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ABSTRACT 
 

A novel scaling algorithm for ground motion accelerograms (GMs) is 
proposed in support of incremental dynamic analysis used to establish dependable 
statistical relationships between scalable intensity measures (IMs) and engineering 
demand parameters (EDPs) within a performance based earthquake engineering 
framework. Specifically, an iterative harmonic wavelet based scheme is employed to 
accomplish “surgical” changes to the spectral shape of suites of GMs to span various 
pre-defined levels of the spectral acceleration at the structural fundamental natural 
period, the most widely adopted IM. Since the target IM values may not be 
accomplished precisely by the local spectral modifications, a second step involving 
global uniform GM scaling is further considered. The proposed algorithm requires 
significantly smaller global (amplitude) scaling factors compared to the currently 
used scaling approach in which no initial local GM modification is undertaken. A 
numerical application of the proposed algorithm to elastoplastic structural systems 
shows the extent to which spectral shape may influence the displacement response of 
yielding structures and explains the conservative bias introduced by uniform global 
scaling. 
 
INTRODUCTION 
 
The Performance-Based Earthquake Engineering (PBEE) framework requires the 
dependable knowledge of the mean annual frequency that a specified level of a 
structural demand quantity will be exceeded or that a certain damage limit-state 
capacity will be reached for a given structure located at a certain site. To 
accommodate this requirement, Incremental Dynamic Analysis (IDA, Vamvatsikos 
and Cornell 2002) is commonly employed to map the response of seismically excited 
structures from the linear range to strongly nonlinear behavior and, if so desired, to 
global dynamic instability (collapse). In particular, IDA generates plots (IDA curves) 
of the peak of a judicially chosen structural response quantity (engineering demand 
parameter-EDP) versus a gradually increasing seismic intensity measure (IM). This is 
accomplished by performing a series of response history analyses of a non-linear 
Finite Element structural model under a judicially selected suite of amplitude-scaled 



strong ground motions (GMs). The employed incremental amplitude scaling with 
increasing values of the IM (IM-stripes) is assumed to make the considered suite of 
GMs to become consistent with a range of earthquake scenarios corresponding to 
different intensities. From an engineering seismology viewpoint, these intensities are 
commonly defined in terms of the earthquake magnitude M, the epicentral distance R, 
and the epsilon parameter ε. Epsilon equals the number of standard deviations by 
which the logarithm of the spectral acceleration Sa(T1) of a recorded GM evaluated at 
the fundamental natural period T1 of a structure differs from the median logarithm of 
Sa(T1) calculated from a given attenuation relationship (Baker and Cornell 2005). It 
can be construed as a measure of the “spectral shape” of a GM close to T1 and, thus, 
as a parameter associated with the frequency content of the GM.  

The practice of uniform (global) amplitude scaling of GMs has received 
criticism in the literature both from a theoretical (Grigoriu 2011) and from a practical 
viewpoint (Luco and Bazzurro 2007): it raises the question as to how much a 
recorded GM can be scaled and still be considered as “realistic” and representative of 
an underlying (M,R,ε) earthquake scenario. However, this practice becomes a 
necessity especially for the reliable collapse assessment of code-compliant structures 
that require the consideration of extremely rare seismic events. For such events 
insufficient numbers of recorded GMs exist to properly account for the record-to-
record structural response variability. In this regard, significant research effort has 
been devoted to achieve reductions in the bias and variance of various EDPs of 
practical interest for the high IM levels (stripes) that are required to drive modern 
earthquake resistant structures to the near collapse state. Specifically, it has been 
established that a viable way to achieve such reductions involves adopting IMs which 
should carry as much information as possible, not only for the input seismic action, 
but also for the considered structure itself (Baker and Cornell 2005). To this aim, 
single parameter IMs, such as the peak inelastic displacement (Tothong and Luco 
2007), and two-parameter (vector-valued) IMs, such as Sa(T1) and ε(Τ1) (Baker and 
Cornell 2005), have been proposed in the literature. However, the most commonly 
used IM among engineers remains to be the Sa(T1) since it is widely adopted in 
defining seismic hazard maps and attenuation relationships and is also used by 
current codes of practice to define the seismic input action. An alternative way to 
reduce the bias and variance in estimating peak inelastic structural response demands 
is through a careful selection of the suite of GMs considered which may involve 
individual scaling to meet certain compatibility criteria with the (M,R,ε) earthquake 
scenario (Baker and Cornell 2006). Despite the recent advances in record selection 
algorithms (e.g. Katsanos and Sextos 2013), selection and perhaps replacement of 
GMs as the IM level increases are a rather algorithmic-dependent step, let alone 
computationally demanding.  

To circumvent some of the above limitations of the current state of art in 
achieving IM sufficiency, this paper explores the potential of scaling earthquakes in a 
non-uniform (local) manner within a narrow range of periods centered at the 
fundamental natural period T1, or, equivalently, within a narrow band of frequencies 
centered at the fundamental natural frequency of a structure. This is efficiently 
accomplished by using an iterative harmonic wavelet-based scheme whose potential 
to produce spectral matched accelerograms within arbitrarily defined frequency bands 



is well-established in the literature (Giaralis and Spanos 2009, 2010). Specifically, a 
novel algorithm is proposed according to which harmonic wavelets are initially used 
to accomplish “surgical” changes to the spectral shape (“epsilon”) of a selected suite 
of accelerograms to span various pre-defined IM-stripes expressed by “target” Sa(T1) 
values prior to global (uniform) scaling.  

In what follows, the adopted harmonic wavelet based spectral modification 
procedure is briefly reviewed. Representative numerical data are reported and 
discussed on its effectiveness to achieve local spectral scaling at different pre-
specified IM-stripes. Next, the proposed novel algorithm is presented and applied to 
two different yielding structural systems considering a suite of GMs used in the 
FEMA P-695 report (FEMA 2009). Summarized IDA curves are obtained from IDA 
analyses using only uniformly scaled records (the conventional way) and using 
locally modified records (the herein proposed algorithm) and compared. The paper 
concludes with a critical discussion on the reported numerical data pointing to future 
research directions.     
 
HARMONIC WAVELET BASED MODIFICATION OF ACCELEROGRAMS  
 
Introduced by Newland (1994), the harmonic wavelet transform (HWT) has been 
proved to yield useful time-frequency representations of non-stationary signals 
encountered in the field of earthquake engineering and structural damage detection 
(e.g. Spanos et al. 2007). The HWT decomposes a given signal onto a basis of 
complex-valued analyzing functions, termed “harmonic wavelets”, which attain a 
band-limited Fourier spectrum in the domain of frequencies ω and observe a 
decaying oscillatory waveform with time t. A “general” harmonic wavelet ψ(m,n),k  of 
(m,n) scale centered at the k/(n-m) position in time is defined as a function possessing 
a constant spectrum within the frequency band [m2π, n2π), where k, m, and n are real 
positive numbers (Newland 1994). The Fourier transform of this wavelet reads as 
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Consider a collection of harmonic wavelet functions spanning adjacent non-
overlapping bands of arbitrary widths at different scales along the whole frequency 
axis. At each scale (mj,nj), the considered collection encompasses wavelets centered 
at all possible k/(nj-mj) time instants. Newland (1994) has shown that such a 
collection constitutes a complete and orthogonal basis for finite energy real signals 
f(t). By utilizing this basis, the HWT expressed by 
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where the bar over a symbol denotes complex conjugation, yields a signal 
representation which preserves the signal energy E. This can be mathematically 
expressed by the equation (Giaralis and Spanos 2010) 
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where the summation over m,n accounts for all (m,n) scales considered and the 
summation over k accounts for all wavelets located at k/(nj-mj) in time. Therefore, it 
can be deduced that the HWT decomposes the signal f(t) into band-limited sub-
signals fm,n(t) expressed by (Spanos et al. 2005) 
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In light of Eq. (3), it can be readily shown that the original accelerogram f(t) can be 
reconstructed by summing up the above sub-signals. That is,  
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Note that the energy of each fm,n(t) component is concentrated within the 
[m2π, n2π) interval in the frequency domain. Consequently, Giaralis and Spanos 
(2009) noted that the response of a lightly damped linear oscillator of natural period T 
lying within the interval (1/nj,1/mj] base-excited by an acceleration time-history f(t) 
would be mainly influenced by the  fmj,nj(t) component. Thus, an iterative 
modification procedure can be devised to scale all sub-signals at the v-th iteration 
according to the equation (Giaralis and Spanos 2009, Giaralis and Spanos 2010) 
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to yield a modified accelerogram with a response spectrum matching any given 
response (target) spectrum Starget(T). In Eq. (6), S(v)(T) is the response spectrum of the 
f(v)(t) obtained by Eq. (5) at each iteration. 

It is noted parenthetically, that in the above development continuous-time 
signals of infinite length have been assumed. However, in practice, band-limited 
discrete-time finite-duration recorded accelerograms sampled at a constant time 
interval are to be processed. To this aim, a fast Fourier transform based algorithm can 
be employed for the efficient computation of the convolution integral of Eq. (2) in the 
frequency domain (Newland 1999). Furthermore, a sufficient number of scales/“bins” 
must be considered to cover all frequencies of interest. A detailed discussion along 
with numerical evidence on the impact of the width of these bins on the efficiency of 
the above described iterative procedure can be found in Giaralis and Spanos (2009). 
 
LOCAL SPECTRAL MODIFICATION OF ACCELEROGRAMS  
 
For the purpose of this study, the aforementioned harmonic wavelet based local 
spectral modification procedure is used to modify ground motion acceleration records 



(GMs) locally, within a pre-specified narrow range of periods centered at T=T1 
period, such that they span any desired “IM-stripe” as required by the standard 
Incremental Dynamic Analysis (IDA) (Vamvatsikos and Cornell 2002). To illustrate 
the procedure and the effectiveness of harmonic wavelets to achieve the desired 
modification, representative results corresponding to a particular GM recorded during 
the Northridge 1994 earthquake (Beverly Hills-14145 MULH-009 component) are 
reported in Figure 1.  

 

 
Figure 1. Local harmonic wavelet (epsilon) modification within a period range of 
ΔΤ=0.2s centered at Τ1=1s of the Beverly Hills-14145 MULH-009 component 
(Northridge 1994 earthquake) to achieve Sa(T1=1s)= 0.4g, 0.8g, 1.4g, and 2g. 

 
Specifically, it is assumed that a structure with T1=1s fundamental natural 

period is of interest. This particular (“as recorded”) GM observes a spectral 
acceleration value ( )1 1rec

aS T g= , where g is the gravitational acceleration. Local 
harmonic wavelet based modification (non-uniform scaling) of the above signal is 



undertaken to obtain different accelerograms corresponding to four specific Sa(T1) 
values (or IM-stripes), namely 0.4g, 0.8g, 1.6g and 2g. This has been achieved in 
each case by considering as an initial (seed) signal in the iterative procedure 
represented by Eq. (6) the “as recorded” GM. As “target” spectrum, Starget(T), the 
response spectrum of the “as recorded” signal is taken scaled (up or down) within a 
fixed interval (0.9T1, 1.1T1)=(0.9, 1.1)s of ΔT=0.2s width such that Starget(T1) becomes 
equal to each of the four desired Sa(T1) values, as shown in panels (a),(b),(e) and (f) 
of Figure 1. These smooth locally up/down scaled target spectra have been derived by 
cubic spline interpolation such that they coincide exactly with the response spectrum 
of the “as recorded” GM outside the interval (0.9T1, 1.1T1), that is ( ) ( ) rec

target aS T S T=  
for all T≠(0.9T1, 1.1T1), while Starget(T1)=Sa(T1). The response spectra and time-
history traces of the four locally modified accelerograms are plotted in Figure 1 vis-à-
vis those corresponding to the considered “as recorded” accelerogram. These 
modified accelerograms have been obtained by considering a basis of harmonic 
wavelets spanning non-overlapping frequency bands of Δωc=0.0383rad/s width 
within the “critical” interval (2π/1.1Τ1, 2π/0.9Τ1)=(5.712, 6.981)rad/s where local 
up/down scaling is enforced and of Δω=Δωc/16=0.6128rad/s width outside this 
interval. Six iterations have been performed. 

 

 
Figure 2. Local harmonic wavelet (epsilon) modification within two different 

period ranges ΔΤ centered at Τ1=1s of the Beverly Hills-14145 MULH-009 
component (Northridge 1994 earthquake) to achieve Sa(T1=1s)= 0.4g. 
 
The reported results of Figure 1 are representative of the quality of spectral 

matching achieved by the harmonic wavelet for a number of GMs tested by the 
authors. In particular, it is seen that the adopted iterative harmonic wavelet scheme 
obtains accelerograms with spectral values very close to Sa(T1) values typically 
desired in IDA analysis when ( ) ( )1 1 rec

a aS T S T>  (i.e. local scaling up) without changing 
the response spectrum shape outside the specified interval about T1 and, more 
importantly, without significant changes to the seed “as recorded” GM (see also 



Giaralis and Spanos 2010 for further discussion). However, when local scaling down 
is required (i.e. ( ) ( )1 1 rec

a aS T S T< ), the algorithm does not perform as well as in the 
case of local scaling up. This is due to the fact that non-negligible frequency content 
of the input signal lying close to (but not coinciding to) the natural frequency 2π/Τ1 of 
a linear oscillator has a non-negligible influence to the peak response of this 
oscillator. A reasonable way to rectify this issue is to widen the “critical” interval 
around T1. Figure 2 includes pertinent results for two different ΔΤ widths of the 
interval centered at T1 for the same recorded accelerogram to numerically exemplify 
this issue. Nevertheless, it is noted that from a practical viewpoint the local scale-
down is not of particular interest as it is likely that sufficient number of recorded 
GMs corresponding to low IM values exist in well populated data bases. The practical 
merit of the proposed algorithm utilizing the above harmonic wavelet based local 
modification described in the next section aims to circumvent primarily the lack of a 
sufficient number of recorded GMs corresponding to large IM values and, therefore, 
to rare large intensity seismic events.  
 
PROPOSED SCALING ALGORITHM USING LOCAL SPECTRALLY 
(“EPSILON”) MODIFIED ACCELEROGRAMS IN SUPPORT OF IDA  
 
Herein, a novel scaling algorithm for incremental dynamic analysis (IDA) is proposed 
aiming to derive accelerograms corresponding to high IM values without application 
of unrealistically large global scaling factors to as recorded GMs. The algorithm 
resembles the classical stepping algorithm of IDA (Vamvatsikos and Cornell 2002) 
and exploits the capability of the previously discussed iterative harmonic wavelet 
based modification scheme to accomplish “surgical” local modifications to the 
response spectra of recorded GMs prior to application of (uniform) global scaling 
according to the scalable Sa(T1) IM. The steps of the proposed algorithm applied to a 
predefined suite of strong ground motion records are summarized as follows 

 
Set Sstep and ΔΤ 
For each record 

Starget(T1) = 0 
Repeat 

Starget(T1) = Starget(T1) + Sastep 
Modify locally record within ΔΤ such that S(T1) ≈ Starget(T1)  
Compute spectral value Sactual(T1) of modified record  
Scale uniformly modified record by factor Starget(T1) / Sactual(T1) 
Run dynamic analysis 

Until collapse is reached 
End for 
 

According to the above algorithm, uniform (amplitude) scaling of GMs is 
only applied after “local modification” takes place within a predefined (typically 
narrow) range of periods ΔΤ centered at the structural fundamental period T1 of 
interest to take care of any (typically small) inaccuracy in achieving the 



Starget(T1) value (see also Figure 1). Thus, the algorithm keeps the requirement for 
global (uniform) up/down scaling of GMs, whose use is currently under debate (e.g. 
Luco and Bazzuro 2007, Grigoriu 2011), to a minimum. It is noted in passing that the 
herein considered harmonic wavelet-based “local modification” achieves a change of 
the epsilon ε(T1) of each record prior to global uniform scaling (see e.g. Baker and 
Cornell 2005). Further intuition can be gained by interpreting the suite of records as 
samples of an underlying stochastic process. Under this assumption, the initial local 
scaling step is equivalent to adding/subtracting a narrow band-like stochastic process 
with central frequency approximately equal to 2π/T1 while the subsequent global 
scaling is equivalent to adding/subtracting a white noise-like stochastic process. 
 
NUMERICAL APPLICATION OF PROPOSED ALGORITHM 
 
For application, a simple elasto-plastic oscillator with a period of T1=1s is utilized. 
Since such a system does not experience collapse, a limiting displacement, or 
ductility, is considered to introduce dynamic instability. Two different oscillators are 
employed, one with a limiting ductility of μu = 2.5, representative of a moderate 
ductility system, and another that can achieve higher ductility with μu = 4.0. Each 
system is subjected to classical IDA (global uniform scaling only) and to the novel 
algorithm described in the previous section (local wavelet-based modification prior to 
global scaling). An ensemble of 44 GMs comprising the far-field GM databank used 
in FEMA P-695 report (FEMA 2009) have been considered. 

A comparison of the results for the two aforementioned systems appears in 
Figure 3. For the moderately ductile system (left panel of Figure 3), the two different 
scaling strategies considered produce essentially the same results. Some minor 
differences can be detected but they are statistically insignificant given the size of the 
record set. Quite the opposite happens for the second system, whose higher ductility 
capacity allow the effect of spectral shape to appear (right panel of Figure 3). 
Apparently, the more “spiky” spectral shape of the locally modified records leaves 
them weak in the longer period range. Thus, when the “apparent” natural period of 
the oscillator shifts towards longer periods (see e.g. Katsanos et al. 2013), the 
spectrally modified records cannot readily drive the system to higher response. 
Nevertheless, this effect does not appear uniformly over all the GMs considered. The 
16% curves of response are practically the same for the two scaling methods, 
meaning that the most aggressive of GMs are not affected much by the scaling 
strategy adopted, at least not for ductility lower than 4.0. It may be postulated that 
these might be the ones that showed relatively strong long-period content, although a 
more detailed investigation should be carried out to confirm this. The median curve 
estimated by IDA stays on an equal displacement trajectory for this moderate period 
system: This is exactly what is predicted by most strength reduction factor / ductility / 
period (R-μ-T) relationships. Still, the locally modified ground motions deviate from 
this canon when ductility higher than 3 is reached. The most dramatic changes are 
shown by the most benign records, as presented by the 84% curve. Signs of 
“saturation” are exhibited for intensities between 0.6g and 1.2g, showing a slowly 
increasing response that only accelerates closer to final collapse. 



Naturally, one should not argue in favor of one method against the other. It is 
actually quite probable that both are equally wrong, as the best overall method would 
be the one that would perfectly reproduce the seismologically correct spectral shape 
(and its statistical properties, e.g., central value and variability) that should be 
expected at each intensity level. This could potentially be the conditional spectrum 
suggested by Baker and Cornell (2006) or some more elaborate version that is 
derived by seismological simulations to be fully consistent with the site 
characteristics (e.g. Vetter and Taflanidis 2012). Higher intensities may actually mean 
differences in the spectral shape depending on the site itself. For example, a high 
Sa(T1) value for a relatively small fault may be caused by the generation of a near-
source pulse for a moderate magnitude event, while the same may be achieved by a 
more distant fault for a larger magnitude event without any directivity effect 
appearing in the site of interest. The first process may be associated with a more 
“spiky” spectral shape, while the latter may produce a more broadband GM.  

In other words, it is quite probable that the truth may be somewhere between 
the two considered scaling procedures and it may be best reached by a combination of 
local modification and global scaling, the amount of each to be determined by the 
actual site being studied. Still, having the two methods overlaid in the same graph can 
be a useful tool to understand the limitations of both and perhaps even set some 
bounds on what response can be expected from a given set of GMs.  
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Figure 3. 16/50/84% fractile IDA curves comparing the local (wavelet) versus the 

global (scaling) modification for an elastoplastic system with T = 1sec and an 
ultimate ductility of (a) μu = 2.5, (b) μu = 4. 

 
CONCLUSIONS 
 
A novel algorithm in support of incremental dynamic analysis has been introduced 
involving local harmonic wavelet based spectral (epsilon) modification of recorded 
ground motion accelerograms (GMs) to achieve predefined IM levels in terms of 
spectral acceleration Sa(T1) values without the need to use unrealistically large global 
(uniform) scaling factors. Application to simple elasto-plastic oscillators shows that 
for moderate period systems experiencing low-to-moderate levels of ductility (of the 
order of 3), both the proposed novel scaling procedure and the classical (global) 



scaling one produce practically the same results. When higher levels of ductility are 
reached, though, the displacement response of the oscillator rapidly saturates for 
locally modified records, an effect indicative of their weaker spectral content outside 
the relatively narrow period range within which local scaling is sought. Arguably, this 
phenomenon can be related to the so-called apparent “period elongation” which 
becomes significant for near-collapse hysteretic structures. In any case, taking a very 
narrow period range around T1 to scale GMs as applied herein lies at the opposite end 
of global scaling in terms of the extent of GM modification in the frequency domain. 
To this end, the final conclusion drawn based on the so-far numerical data available 
to the authors is that there is a trade-off as to how much local versus global scaling 
should be pursued. Further research work is underway to shed light to the above 
trade-off and to determine practically useful recommendations on this issue based on 
IDA results (i.e. statistics of the peak response of inelastic structural systems). 
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