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ABSTRACT:  
The hysteretic energy dissipated by systems undergoing quasi-static or dynamic loading is often thought to 
represent a useful measure of their performance when subjected to earthquake excitation. In general, fuller 
hysteresis loops mean higher seismic energy removal from the structure, which is logically taken to imply better 
performance when comparing systems with similar strength. However, such observations are typically based on 
quasi-static loading tests. Dynamic loading conditions differ as energy input and energy dissipation are 
intimately related with the details of the system’s hysteresis, in ways that often defy current intuition. Using 
incremental dynamic analysis on story-level oscillators with varying hysteresis characteristics, we can map this 
connection in detail. Structural response, as measured in terms of maximum or residual deformation, is shown to 
have little connection to the energy absorption. Therefore, hysteretic energy dissipation cannot quantitatively 
measure seismic performance but perhaps only serve as a general indicator.  
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1. INTRODUCTION 
 
The hysteretic energy, absorbed by a structural system during a seismic event that is strong enough to 
induce a certain amount of nonlinearity to the system, has been recognized by several researchers as a 
potentially useful seismic performance indicator (e.g., Park et al. 1987; Bojorquez et al. 2011). In 
general, stable hysteretic loops with large energy dissipation capacity at a member level are thought to 
guarantee a better deformation performance of the system, implying that there is a good correlation 
between the dissipated hysteretic energy and the inelastic deformation demands. This notion is often 
founded on observations made in quasi-static cyclic tests, where it seems apparent that between two 
systems with similar strength, tested under the same cyclic loading protocol, the one with the higher 
energy absorption, i.e., “fuller” hysteresis loops, should exhibit superior performance. Thus, dissipated 
energy is a term that has become synonymous to performance and it is so pervasive as to become  a 
key ingredient of modern seismic codes (e.g., EN1998). Hence, at the basis of seismic design, the 
definition of the behavior (reduction) factor q (or R) allows that the high strength of a linear elastic 
system having zero energy absorption can be substituted by the equally effective dissipating behavior 
of an elastoplastic system with a base shear strength that is q times lower (at least where the equal 
displacement rule holds). While there is no question about the need for ductility, the role of energy 
dissipation is still imperfectly understood. 
 
Energy dissipation is typically understood as a proxy for viscous damping, a concept that was perhaps 
first introduced by Jacobsen (1960) through equivalent linearization techniques. Such methods provide 
an estimate of the (average) nonlinear displacement of elastoplastic oscillators by employing an 
equivalent linear single-degree-of-freedom (SDOF) system characterized by a longer period (estimated 
at a secant stiffness) and an increased value of viscous damping. Crucially, the increase in damping is 
provided as a direct function of the area under the force-deformation curve of the nonlinear oscillator, 
a quantity that is well correlated to the quasi-statically dissipated hysteretic energy. It is no wonder 



then that higher energy dissipation seems to be equivalent to higher damping, ergo better performance.  
 
However, there exists evidence in recent literature that suggests otherwise. For example, Miranda and 
Ruiz-Garcia (2002) have shown that using the actual area under the backbone of an elastoplastic 
system to define equivalent damping yields worse results for maximum displacement estimation 
compared to other approaches. A number of recent studies have also explored the effect of the type of 
cyclic hysteresis on the seismic performance of structural systems. Rahnama and Krawinkler (1993), 
Foutch and Shi (1998), Huang and Foutch (2009) have observed that there is no clear correlation 
between the hysteresis type and the ductility demands. Ibarra et al. (2005) have shown that the 
hysteresis type becomes important mainly when the system approaches its global collapse state. Given 
that the hysteretic rules largely decide the amount of energy dissipation, questions may be easily 
raised. Similarly, when the connection of dissipated energy and performance is extrapolated from 
quasi-static tests to non-stationary loads, characteristic of actual earthquakes, current ideas about the 
important of hysteretic energy may not be generalizable.  
 
Therefore, we will investigate whether hysteretic energy dissipation is a fundamental quality of system 
performance. In other words, when comparing two systems having similar (or the same) backbone, we 
are asking whether the one with the “fuller” hysteresis loops (as evidenced from classic quasi-static 
cyclic tests) or, more generally, the one dissipating more energy via hysteresis in dynamic loading, is 
the one having the better seismic performance. Issues related to material or member failure criteria and 
whether these should be based on dissipated hysteretic energy or not will not be discussed here. Such 
questions can only be answered unambiguously by experiments and not via computational studies, like 
the one that we are going to embark upon. Hence, the conclusions of this study may be considered 
applicable to cases where catastrophic failure is not reached. Nevertheless, the latter is a rather 
common scenario of several experimental studies, where competing hysteretic systems (members, 
bearings, assemblies etc) are subjected to a given quasi–static cyclic loading protocol up to a certain 
displacement, which is not necessarily associated to the system’s collapse state. In such cases, the 
resulting force-deformation cyclic curves are often being judged in terms of their perceived hysteretic 
energy dissipation. 
 
 
2. ENERGY BALANCE EQUATION AND HYSTERETIC ENERGY 
 
The equation of motion for a damped SDOF system subjected to a horizontal ground motion record 
can be written as 
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where m  is the mass of the system, c  is the viscous damping coefficient,sf is the restoring force, 

gu&& is the ground acceleration and u ,u& ,u&&  are the relative displacement, velocity and acceleration, 

respectively, of the mass with respect to the ground. The absorbed energy is evaluated according to the 
energy balance equation (e.g., Uang and Bertero 1990), derived from integrating over time the 
equation of motion (Eqn. 2.1), representing the equilibrium of forces, multiplied by the instantaneous 
displacement dtudu &= :  
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The energy balance equation is valid throughout the duration of the motion. The first term depicts the 
“relative” kinetic energy of the system, as measured with respect to the ground, representing energy 
temporarily stored in the kinematics of the system. The second is the damping energy dissipated by 
viscous damping, and the third is termed the absorbed energy, consisting of the irrecoverable 
hysteretic energy and the recoverable strain energy. Despite the presence of the recoverable part, the 
name “absorbed energy” is perfectly valid when integration is carried out until the system comes to 



rest, where strain energy essentially vanishes. The final term is the relative input energy imparted by 
the ground motion to the system, as measured relative to the ground, excluding any rigid body 
translation. Still, if integration is carried out to the time when the system comes to rest this is 
essentially equivalent to the absolute input energy (Uang and Bertero 1990). The actual input energy 
induced to a system during an earthquake event is thus dissipated in its entirety by means of viscous 
damping and hysteretically absorbed energies. 
 
It is worth pointing out here, that the nature and connection to the system behaviour of the hysteretic 
and the damping energies is fundamentally different. The hysteretic energy is the energy dissipated 
through inelastic excursions during the seismic excitation whereas, the damping energy is related to 
the work done by the damping force. In a simplistic interpretation of the equation of motion these two 
energies may be considered together in a single damping energy term. Still, the distinction between the 
hysteretic and the damping energy is rather important when considering the damage potential of a 
structural system on account of its energy dissipation capacity, as these two mechanisms of energy 
dissipation operate on a fundamentally different level. Most importantly, increasing the damping has a 
straightforward effect towards reducing the seismic demands, as viscous damping has an ever-present 
dissipating effect regardless of the sign of the velocity vector, due to the square on the velocity term. 
On the other hand, for input energy, the ground motion acceleration is multiplied by the oscillator 
velocity at each time instant, resulting to either a positive or a negative energy increment. The same is 
true for the hysteretic energy as well, where the sign of the restoring force fs and the velocity may 
become opposite. In other words, hysteretic energy and input energy are closely connected, where 
changing the hysteretic characteristics of a system causes fundamental changes to both. Therefore, 
while the beneficial effect of increasing the damping energy capabilities of a system is perfectly 
straightforward, the correlation of hysteresis to the damage induced to the system is neither obvious 
nor thoroughly examined, thus rendering conclusion-drawing a difficult task. 
 
At a different level, it is equally troublesome to try to derive conclusions regarding system 
performance based not on dynamically-absorbed energy but on quasi-statically absorbed instead. Such 
tests are typically performed under a displacement-controlled loading protocol that not only imposes 
certain displacements but, given the hysteretic model, essentially also prescribes the input energy. By 
virtue of removing any influence of damping, this also ensures that all the energy will be dissipated via 
hysteresis only. Clearly this is something that can never happen in dynamic tests therefore any 
connections would be difficult to justify.  
 
 
3. METHODOLOGY 
 
To investigate the correlation between hysteretic energy and seismic performance, a number of SDOF 
systems will be used, each having different force-deformation characteristics. To evaluate their 
seismic performance Incremental Dynamic Analysis (IDA) is employed (Vamvatsikos and Cornell 
2002). IDA is a powerful tool of structural analysis that involves performing a series of nonlinear time 
history analyses for a suite of ground motion records, the latter scaled at increasing intensity levels. To 
define an IDA curve two scalars are needed, these being an intensity measure (IM) and an engineering 
demand parameter (EDP) to record the structural response. 
 
The 5% damped spectral acceleration at the vibration period of the SDOF systems, Sa(T) is adopted as 
the IM, since it is considered to be an efficient intensity measure especially for SDOF systems (Shome 
et al. 1998). Moreover, to allow comparisons between the different models and periods investigated, 
the elastic spectral acceleration Sa is normalized by its value Say at yield to provide the dimensionless 
ratio R = Sa /Say, which is akin to the strength reduction factor R. Regarding the demand parameter 
EDP, in addition to the total absorbed hysteretic energy Ehyst recorded at the end of the dynamic time 
history analyses, the maximum displacement dmax is also employed as a measure for the peak seismic 
demands. Furthermore, residual displacements dres will be monitored as a useful indicator of whether a 
damaged building should be retrofitted or demolished (e.g., Ruiz-Garcia and Miranda 2008). In all 
analyses, at the end of each record, the system is allowed to undergo several free vibration cycles in 



order to return to rest and permit an accurate measurement of the total hysteretic energies and residual 
displacements. For the IDAs a suite of sixty ground motion records is used. The records are assumed 
to be ‘ordinary’ in the sense that they do not raise any concerns regarding soft soil or near source 
directivity. The accelerograms are selected from the PEER Strong Motion database (PEER 2011).  
 
 
4. HYSTERETIC ENERGY VERSUS SEISMIC PERFORMANCE 
 
4.1. Hysteretic models 
 
The main question to be answered is whether the hysteretic energy absorbed, as estimated by the area 
of the force-deformation loops in dynamic or quasi-static loading conditions, is well correlated to 
seismic displacement demands. In recent years, several hysteretic models have been developed in 
order to simulate as realistically as possible the performance of a structural system under seismic 
excitation. To this end, we have considered a series of single-degree-of-freedom (SDOF) oscillators, 
all sharing practically the same elastic-plastic force-deformation backbone (allowing for some curved 
transition in one case) but with varying hysteretic characteristics to depict a wide spectrum of force-
deformation behaviors representative of different components, materials and structures.  
 
The six systems considered are presented in Fig. 1, arranged in order of decreasing quasi-statically 
absorbed hysteretic energy. At the very top of the group, a classic elastoplastic system with kinematic 
strain hardening (Fig. 1a) was chosen to serve as the benchmark for comparing the performance of the 
more elaborate systems to follow. Adding a curved transition between the elastic segment and the 
plastic plateau while maintaining kinematic strain hardening defines the “curved” system of Fig. 1b. 
Cyclic stiffness degradation is introduced to different degrees of severity by the peak-oriented and the 
pinching systems (Ibarra et al. 2005) in Figs 1c and 1e. Recent advances in self-centering systems 
(Christopoulos et al. 2002) are represented by the flag-shaped hysteretic loops of Fig. 1d. Finally, the 
nonlinear-elastic oscillator of Fig. 1f lies at the opposite extreme end compared to the kinematic 
hardening, having the same backbone but no hysteretic energy dissipation capacity. The oscillators 
were assumed to have a 5% viscous damping and for each model a range of periods was employed, 
from 0.5 to 2.0sec, in 0.5sec increments. The dynamic analyses of the SDOF oscillators were carried 
out by means of the OpenSEES open-source analysis platform (McKenna et al. 2000). 
 
The hysteretic energy dissipation capacity under quasi-static cyclic loads, for each one of the 
hysteretic models examined, was evaluated on the premise of the energy ratio eqst, which is defined by 
the following equation: 
 

KHhyst

ihyst
qst E

E
e

,

,
=    (4.1) 

 
where Ehyst,i is the hysteretic energy absorbed by the hysteretic model i and Ehyst,KH is the hysteretic 
energy absorbed by the kinematic hardening hysteretic model, when both are subjected to the same 
cyclic loading protocol. The corresponding eqst ratios are reported in Fig. 1 for each system and they 
vary from one to zero, with one representing the kinematic hardening hysteretic model (Fig. 1a) and 
zero associated with the nonlinear elastic model (Fig. 1f). It is worth noting that the eqst ratios for the 
moderately pinching (Fig. 1e) and the flag-shaped (Fig. 1d) models are almost identical, at least for 
this example. 
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(a) Kinematic hardening model          

(KH, eqst = 1.00). 
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(b) Curved kinematic hardening model 

(Curved KH, eqst = 0.64). 
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(c) Peak-oriented model (eqst = 0.58). 
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(d) Flag-shaped model (eqst = 0.30). 
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(e) Pinching model (eqst = 0.29). 
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(f) Nonlinear elastic model (eqst = 0.00). 

 
Figure 1. Backbone and hysteretic loops of the considered nonlinear oscillators. 

 
To evaluate the systems’ performance under dynamic loads, we also need to assess their behavior in 
terms of energy and displacement. To allow for simplicity in the comparisons, these are performed in 
terms of the x% fractile values, over all records, of the hysteretic energy ratio edyn, the maximum 
displacement ratio rmax and the residual displacement ratio rres, defined for each system i with respect 
to the kinematic hardening hysteresis: 
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Due to the high record-to-record variability in the dynamic results, it is important to quantify both the 
central value and the dispersion of their distribution to fully capture the range of behavior (e.g., 



Vamvatsikos and Cornell 2002; Kazantzi et al. 2008). Hence, typical values for x include 50%, i.e., the 
median as a central value, and 16, 84% to evaluate the associated dispersion. Figs 2a and 2b illustrate 
the way fractile values of the response ratios were computed by means of IDA curves. Fig. 2a in 
particular, presents the “spaghetti plot” of 60 IDA curves in terms of R and rmax scalars. The rmax 
dimensionless demand parameter was evaluated as the ratio of the maximum displacement response 
computed for the peak-oriented model over the maximum displacement response computed for the 
kinematic hardening model. The SDOF systems under consideration were assumed to have a natural 
period of T = 1.0sec whereas for each one of them a total of 2400 (i.e., 60 ground motion records x 40 
intensity increments) nonlinear time history analyses were performed. The record-to-record variability 
is evidently significant. This renders the response predictions for any one record highly random. The 
randomness may be quantified by the 16, 50, 84% fractile ratios. These corresponding ratios appear in 
the Fig. 2b, where the peak-oriented and the kinematic hardening system are shown to have the same 
median dmax response (i.e., a ratio of practically 1.0) at all levels of intensity, in agreement with past 
studies (Rahnama and Krawinkler 1993; Vamvatsikos and Cornell 2006). 
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(a)  60 IDA curve ratios  
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(b)  16, 50, 84% fractile ratios 

 
Figure 2. Estimation of fractile values of maximum displacement response ratios, rmax of the peak-oriented and 

the KH systems (T = 1.0sec) via IDA. 
 
4.2. Performance comparisons 
 
The results in terms of the median response ratios of the five alternative hysteretic models (Fig. 1b-f) 
versus the kinematic strain hardening (KH) reference system for three representative R values (1.5, 2.0 
and 4.0), associated with near and post-yield regions, are summarized in Table 1. Despite the fact that 
a range of periods was considered, the tabulated results only refer to T = 1.0sec for brevity. Results at 
longer periods are practically the same, while shorter periods introduce only marginal differences.  
 
Firstly, it is apparent that dynamically and statically absorbed energies are not well correlated. For 
example, at R = 1.5, all the systems, except the two self-centering flag-shaped and nonlinear elastic 
models, absorb more energy than the ΚΗ (in a median sense). The curved system actually dissipates 
nearly twice the hysteretic energy of the KH model, despite having almost 40% lower quasi-static 
energy absorption. At the same intensity, the pinching system, which absorbs only half the energy of 
the peak-oriented system in quasi-static loading, has almost 30% higher dissipation for dynamic 
loading. These energy ratios are slowly evened out at higher intensities, all reaching nearly unity at R 
= 4.0, excluding the two self-centering systems.  
 
This observation, which is in contrast to the conventional view that hysteretic models with fuller loops 
guarantee higher hysteretic energy absorption under non-stationary loads, can be explained by looking 
into the details of the hysteretic behavior and the energy dissipation histories. For example, the 
handicap of the KH system at low intensities is a consequence of its purely elastic unloading-reloading 



behavior. The KH system can only dissipate energy when it deforms along the yield plateau. However, 
a ground motion record is likely to induce only a few reversing cycles to the KH system that are not 
sufficient to give rise to its hypothetically superior hysteretic behaviour. The weak ground motion 
acceleration spikes, whose effect on the system is limited below the nonlinear range, are wasted to 
temporarily stored recoverable strain energy. Fig. 3 compares the hysteretic energy time histories as 
well as the force-displacement hysteretic responses of the KH and the pinching SDOFs with a period 
of T = 1.0sec. Both oscillators were subjected to the same ground motion record, which was scaled to 
R = 2.0. As evident from the presented graphs, the hysteretic energy absorbed by the pinching model is 
higher (see Fig. 3a). This outcome holds ground on the fact that for low R values, the systems undergo 
only a limited number of nonlinear excursions (see Fig. 3b) and thus the advantage of the fuller KH 
loops towards hysteretic energy dissipation is not completely utilized. On the contrary, the pinching 
system displays hysteretic energy absorption even when cycling below the plastic plateau, thus 
steadily dissipating energy (rather than temporarily storing it) as seen in Fig. 3b. It is worth pointing 
out that, for this particular scaled ground motion, the pinching system, despite its superior energy 
dissipation capacity exhibits a higher peak deformation (see Fig. 3b) compared to the KH system. 
Eventually, the fuller loops of the KH model will assert themselves in terms of energy dissipation at 
higher intensities, as shown, e.g., by the shape of the fractile IDA results in Fig. 4a, and should 
provide it with the presumed advantage suggested by quasi-static tests. 
 
Table 1. Summarized comparison of the quasi-statically and dynamically dissipated hysteretic energy versus the 
displacement response for the considered hysteretic models (T = 1.0sec). All quantities are shown as median 
values of response ratios normalized by the kinematic strain hardening system. 

Loading response curved KH 
peak-

oriented 
flag-

shaped 
pinching 

nonlinear 
elastic 

Quasi-static eqst 0.64 0.58 0.30 0.29 0.00 
       

Dynamic 
R = 1.5 

edyn,50% 2.35 1.39 0.79 1.83 ~ 0 
rmax,50% 0.90 1.04 1.04 1.03 1.17 
rres,50% 0.22 1.34 ~ 0 0.76 ~ 0 

       
Dynamic 
R = 2.0 

edyn,50% 1.52 1.22 0.81 1.36 ~ 0 
rmax,50% 0.92 1.02 1.07 1.04 1.33 
rres,50% 0.18 1.48 ~ 0 0.81 ~ 0 

       
Dynamic 
R = 4.0 

edyn,50% 0.96 1.02 0.69 0.86 ~ 0 
rdis,50% 0.99 0.95 1.14 1.06 1.50 
rres,50% 0.29 1.28 ~ 0 0.70 ~ 0 
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(a)  hysteretic energy 
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(b)  force-displacement loops 

 
Figure 3. Hysteretic energy time histories and force-displacement hysteretic loops for kinematic hardening and 

pinching models (T = 1.0sec), for a single record scaled to R = 2.0. 
 
However, Table 1 shows that any superior hysteretic energy dissipation performance does not seem to 
be reflected in the evaluated maximum or residual displacement demands. Across the whole intensity 
range, KH, peak-oriented, pinching and curved KH systems share practically the same dmax response. 



This trend is illustrated for the pinching system in Fig. 4b. Furthermore, the pinching and curved KH 
models clearly have superior performance in terms of residual displacement compared to the KH at all 
levels of intensity.  
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(a)  total hysteretic energy ratio, edyn 
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(b)  maximum displacement ratio, rmax 

 
Figure 4. Hysteretic energy and maximum displacement ratios of the pinching normalized by the KH model for 

T = 1.0sec. 
 
Regarding the flag-shaped system, although it was found to dissipate in the median sense 20-30% less 
energy than the KH model (see Table 1) the reported values for the peak displacements are only 
marginally higher. Even so, the wide dispersions appearing in Figs 5a and 5b suggest that there are 
several records that combine both lower dissipation and lower peak displacement compared to the KH 
system.  
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(a)  total hysteretic energy ratio, edyn (b)  maximum displacement ratio, rmax 

 
Figure 5. The 16, 50, 84% fractiles of response ratios for the flag-shaped over the kinematic hardening model 

for T = 1.0sec. 
 
For the boundary non-dissipating nonlinear elastic model the computed results suggest that the median 
maximum displacements are in general higher, reaching an approximately 40-50% higher median at R 
= 4.0 compared to that predicted by the KH benchmark model. Nevertheless, it should be taken into 
account that this increase in the maximum deformation demands may well counterbalanced by the fact 
that the two self-centering systems together with the curved KH one, display the lowest values of rres, 
aided by their unloading behavior that, as shown in Fig. 1, tends to relieve some or all of the maximum 
displacement when returning to rest. This may be considered to be a clear advancement against the 
other examined models.  
 
In conclusion, it can be inferred from the presented results that observations in cyclic loading tests 
regarding the hysteretic behavior of a system are neither representative nor stable indicators for its 
potential dynamic energy dissipation. Furthermore, the superior hysteretic energy dissipation 
performance does not seem to be reflected in the evaluated maximum or residual displacement 



demands. Thus, it is not the area of the loops themselves that seems to matter but rather the finer 
details of the hysteretic rules. 
 
 
5. CONCLUSIONS 
 
Considering a range of story-level oscillators with varying hysteretic characteristics it was examined 
by means of incremental dynamic analyses whether the dissipated hysteretic energy can serve as a 
useful seismic performance indicator. The study reveals that, hysteretic dissipated energy is not 
consistently well-correlated to seismic performance. Other force-deformation characteristics, such as 
the shape and curvature of the backbone and whether it shows self-centering behavior or not, have a 
more profound influence on the response of structural systems. Therefore we propose that some care 
should be exercised whenever discussing the energy-dissipation characteristics of different systems, 
since the reliability of this measure for comparison in terms of seismic performance is questionable.  
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