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ABSTRACT                                                                                                      
 
A methodology based on Incremental Dynamic Analysis (IDA) is proposed for evaluating the 
response of structures with single-storey vertical irregularities. Using the well-known 9-storey 
LA9 steel frame, the objective is to study the effect of the irregular distribution of stiffness 
and strength along its height. This is achieved by means of IDA, i.e., by performing nonlinear 
time history analysis for a suite of twenty ground motion records scaled to several intensity 
levels. The reference and each modified structure are hence forced to show the complete 
spectrum of behavior from elasticity to final global instability, allowing the estimation of 
capacities for the full range of limit-states and enabling a straightforward comparison without 
needing to “tune” the structures to the same fundamental period and/or the yield base shear. 
Using the bootstrap method confidence intervals are calculated and hypothesis testing is 
performed for changes in the median and the dispersion of capacity for each limit-state. Thus, 
it becomes possible to isolate the effect of irregularities from any possible record-to-record 
variability. In conclusion, the proposed methodology enables a full-range performance 
evaluation using a highly accurate analysis method that pinpoints the effect of any source of 
irregularity for every limit-state. 
 
 
 
INTRODUCTION 
 
A large portion of building structures are in some sense vertically irregular. Some buildings 
have been initially designed so, e.g., in the case of a soft first-storey, or a large entrance 
lobby. Others have become so by accident, for example due to inconsistencies or even errors 
during the construction process, while the rest have been rendered irregular during their 
lifetime because of rehabilitation or change of use. Therefore, it is essential for structural 
engineers to obtain a better understanding of the seismic response of structures with vertical 
irregularities. This need has been recognized by current seismic guidelines (e.g. FEMA-356 
[1], Eurocode standards [2]). Such guidelines contain a number of criteria in order to identify 

 



vertically irregular buildings and determine whether their effect is “significant”. Naturally, the 
question that arises is when should this effect be considered “significant”? 
 
Several researchers have attempted to provide an answer, the most recent and comprehensive 
efforts including the work of Valmundsson and Nau [3], Al-Ali and Krawinkler [4] and 
Chintanpakdee and Chopra [5]. Valmundsson and Nau [3] evaluated the applicability of 
simplified elastic analysis methods suggested by seismic design code procedures on irregular 
structures. The definitions of seismic design codes for regular and irregular structures for 
mass, stiffness and strength were examined with respect to the response obtained from 
inelastic time-history analysis. Al-Ali and Krawinkler [4] followed by Chintanpakdee and 
Chopra [5] performed systematic investigations on the effect of vertical irregularities. Both 
studies were based on simple single-bay frames of 10 and 12 stories respectively. Al-Ali and 
Krawinkler [4] used a strong-beam-weak-column philosophy as opposed to Chintanpakdee 
and Chopra [5] who adopted a more realistic strong-column-weak-beam philosophy. In both 
studies time history analyses were performed with bins of 15 and 20 records, respectively. 
Despite the different approaches used, all efforts reached relatively compatible conclusions. 
However, several issues were left open.  
 
The above mentioned studies focused mostly on the influence of irregularities to the seismic 
demands rather than capacities. This in fact constitutes a broadband comparison that 
encompasses several limit-states of the structure, rather than considering each limit-state, or 
level of structural response separately. Furthermore, in order to enable the comparison of 
different buildings, both Al-Ali and Krawinkler [4] and Chintanpakdee and Chopra [5] 
proposed to modify, or to “tune” the alternative designs, when necessary, in order to match 
the fundamental period and/or the yield base shear of the reference regular frame. This 
approach is clearly limited to relatively simple structural systems and cannot be extended to 
the comparison of realistic design alternatives. Finally, the influence of the record-to-record 
variability was not taken into account. Thus we have no evidence to determine how much of 
the observed changes can be attributed to the irregularities or to the natural randomness in the 
seismic loading. 
 
To answer these questions we examine the LA9 9-storey steel frame (Figure 1) designed for a 
Los Angeles site (Foutch and Yun [6]) using Incremental Dynamic Analysis (IDA) 
(Vamvatsikos and Cornell [7]). The effects of single-storey stiffness and strength vertical 
irregularities are compared and quantified against the response of the reference regular 
structure by means of IDA using a suite of twenty ground motion records. This enables us to 
perform a comparison across the full spectrum of structural performance without needing to 
“tune” our structures. In order to isolate the effect of irregularities from any possible record-
to-record variability and to obtain evidence that show the influence of the modifications to the 
original structure the bootstrap method [8] is adopted. For each limit-state, confidence 
intervals are calculated and hypothesis testing is performed for the median and the dispersion 
of capacity, providing evidence of whether the differences in capacities are due to the vertical 
irregularities or the randomness in the seismic loading. 
 
 
STRUCTURAL MODELS 
 
The structure considered is a 9-storey steel moment resisting frame with a single-storey 
basement and a fundamental period of sec (Figure 1). It has been designed for a Los 25.2*
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Angeles site, following the 1997 NEHRP (National Earthquake Hazard Reduction Program) 
provisions (Foutch and Yun [6]). A centerline model with fracturing connections was formed 
using the OpenSEES [9] platform. It allows for plastic hinge formation at the beam ends 
while the columns are assumed to remain elastic. The fracturing connections are modelled as 
rotational springs with 1% strain hardening and a strength drop to 60% of the plastic moment 
capacity at ten times the yield rotation. Similar behaviour was assumed for both positive and 
negative moments. Geometric nonlinearities in the form of P-∆ effects were considered while 
the effect of internal gravity frames has also been incorporated (Figure 1). 
 
 

 

Figure 1: LA9 frame model. 
 
 
Theoretically, an infinite number of vertically irregular designs can be obtained by selecting 
different properties and varying their distribution along the height. The irregularities 
considered are limited to the stiffness and the strength of the 9-storey frame which are 
modified separately for single stories, along the height of the building. Typical stiffness 
irregularity cases are the cases of soft stories or when elements of the lateral-force-resisting 
system such as braces are present on one storey but they are not present on adjacent stories. In 
many practical cases, strength changes occur together with stiffness, e.g., when the cross- 
section of a member is changed where both the moment of inertia and the plastic moment 
capacity are modified, however there are cases where strength only modifications may be 
encountered for example when changing the steel yield strength without modifying the cross-
sections. 
 
The storey properties are modified by upgrading or degrading the properties of all of the 
storey’s members, i.e., the beams and the supporting columns, by a single modification factor. 
In our case one modification factor, equal to 2, was considered. Therefore, for the upgraded 
stiffness cases, the stiffness of all members of that storey is multiplied by 2, while for the 
degraded cases it is divided by 2. Stiffness irregularity cases are denoted as “KI”, while 
strength irregularity cases as “SI”. Each of the two types of irregularities was applied to each 
of the nine stories of the frame separately for a total of 18 cases: case “(n) KI” refers to the 
modification of the stiffness of the n-th storey and case “(n) SI” denotes a strength 
modification of the n-th storey. 
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Figure 2: (a) Twenty IDA curves and their median curve, (b) Profiles of median interstorey 

demands for different Sa(T1, 5%) levels. 
 
  

Table-1:  Twenty Ground Motion Records 
 
 
No Event Station φο 1 Soil 2 M 3 R 4 (km) PGA (g) 

1 Loma Prieta, 1989 Agnews State Hospital 090 C,D 6.9 28.2 0.159 
2 Northridge, 1994 LA, Baldwin Hills 090 B,B 6.7 31.3 0.239 
3 Imperial Valley, 1979 Compuertas 285 C,D 6.5 32.6 0.147 
4 Imperial Valley, 1979 Plaster City 135  C,D 6.5 31.7 0.057 
5 Loma Prieta, 1989 Hollister Diff. Array 255  –,D 6.9 25.8 0.279 
6 San Fernando, 1971 LA, Hollywood Stor. Lot 180 C,D 6.6 21.2 0.174 
7 Loma Prieta, 1989 Anderson Dam Downstrm 270  B,D 6.9 21.4 0.244 
8 Loma Prieta, 1989 Coyote Lake Dam Downstrm 285  B,D 6.9 22.3 0.179 
9 Imperial Valley, 1979 El Centro Array #12 140 C,D 6.5 18.2 0.143 

10 Imperial Valley, 1979 Cucapah 085  C,D 6.5 23.6 0.309 
11 Northridge, 1994 LA Hollywood Storage FF 360 C,D 6.7 25.5 0.358 
12 Loma Prieta, 1989 Sunnyvale Colton Ave 270  C,D 6.9 28.8 0.207 
13 Loma Prieta, 1989 Anderson Dam Downstrm 360 B,D 6.9 21.4 0.24 
14 Imperial Valley, 1979 Chihuahua 012 C,D 6.5 28.7 0.27 
15 Imperial Valley, 1979 El Centro Array #13 140  C,D 6.5 21.9 0.117 
16 Imperial Valley, 1979 Westmoreland Fire Station 090  C,D 6.5 15.1 0.074 
17 Loma Prieta, 1989 Hollister South & Pine 000  –,D 6.9 28.8 0.371 
18 Loma Prieta, 1989 Sunnyvale Colton Ave 360  C,D 6.9 28.8 0.209 
19 Superstition Hills, 1987 Wildlife Liquefaction Array 090  C,D 6.7 24.4 0.180 
20 Imperial Valley, 1979 Chihuahua 282  C,D 6.5 28.7 0.254 
1 Component   
2 USGS, Geomatrix soil class  
3 Moment magnitude  
4 Closest distance to fault rupture 

 



METHODOLOGY 
 
Incremental dynamic analysis (IDA) [7] is regarded as one of the most powerful analysis 
methods available, since it can provide accurate estimates of the complete range of the 
model’s response, from elastic to yielding, then to nonlinear inelastic and finally to global 
dynamic instability. IDA involves performing a series of nonlinear dynamic analyses for each 
record by scaling it to several levels of intensity. Each dynamic analysis is characterized by 
two scalars, an Intensity Measure, IM, which represents the scaling factor of the record and an 
Engineering Demand Parameter, EDP (according to current Pacific Earthquake Engineering 
Research Center terminology), which monitors the structural response of the model. An 
appropriate choice for the IM for moderate period structures with no near fault activity is the 
5%-damped first-mode spectral acceleration Sa(T1,5%) while a good candidate for the EDP is 
the maximum interstorey drift θmax of the structure. Limit-states (e.g., immediate occupancy 
or collapse prevention in FEMA-350 [10]) can be defined on each IDA curve and summarized 
to produce the probability of exceeding a specified limit-state given the IM level. 
 
To perform IDA we used a suite of twenty records (Table-1) representing a scenario 
earthquake. These records belong to a bin of relatively large magnitudes of 6.5–6.9 and 
moderate distances, all recorded on firm soil and bearing no marks of directivity. Each record 
was scaled to a number of intensity levels appropriately chosen in order to cover the entire 
range of structural response for each irregular case. Scaling was performed by means of the 
adopted IM, while at each scaling level a nonlinear dynamic analysis was performed and a 
single scalar, the EDP, was used to describe seismic demand. Using the hunt-and-fill 
algorithm [11] to select the scaling levels allows the use of only fourteen runs per record to 
capture each IDA curve with accuracy. Figure 2(a) shows the IDA curves obtained for the 
base case. Appropriate interpolation techniques [11] were applied in order to approximate 
each IDA curve from the discrete points obtained from scaling each record to the selected 
intensity levels. Finally, all 20 curves where summarized to produce the median IDA curve, 
shown in Figure 2(a), and the median storey drift demands along the height of the frame for a 
number of Sa(T1,5%) levels, shown in Figure 2(b). 
 
In order to compare the performance of the modified versus the reference frame, a continuum 
of limit-states was defined, each at a given value of θmax, spanning all the structural response 
range from elasticity to global dynamic instability. For each limit-state (i.e., each value of 
θmax) the corresponding Sa(T1,5%) values of capacity were obtained, one for each record [11] 
and they were appropriately summarized into their median value and dispersion. The standard 
deviation of the natural logarithms of the capacity values was used as the dispersion measure. 
By comparing the median and the dispersion of the capacities of the reference versus the 
modified frame for each limit-state (or value of θmax) we gain an accurate and closely focused 
image of the effect of the modification on the structure’s performance at each level of 
response. 
 
It should be noted that such comparisons are made possible by expressing all capacities in a 
common IM, in our case the 5%-damped spectral acceleration at the first mode of the 
reference structure . While this would pose no problem when dealing with strength 
modifications, it may not appear suitable for stiffness irregularities which result in modified 
building periods. Objections may be raised regarding the fact that using each structure’s 
S

*
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a(T1,5%) may seem a better choice. In reality, previous research has shown that the choice of 
the IM is only a matter of efficiency, i.e., how many records are needed to achieve a given 

 



confidence in the results (Luco [12]). Furthermore, Vamvatsikos and Cornell [13] have shown 
that in the inelastic range (which actually is the range of interest) and for a relatively wide 
range of periods around T1, similar values of efficiency are achieved. In earlier research (Al-
Ali and Krawinkler [4], Chintanpakdee and Chopra [5]) comparisons between different 
designs were made possible by “tuning” the irregular frames to have the same first mode 
period and/or yield base shear as the base case. While this practice enables the comparison of 
idealized structures using only a few timehistory analyses, it is not appropriate for the direct 
comparison of realistic design alternatives. Thus, the proposed IDA-based methodology 
allows performing comparisons in a much more realistic way that does not involve modifying 
the base or the alternate structure in any way since the selection of the IM is simply a post-
processing issue. As an example, Figure 3 shows how the median IDA curves and the 
corresponding -capacities for the upgraded and the degraded cases compare to the 
base case when using  as the common IM. 
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Figure 3: Using a common IM to compare the median IDA curve of the base case versus 
those produced when upgrading or degrading a structural property. 

 
 
RESPONSE STATISTICS 
 
Figures 4 up to 6 demonstrate the effect of vertical irregularities on the performance of the 
LA9 frame for single-storey stiffness and strength vertical irregularities. Figure 4 shows the 
median  capacities for all limit-states (i.e., values of θ*

1( ,5%)aS T max) considered, for both the 
upgraded and the degraded cases, normalized by the corresponding median capacities of the 
base case. For brevity results are shown only for the odd-numbered stories, i.e., stories 1, 3, 5, 
7 and 9. 
 

 



The first column of Figure 4 refers to stiffness irregularities and the second to strength 
irregularities, while each of the five rows refers to a single storey whose properties where 
modified. Therefore, Figure 4 shows the values of the ratio of  capacities of the 
irregular case over the capacities of the base case for each single-storey modification as they 
appear when we scan an IDA plot, such as that of Figure 3, along the horizontal axis. Figures 
5 and 6 show the normalized median interstorey drift demands over the height of the frame 
for four intensity levels, namely = 0.25g, 0.5g, 0.75g and 1.0g. The drift values of 
the irregular case are again normalized by the corresponding drift values of the base case. 
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Figure 4: The median -θ*

1( ,5%)aS T max capacities for the upgraded and the degraded cases, 
normalized by the corresponding base case values. 
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Figure 5:  Normalized median interstorey drift demands for single-storey stiffness irregular 
(KI) cases for four -levels. *
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Effects of Stiffness Irregularities 
The effects of single-storey stiffness irregularities on the median -capacities are 
shown in the first column of Figure 4. When the irregularity is at the lower stories a variation 
up to 10% is observed at the limit-states near collapse, while for stiffness irregularities on 
higher stories mostly the lower limit-states are affected where capacity variations up to 30% 
are observed. A modified first storey inversely influences some early inelastic limit-states, but 
for higher θ

*
1( ,5%)aS T

max values the picture is changed and a stiffer first storey increases the capacity, 
while a softer storey reduces it. On the other hand when the irregularity appears at top stories, 
significant changes are seen at the early limit-states. For θmax up to 4%, stiffer stories offer up 
to a 30% increase in capacity, while softer stories offer a similar decrease up to θmax = 10%. 
For mid-height stories the influence seems to be negligible (less than 5%) regardless of the 
limit-state. 
 

 



In Figure 5 we can see the distribution of median interstorey drift demands over the height of 
the building for given levels of . It becomes apparent that single-storey 
modifications cause wide-spread changes all over the building. This is a direct consequence of 
the redistribution of the seismic actions due to the beam-hinge model adopted. At the lower 
intensity levels these effects are concentrated close to the modified storey (0.25-0.5g), while 
at higher intensity levels they seem to have a more uniform distribution where the maximum 
values of the ratio of demands often migrates to stories other than the modified. It should be 
noted that the large variations in demand that may be observed at the lower stories usually are 
variations of rather small quantities that do not influence θ

*
1( ,5%)aS T

max since the maximum drift 
demands occur at the top stories (Figure 2(b)). Interestingly enough, when close to collapse 
the storey demand profile becomes practically the same in all cases leading to 50% reduced 
demands regardless of the position of the modification or whether it is upgrading or degrading 
(4th column, Figure 5). This is indicative of a robust collapse mechanism that is not affected 
by the initial differences in stiffness, while for almost all irregular cases collapse takes place 
at the same intensity level. 
 
 
Effects of single-storey Strength Irregularities 
Strength irregularities (SI) are shown in the second column of Figure 4. It is clear that 
strength irregularities have a more pronounced effect compared to stiffness irregularities. For 
early limit states (θmax less than 2%), the response is not affected since little or no yielding has 
occurred yet. Other than that, the position of the modified storey plays a dominant role on the 
structure’s capacity for each limit-state. When the modified storey is located close to the base 
(stories 1 and 3), the irregularity in strength seems to have an inverse effect on the capacities 
for all limit-states apart from those close to collapse. A weak first storey seems to isolate the 
stories above, thus reducing the drift demand and protecting the building, while a strong first 
storey appears to have the opposite effect. However, this effect gradually decays as we move 
towards higher limit-states. Modifications on mid-height stories have a milder effect, where 
stronger stories provide a 15% bonus in capacity. When one of the top stories is made 
stronger the ratio of capacities is increased for limit-states beyond 2% and remains constant 
until near collapse. Weaker top stories decrease the ratio for θmax values between 2% and 7%, 
while approaching collapse this effect disappears. 
 
The median interstorey drift demand profiles of Figure 5, show that similarly to the stiffness 
irregularities, strength modifications have a widespread effect all over the structure that 
depends highly on the intensity level. For = 0.25g, introducing a weaker/stronger 
storey at any level of the structure will correspondingly increase/decrease the drift demands in 
the neighbourhood of the modification but when this happens at a lower storey it seems to 
affect inversely the above stories. Regardless of the storey that is modified though, the most 
significant changes always appear at the top three stories and often are of the order of 50%. 
As  increases these effects become less pronounced, especially for the lower and 
higher stories. On the other hand, for middle stories (5-7) the influence of the modifications 
changes character becoming more uniformly distributed along the height of the building as the 
level of intensity increases. At 1.0g though the picture changes again. No matter if it is 
weakened or strengthened, the structure gains a rather uniform 50% reduction in demands for 
all stories. The single exception, in agreement with the findings of the previous paragraph, is 
the softening of the upper stories which leads to demands that are equal to or higher than 
those of the reference structure. Again, for this building, we have a rather consistent collapse 
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mechanism since almost all single-storey strength modification cases do not affect the way 
that the building fails, only the -level that this happens. *
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Figure 6: Normalized median interstorey drift demands for single-storey strength irregular 
(SI) cases for four -levels. *
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BOOTSTRAP AND HYPOTHESIS TESTING 
 
The IDA curves display significant record-to-record variability, as becomes obvious in Figure 
2(a). It is thus necessary to investigate the accuracy of the results given the limited sample 
size of 20 records. Looking just at the median differences in Figure 4 can often be misleading: 
small differences in the elastic range, where the record-to-record variability is generally low, 
may be statistically more significant than larger differences in the highly variable near-
collapse range. Thus, we need to calculate confidence intervals and perform some hypothesis 
testing on whether the results that we see are indeed an effect of the irregularities or simply an 
artefact of the record-to-record variability. 
 

 



Analytical formulas are usually not available when percentile values are involved; hence we 
turn to the bootstrap method (Efron and Tibshirani [8]) to fill this gap. It offers a reliable way 
to compare the median capacities between the reference frame and any modified structure for 
each limit-state. In essence it allows a direct comparison of two fractile IDA curves on the 
basis of capacity, in our case the curve of the irregular case against the curve of the base case. 
Since in both cases the randomness is induced by the record suite, which for the sake of a fair 
comparison should be kept common, we have a classic case of paired samples (Rice [14]). By 
sampling with replacement from the original 20 accelerograms to generate alternate 20-record 
suites we can calculate the ratio of the median -capacities of the modified over the 
base case for every record suite and for every limit-state. Thus, if we repeat this process for 
numerous random samples (say 1000), confidence intervals can be generated for the ratio of 
the median capacities for each θ

*
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max value. If we use the superscript “(x)” to denote the 
sample’s x% fractile, then the (1-x)·100% confidence interval on the ratio of the capacities for 
a given limit-state can be formally calculated as: 
 

 
(x/2) (1-x/2)

irreg irreg

base base

ˆ ˆ
,ˆ ˆ

S S
S S

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎥  (1) 

 

Where  and irregŜ baseŜ  represent the sample of median  capacities for a given θ*
1( ,5%)aS T max. 

If for a given θmax the interval contains the unity-axis, then we do not have significant 
evidence at the (1-x)·100% level to accept that the change in the median capacities, for the 
specific limit-state, is caused by the irregularity. There are two more features worth our 
attention in these plots, namely the width of the confidence intervals and the symmetry of the 
curves with respect to the unity-axis. The first provides a measure of the sensitivity of the 
results to the record selection and the second measures how many of the random record-suites 
cause increase or decrease of the median capacity. Obviously, if the unity-axis is outside the 
confidence interval we cannot reject the hypothesis at the (1-x)·100% level that the 
irregularity has caused the observed variation. Still, if the confidence interval contains the 
unity-axis we have relatively strong evidence if the axis is close to the bounds, but clearly 
little or no evidence if it passes through the middle of the interval. 
 
Figure 7(a) shows how the bootstrap method can be applied to identify the cases where the 
ratio of the median capacities, observed in Figure 4, is strongly influenced by the randomness 
in the seismic loading, given the record variability and the limited sample size. In order to 
draw objective conclusions one must treat Figure 7(a) as complement to Figure 4. Most of our 
conclusions are verified, however there are cases where the confidence interval is equally 
divided above and below the unity-axis, such as case (3) SI- for drift values beyond 10%. 
Figure 4 led us conclude that the ratio of capacities for that case was close to one and thus the 
influence of irregularity was insignificant. Figure 7(a) implies that in that case it is equally 
likely the ratio to be greater or smaller than one depending on the choice of records made. 
Furthermore, it is shown that the width of the intervals tends to become larger at higher limit-
states. A partial explanation may be the fact that the IDA curves show larger dispersion for 
higher limit-states. A more efficient IM that is better related to the high inelastic deformations 
developed at those limit-states would reduce this dispersion (e.g. Vamvatsikos and Cornell 
[13]). 
 

 



In order to have the complete picture an estimate of the ratios of the achieved dispersions of 
the modified over the reference frame is also necessary. For this purpose bootstrap percentile 
confidence intervals are also calculated for the ratios of the standard deviation of the natural 
logarithm of the capacities. This is a natural dispersion measure for data that are 
approximately lognormally distributed (e.g. Benjamin and Cornell [15]). In Figure 7(b) the 
confidence intervals on the dispersion around the median are shown. For many cases the 
width of the intervals is small and contains the unity-axis. However, there are cases (e.g., (1) 
KI and (9) KI) where large intervals that do not contain the unity-axis are observed, especially 
at the limit-states near collapse. In general, larger sensitivity in the dispersions is observed for 
the stiffness irregularity cases where the irregular frame undergoes a period change that can 
probably account for most of these effects. For these cases, even for mild changes in the 
median capacities, we may have to be alert for large variations in the dispersion. 
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Figure 7: (a) Bootstrap 90% confidence intervals on the ratio of the median - 

capacities given θ

*
1( ,5%)aS T

max of the modified over the base frame, (b) Bootstrap 90% 
confidence intervals on the ratio of the dispersion of -capacities given 
θ

*
1( ,5%)aS T

max of the modified over the base frame. Light-coloured lines are used for the 
lower bound and darker ones for the upper bound. 

 

 



CONCLUSIONS 
 
A methodology based on Incremental Dynamic Analysis (IDA) for comparing the capacities 
of different structural designs has been proposed and applied in order to study the effect of 
vertical irregularities on a multi-storey building. The proposed methodology achieves a more 
focused view by examining the effects on each limit-state separately and can be used for 
realistic problems since it does not require “tuning” the structures to the same fundamental 
period and/or yield base shear in order to compare them. The effects of single-storey stiffness 
and strength modifications along the height of the building have been examined. The 
bootstrap method was shown to provide an efficient and reliable sanity check for our results. 
This was necessary because of the large variation which is often introduced by the choice of 
ground motion records made. In conclusion, vertical irregularities have been shown to 
produce different effects that depend on the type of irregularity, the storey where it happens 
and most importantly, the intensity of the earthquake, or equivalently the response level or 
damaged state of the structure. While some consistent trends have been identified these only 
hold for the summarized values of many records. Individual records will often go against the 
“median” behaviour, something that designers should keep in mind. 
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