earthquakes, current ideas atimut
important of hysteretic energy may not be geneablez

Therefore, we will investigate whether hysteretiemy dissipation is a fundamental quality of syste
performance. In other words, when comparing twaesys having similar (or the same) backbone, we
are asking whether the one with the “fuller” hystes loops (as evidenced from classic quasi-static
cyclic tests) or, more generally, the one dissifgpthore energy via hysteresis in dynamic loadisg, i
the one having the better seismic performanceetsstlated to material or member failure criterid a
whether these should be based on dissipated hiystenergy or not will not be discussed here. Such
questions can only be answered unambiguously bgrempnts and not via computational studies, like
the one that we are going to embark upon. Heneecdmclusions of this study may be considered
applicable to cases where catastrophic failureos reached. Nevertheless, the latter is a rather
common scenario of several experimental studiegrevitompeting hysteretic systems (members,
bearings, assemblies etc) are subjected to a gjuasi—static cyclic loading protocol up to a certai
displacement, which is not necessarily associatethé system’s collapse state. In such cases, the
resulting force-deformation cyclic curves are ofteing judged in terms of their perceived hystereti
energy dissipation.

2. ENERGY BALANCE EQUATION AND HYSTERETIC ENERGY

The equation of motion for a damped SDOF systenjestdsl to a horizontal ground motion record
can be written as

mi +cu + fg =—mi (2.1)

g

where m is the mass of the system, is the viscous damping coefficieffitjs the restoring force,
Ugis the ground acceleration and u,l are the relative displacement, velocity and acaét,

respectively, of the mass with respect to the gdodiine absorbed energy is evaluated accordingeto th
energy balance equation (e.g., Uang and Berter®)19ferived from integrating over time the
equation of motion (Eqn. 2.1), representing theldgium of forces, multiplied by the instantaneous
displacemendu = udt :

jmuudt+jcu2dt+jfsudtz—jmugudt (2.2)

The energy balance equation is valid throughoudtiration of the motion. The first term depicts the
“relative” kinetic energy of the system, as meaduséth respect to the ground, representing energy
temporarily stored in the kinematics of the systdime second is the damping energy dissipated by
viscous damping, and the third is termed the alegsbrenergy, consisting of the irrecoverable
hysteretic energy and the recoverable strain en&ggpite the presence of the recoverable part, the
name “absorbed energy” is perfectly valid whengrdgion is carried out until the system comes to



rest, where strain energy essentially vanishes.fildéterm is the relative input energy imparted b
the ground motion to the system, as measured veldati the ground, excluding any rigid body
translation. Still, if integration is carried oub the time when the system comes to rest this is
essentially equivalent to the absolute input enétgpng and Bertero 1990). The actual input energy
induced to a system during an earthquake evehuss dissipated in its entirety by means of viscous
damping and hysteretically absorbed energies.

It is worth pointing out here, that the nature aondnection to the system behaviour of the hystereti
and the damping energies is fundamentally differ&éhe hysteretic energy is the energy dissipated
through inelastic excursions during the seismidtation whereas, the damping energy is related to
the work done by the damping force. In a simplistterpretation of the equation of motion these two
energies may be considered together in a singleiganenergy term. Still, the distinction betweea th
hysteretic and the damping energy is rather imponighen considering the damage potential of a
structural system on account of its energy disgipatapacity, as these two mechanisms of energy
dissipation operate on a fundamentally differemeéleMost importantly, increasing the damping has a
straightforward effect towards reducing the seisd@mands, as viscous damping has an ever-present
dissipating effect regardless of the sign of thieaity vector, due to the square on the velocitynte

On the other hand, for input energy, the groundianoacceleration is multiplied by the oscillator
velocity at each time instant, resulting to eithgrositive or a negative energy increment. The dame
true for the hysteretic energy as well, where figa ®f the restoring forc& and the velocity may
become opposite. In other words, hysteretic enargy input energy are closely connected, where
changing the hysteretic characteristics of a systamses fundamental changes to both. Therefore,
while the beneficial effect of increasing the dangpienergy capabilities of a system is perfectly
straightforward, the correlation of hysteresistie ttamage induced to the system is neither obvious
nor thoroughly examined, thus rendering conclusicawing a difficult task.

At a different level, it is equally troublesome toy to derive conclusions regarding system
performance based not on dynamically-absorbed grrrgon quasi-statically absorbed instead. Such
tests are typically performed under a displacerentrolled loading protocol that not only imposes
certain displacements but, given the hystereticahabsentially also prescribes the input energy. B
virtue of removing any influence of damping, thiscaensures that all the energy will be dissipatad
hysteresis only. Clearly this is something that cever happen in dynamic tests therefore any
connections would be difficult to justify.

3. METHODOLOGY

To investigate the correlation between hysteretergy and seismic performance, a number of SDOF
systems will be used, each having different forefsdmation characteristics. To evaluate their
seismic performance Incremental Dynamic Analysi3A]l is employed (Vamvatsikos and Cornell
2002). IDA is a powerful tool of structural analyshat involves performing a series of nonlineaueti
history analyses for a suite of ground motion rdspthe latter scaled at increasing intensity EvVEb
define an IDA curve two scalars are needed, thesgglan intensity measure (IM) and an engineering
demand parameter (EDP) to record the structurpbrese.

The 5% damped spectral acceleration at the vilirgtériod of the SDOF systen(T) is adopted as

the IM, since it is considered to be an efficientensity measure especially for SDOF systems (Shome
et al. 1998). Moreover, to allow comparisons betwte different models and periods investigated,
the elastic spectral acceleratiSnis normalized by its valug, at yield to provide the dimensionless
ratio R = S, /Sy, which is akin to the strength reduction fackrRegarding the demand parameter
EDP, in addition to the total absorbed hysteretiergy E. recorded at the end of the dynamic time
history analyses, the maximum displacenggt is also employed as a measure for the peak seismic
demands. Furthermore, residual displacemagtsvill be monitored as a useful indicator of whether
damaged building should be retrofitted or demolisfeg., Ruiz-Garcia and Miranda 2008). In all
analyses, at the end of each record, the systafoigsed to undergo several free vibration cycles in



order to return to rest and permit an accurate orea®ent of the total hysteretic energies and residu
displacements. For the IDAs a suite of sixty groumation records is used. The records are assumed
to be ‘ordinary’ in the sense that they do noteaasy concerns regarding soft soil or near source
directivity. The accelerograms are selected froemREER Strong Motion database (PEER 2011).

4. HYSTERETIC ENERGY VERSUS SEISMIC PERFORMANCE
4.1. Hysteretic models

The main question to be answered is whether theetetsc energy absorbed, as estimated by the area
of the force-deformation loops in dynamic or quatsitic loading conditions, is well correlated to
seismic displacement demands. In recent yearsyaelrgsteretic models have been developed in
order to simulate as realistically as possible gkeeformance of a structural system under seismic
excitation. To this end, we have considered a saiesingle-degree-of-freedom (SDOF) oscillators,
all sharing practically the same elastic-plasticéadeformation backbone (allowing for some curved
transition in one case) but with varying hysteretiaracteristics to depict a wide spectrum of force
deformation behaviors representative of differemhponents, materials and structures.

The six systems considered are presented in Figrrdnged in order of decreasing quasi-statically
absorbed hysteretic energy. At the very top ofgimp, a classic elastoplastic system with kineenati
strain hardening (Fig. 1a) was chosen to servleabdnchmark for comparing the performance of the
more elaborate systems to follow. Adding a curueahdition between the elastic segment and the
plastic plateau while maintaining kinematic straesrdening defines the “curved” system of Fig. 1b.
Cyclic stiffness degradation is introduced to difet degrees of severity by the peak-oriented had t
pinching systems (lbarra et al. 2005) in Figs 1d &n. Recent advances in self-centering systems
(Christopoulos et al. 2002) are represented byl#igeshaped hysteretic loops of Fig. 1d. Finalhg t
nonlinear-elastic oscillator of Fig. 1f lies at tbpposite extreme end compared to the kinematic
hardening, having the same backbone but no hystereergy dissipation capacity. The oscillators
were assumed to have a 5% viscous damping andchfdr model a range of periods was employed,
from 0.5 to 2.0sec, in 0.5sec increments. The dynamalyses of the SDOF oscillators were carried
out by means of the OpenSEES open-source analgsisrm (McKenna et al. 2000).

The hysteretic energy dissipation capacity undeasgstatic cyclic loads, for each one of the
hysteretic models examined, was evaluated on #ipe of the energy rat&gg, which is defined by
the following equation:

_ Eryst,
g =— —

_ (4.2)
Ehyst,KH

whereE, g, is the hysteretic energy absorbed by the hysteretideli and Engxn is the hysteretic
energy absorbed by the kinematic hardening hystemeddel, when both are subjected to the same
cyclic loading protocol. The correspondiag ratios are reported in Fig. 1 for each systemtaeg
vary from one to zero, with one representing theekiatic hardening hysteretic model (Fig. 1a) and
zero associated with the nonlinear elastic mode. (K). It is worth noting that they ratios for the
moderately pinching (Fig. 1e) and the flag-shaged. (1d) models are almost identical, at least for
this example.
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Figure 1. Backbone and hysteretic loops of the consideredimear oscillators.

To evaluate the systems’ performance under dynéaits, we also need to assess their behavior in
terms of energy and displacement. To allow for $icitg in the comparisons, these are performed in
terms of thex% fractile values, over all records, of the hydierenergy ratioey, the maximum
displacement ratio,.« and the residual displacement ratig, defined for each systenwith respect

to the kinematic hardening hysteresis:

- £ - -
edyn X% — el ’ (42)
' L Ehyst,KH Iy
- q - -
rmax X% — — ' (43)
' L dmax,KH Ix%
d_ .
rres X% — — ' (44)
' dreﬁ,KH %%

Due to the high record-to-record variability in tthenamic results, it is important to quantify baitie
central value and the dispersion of their distidoutto fully capture the range of behavior (e.g.,



Vamvatsikos and Cornell 2002; Kazantzi et al. 208®@)nce, typical values forinclude 50%, i.e., the
median as a central value, and 16, 84% to evathatassociated dispersion. Figs 2a and 2b illestrat
the way fractile values of the response ratios veeraputed by means of IDA curves. Fig. 2a in
particular, presents the “spaghetti plot” of 60 I@Arves in terms oR andr.. scalars. The
dimensionless demand parameter was evaluated aatibeof the maximum displacement response
computed for the peak-oriented model over the mamnadisplacement response computed for the
kinematic hardening model. The SDOF systems undiesideration were assumed to have a natural
period of T = 1.0sec whereas for each one of them a totad@® Zi.e., 60 ground motion records x 40
intensity increments) nonlinear time history anafysvere performed. The record-to-record variability
is evidently significant. This renders the respopialictions for any one record highly random. The
randomness may be quantified by the 16, 50, 84#%tilzaatios. These corresponding ratios appear in
the Fig. 2b, where the peak-oriented and the kitierhardening system are shown to have the same
mediandmn.y response (i.e., a ratio of practically 1.0) atledels of intensity, in agreement with past
studies (Rahnama and Krawinkler 1993; Vamvatsikas@ornell 2006).
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Figure 2. Estimation of fractile values of maximum displa@response ratios,., of the peak-oriented and
the KH systemsT(= 1.0sec) via IDA.

4.2. Performance comparisons

The results in terms of the median response rafitise five alternative hysteretic models (Fig.flLb-
versus the kinematic strain hardening (KH) refeeesystem for three representativgalues (1.5, 2.0
and 4.0), associated with near and post-yield rnsgiare summarized in Table 1. Despite the fad¢t tha
a range of periods was considered, the tabulatadtseonly refer taf = 1.0sec for brevity. Results at
longer periods are practically the same, while t@ngreriods introduce only marginal differences.

Firstly, it is apparent that dynamically and stallic absorbed energies are not well correlated. For
example, aR = 1.5, all the systems, except the two self-céamyeilag-shaped and nonlinear elastic
models, absorb more energy than Ki¢ (in a median sense). The curved system actualyijites
nearly twice the hysteretic energy of the KH modkspite having almost 40% lower quasi-static
energy absorption. At the same intensity, the pirglsystem, which absorbs only half the energy of
the peak-oriented system in quasi-static loadiray Almost 30% higher dissipation for dynamic
loading. These energy ratios are slowly evenedabbigher intensities, all reaching nearly unityRat

= 4.0, excluding the two self-centering systems.

This observation, which is in contrast to the cartianal view that hysteretic models with fuller o
guarantee higher hysteretic energy absorption umaietstationary loads, can be explained by looking
into the details of the hysteretic behavior and ¢émergy dissipation histories. For example, the
handicap of the KH system at low intensities i®asequence of its purely elastic unloading-relogdin



behavior. The KH system can only dissipate energgmit deforms along the yield plateau. However,
a ground motion record is likely to induce onlyeavfreversing cycles to the KH system that are not
sufficient to give rise to its hypothetically sujperhysteretic behaviour. The weak ground motion
acceleration spikes, whose effect on the systelimiged below the nonlinear range, are wasted to
temporarily stored recoverable strain energy. Bigompares the hysteretic energy time histories as
well as the force-displacement hysteretic responééise KH and the pinching SDOFs with a period
of T = 1.0sec. Both oscillators were subjected to #mesground motion record, which was scaled to
R = 2.0. As evident from the presented graphs, yis¢éehetic energy absorbed by the pinching model is
higher (see Fig. 3a). This outcome holds grountherfact that for lowR values, the systems undergo
only a limited number of nonlinear excursions (&g 3b) and thus the advantage of the fuller KH
loops towards hysteretic energy dissipation isauhpletely utilized. On the contrary, the pinching
system displays hysteretic energy absorption evhenwcycling below the plastic plateau, thus
steadily dissipating energy (rather than tempgrastibring it) as seen in Fig. 3b. It is worth poigt

out that, for this particular scaled ground motitme pinching system, despite its superior energy
dissipation capacity exhibits a higher peak defoiona(see Fig. 3b) compared to the KH system.
Eventually, the fuller loops of the KH model wilssert themselves in terms of energy dissipation at
higher intensities, as shown, e.g., by the shaptheffractile IDA results in Fig. 4a, and should
provide it with the presumed advantage suggesteglibgi-static tests.

Table 1. Summarized comparison of the quasi-statically anththically dissipated hysteretic energy versus the
displacement responger the considered hysteretic modelsX 1.0sec). All quantities are shown as median
values of response ratios hormalized by the kinienséitain hardening system.

. peak- flag- L nonlinear
Loading response curved KH oriented shaped pinching clastic
Quasi-static €t 0.64 0.58 0.30 0.29 0.00
. Eiyn 50% 2.35 1.39 0.79 1.83 ~0
D oo 0.90 1.04 1.04 1.03 1.17
o I res 50% 0.22 1.34 ~0 0.76 ~0
. yn50% 1.52 1.22 0.81 1.36 ~0
DRy Tazm(')c F o 500 0.92 1.02 1.07 1.04 1.33
e I'res,50% 0.18 1.48 ~0 0.81 ~0
. yn50% 0.96 1.02 0.69 0.86 ~0
DRy Ta4m(')c Fais50% 0.99 0.95 1.14 1.06 1.50
- Fres50% 0.29 1.28 ~0 0.70 ~0
0.045 T T T T T T T T 1 —
0.04r = 0.8
00351 061
g 0.03F o4r
L%o.ozs— % o
% 0.02f 5 °
3] L 02
9 0.015
I -0.4
0.01- 4
7 J‘ -06 .

; ; 1 p . ; ; ;
0 5 10 15 20 25 30 35 40 45 -0015 -001 -0005 0 0005 001 0015 002
Time [sec] Displacement [m]

(a) hysteretic energy (b) force-displacement loops

Figure 3. Hysteretic energy time histories and force-disptaeet hysteretic loops for kinematic hardening and
pinching modelsT = 1.0sec), for a single record scaledrte 2.0.

However, Table 1 shows that any superior hystesgtargy dissipation performance does not seem to
be reflected in the evaluated maximum or residisgldcement demands. Across the whole intensity
range, KH, peak-oriented, pinching and curved Kbtays share practically the sadig, response.



This trend is illustrated for the pinching systamFig. 4b. Furthermore, the pinching and curved KH
models clearly have superior performance in terhresidual displacement compared to the KH at all
levels of intensity.
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Figure 4. Hysteretic energy and maximum displacement ratidkeopinching normalized by the KH model for
T=1.0sec.

Regarding the flag-shaped system, although it wasd to dissipate in the median sense 20-30% less
energy than the KH model (see Table 1) the reportddes for the peak displacements are only

marginally higher. Even so, the wide dispersiongeaping in Figs 5a and 5b suggest that there are
several records that combine both lower dissipadiah lower peak displacement compared to the KH

system.
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Figure5. The 16, 50, 84% fractiles of response ratios ferfthg-shaped over the kinematic hardening model
for T=1.0sec.

For the boundary non-dissipating nonlinear elasiicel the computed results suggest that the median
maximum displacements are in general higher, regcum approximately 40-50% higher mediaiRat

= 4.0 compared to that predicted by the KH benckmawdel. Nevertheless, it should be taken into
account that this increase in the maximum defolonadiemands may well counterbalanced by the fact
that the two self-centering systems together withdurved KH one, display the lowest values,gf
aided by their unloading behavior that, as showhign 1, tends to relieve some or all of the maximu
displacement when returning to rest. This may hesidered to be a clear advancement against the
other examined models.

In conclusion, it can be inferred from the preséntesults that observations in cyclic loading tests
regarding the hysteretic behavior of a system a&ither representative nor stable indicators for its
potential dynamic energy dissipation. Furthermotiee superior hysteretic energy dissipation
performance does not seem to be reflected in tleduated maximum or residual displacement



demands. Thus, it is not the area of the loops $skeéras that seems to matter but rather the finer
details of the hysteretic rules.

5. CONCLUSIONS

Considering a range of story-level oscillators wiirying hysteretic characteristics it was examined
by means of incremental dynamic analyses whettedibsipated hysteretic energy can serve as a
useful seismic performance indicator. The studyeaés that, hysteretic dissipated energy is not
consistently well-correlated to seismic performar@ther force-deformation characteristics, such as
the shape and curvature of the backbone and whietbleows self-centering behavior or not, have a
more profound influence on the response of strattsystems. Therefore we propose that some care
should be exercised whenever discussing the ertisgipation characteristics of different systems,
since the reliability of this measure for companigo terms of seismic performance is questionable.
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