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Abstract. The bilinear approximation of force-deformation capacity curves is investigated for 

structural systems with non-negative-stiffness. This piecewise linear approximation process 

factually links capacity and demand; it lies at the core of the nonlinear static assessment pro-

cedures, and it has become part of seismic guidelines and codes, such as ASCE-41 and Euro-

code 8. Despite codification, the various fitting rules, used to derive the bilinear 

representation, can produce highly heterogeneous results for the same capacity curve. This is 

especially valid for highly-curved backbones resulting from structural models with accurate 

representation of the initial, uncracked, stiffness or buildings characterized by a global col-

lapse mechanism that leads to a gradual plasticization of the elements. 

The error introduced by the bilinearization of the force-deformation relationship is quan-

tified by studying it at the single-degree-of-freedom (SDOF) level, away from any interference 

from multi-degree-of-freedom (MDOF) effects, thus avoiding the issue related to MDOF - 

SDOF approximation. Incremental Dynamic Analysis (IDA) is employed to enable a direct 

comparison of the actual backbones versus their bilinear approximations in terms of the spec-

tral acceleration capacity for a continuum of limit-states, allowing a direct comparison of the 

results in terms of seismic performance. 

Code-based procedures are found to be less than ideal wherever there are significant 

stiffness changes, while in general remaining relatively conservative. The practical fitting 

rules determined allow, instead, a near-optimal fit regardless of the details of the capacity 

curve shape. 
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1 INTRODUCTION 

In the last decades, improvements in the computational capabilities of personal computers 

have allowed the employment of nonlinear analysis methods in many earthquake engineering 

problems. In this framework, nonlinear static analysis is becoming the routine approach for 

the assessment of the seismic capacity of existing buildings. Consequently, nonlinear static 

procedures (NSPs) for the evaluation of seismic performance, based on static pushover analy-

sis (SPO), have been codified for use in practice. All such approaches consist of the same five 

basic steps: (a) perform static pushover analysis of the multi-degree-of-freedom (MDOF) sys-

tem to determine the base shear versus (e.g., roof) displacement response curve; (b) fit a 

piecewise linear function (typically bilinear) to define the period and backbone of an equiva-

lent single degree of freedom system (SDOF); (c) use a pre-calibrated R--T (reduction factor 

– ductility – period) relationship for the extracted piecewise linear backbone to obtain SDOF 

seismic demand for a given spectrum; (d) use the static pushover curve to extract MDOF re-

sponse demands; (e) compare demands to capacities; see [1] for example. 

In fact, NSP is a conventional method without a rigorous theoretical foundation for appli-

cation on MDOF structures [2], as several approximations are involved in each of the above 

steps. On the other hand, its main strength is to provide nonlinear structural capacity in a sim-

ple and straightforward way. Although several improvements and enhancements have been 

proposed since its introduction, any increase in the accuracy of the method is worth only if the 

corresponding computational effort does not increase disproportionately. Extensively investi-

gated issues are the choice of the pattern considered to progressively load the structure and the 

implication of switching from the nonlinear dynamic analysis of a multiple degree of freedom 

(MDOF) system to the analysis of the equivalent SDOF sharing the same (or similar) capacity 

curve. Regarding the shape of the force distributions, it was observed that an adaptive load 

pattern could account for the differences between the initial elastic modal shape and the shape 

at the collapse mechanism [3, 4, 5]. Contemporarily, other enhanced analysis methodologies 

were proposed to account for higher mode effects and to improve the original MDOF-to-

SDOF approximation [e.g., 6]. Regarding the demand side, efforts have been put to provide 

improved relationships between strength reduction factor, ductility, and period (R--T rela-

tionships), to better evaluate the inelastic seismic performance at the SDOF level [7, 8]. 

One of the issues that have not yet been systemically investigated is the approximation in-

troduced by the imperfect piecewise linear fit of the capacity curve for the equivalent SDOF. 

The necessity to employ a multilinear fit (an inexact, yet common, expression to describe a 

piecewise linear function) arises due to the use of pre-determined R--T relationships that 

have been obtained for idealized systems with piecewise linear backbones. This has become 

even more important recently since nonlinear modeling practice has progressed towards real-

istic multi-member models, which often accurately capture the initial stiffness using 

uncracked section properties. The gradual plasticization of such realistic elements and models 

introduces a high curvature into the SPO curve that cannot be easily represented by one or 

two linear segments. It is an important issue whose true effect is often blurred, being lumped 

within the wider implications of using an equivalent SDOF approximation. 

The investigation presented deals only with the bilinear approximation of the capacity 

curves and it is limited to non-softening force-deformation relationships. Although R--T re-

lationships that can capture far more complex backbones have recently appeared [9], the bi-

linear approach is by far the most widely employed in guidelines and literature [10 – 15]. The 

approach presented herein will be based on the accurate assessment of the effect of the equiv-

alent SDOF fit on the nonlinear static procedure results. The latter can be achieved by proper 
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quantification of the bias introduced into the estimate of the seismic response at the level of 

the SDOF itself.  

Incremental dynamic analysis (IDA) [16] will be used as benchmark method to quantify 

the error introduced by a bilinear fit with respect to the exact capacity curve of the SDOF. 

Figure 1a shows a typical example, where an elastoplastic backbone fit is used according to 

FEMA-440 [13]. While this fit approach is meant to result to an unbiased approximation in 

terms of seismic performance, the median IDA results of Figure 1b show the actual error that 

is introduced by such code-mandated fitting rules. In most cases, they lead to an unintended 

and hidden bias that is generally conservative. On the other hand, this bias can become unrea-

sonably high in many situations.  

Therefore three issues come out: First, develop a methodology aimed at quantifying the bi-

as introduced by the fitting of a capacity curve; second, assess the the error introduced by the 

fitting rules already employed in codes and literature; third, perform a systematical investiga-

tion aimed at providing alternative fits that can reduce this discrepancy to almost a minimum. 

The comparison with existing approaches will function as the benchmark to evaluate the im-

provement introduced by the alternative fitting rules proposed. 

 

Figure 1. (a) Example of exact capacity curve versus its elastoplastic bilinear fit according to FEMA-440 and (b) 

the corresponding median IDA curves showing the negative (conservative) bias due to fitting for T=0.5 sec. 

2 METHODOLOGY 

The first main target is the quantification of the error introduced in the NSP-based seismic 

performance assessment by the replacement of the original capacity curve of the system, 

termed the “exact” or “curved” backbone, with a piecewise linear approximation, i.e., the “fit-

ted” or “approximate” curve (e.g., Figure 1a). This will enable a reliable comparison between 

different fitting schemes in an attempt to minimize the observed discrepancy between actual 

and estimated performance. In all cases, to achieve an accurate and focused comparison of the 

effect of fitting only, it is necessary to disaggregate the error generated by the fit from the ef-

fect of approximating an MDOF structure via an SDOF system. Thus, all the investigations 

are carried out entirely at the SDOF level, using a variety of capacity curve shapes, different 

periods and hysteresis rules and using IDA as the method of choice for assessing the actual 

performance of the different alternatives. 
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2.1 Exact versus approximate SDOF systems  

An ensemble of SDOF oscillators is considered with varying curved shapes of force-

deformation backbones. They all display a monotonically decreasing stiffness that starts from 

elasticity and ends at a final zero or positive stiffness that remains constant for all higher de-

formations (e.g., Figure 1a). According to their final stiffness, these will be termed “general-

ized elastoplastic” and “generalized elastic-hardening” systems, respectively. They are all 

fitted accordingly with bilinear elastoplastic or elastic-hardening shapes.  

For each considered curved backbone shape, 5% viscous damping was used and appropri-

ate masses were employed to obtain a range of matching “reference” periods of 0.2, 0.5, 1 and 

2 sec. The concept of the “reference” period, instead of the actual initial (tangent at zero dis-

placement) period, is introduced because of the highly curved shape of some backbones. In 

some cases they show a strictly localized significant change in the initial stiffness, resulting in 

periods lower than 0.01 sec. Since this initial stiffness disappears almost immediately for any 

kind of loading history, a more representative reference period is required for each exact ca-

pacity curve. The reference period (T herein) was defined as the secant period at 2% of the 

displacement corresponding to the peak force capacity. Actually, in the vast majority of the 

cases there was insignificant difference between the initial tangent period and the reference 

secant period. In all cases, both the exact and the approximate system share the same mass, 

but, due to the lower initial stiffness of the latter, the “equivalent” period is equal to, or higher 

than, the “reference” one, thus replicating the approach followed in the conventional NSP 

methodology [2]. 

In order to draw general conclusions, independent of the hysteretic behavior assumed, two 

distinct hysteretic rules were considered for the each curved backbone and its bilinear fits. 

The first is a standard kinematic strain hardening model without any cyclic degradation char-

acteristics. The second is a pinching hysteresis featuring cyclic stiffness degradation (see Ibar-

ra et al [17]). When comparing an original system with its approximate having a piecewise 

linear backbone, the same hysteretic rules are always employed, so that both systems display 

the same characteristics when unloading and reloading in time-history analyses. In other 

words, all differences observed in the comparison can be attributed to the fitted shape of the 

approximate backbone; obviously also capturing any differences in the oscillator period. 

For each exact shape of the SDOF’s capacity curve and for each period value, several 

piecewise linear fit approximations have been considered according to different fitting rules. 

These include typical code-suggested fits, e.g., as laid out in FEMA-440 [13], ASCE/SEI 41-

06 [14] and Eurocode 8 (EC8, [10]). In addition a multitude of different bilinear fits, with 

varying initial stiffness and yield point definition, have been employed in an attempt to pin-

point the consistent characteristics that can define an optimal or near-optimal fit. To enable a 

precise comparison that will allow distinguishing among relatively similar backbones in con-

sistent performance terms, as it was previously stated, incremental dynamic analysis (IDA, 

[16]) will be employed. 

2.2 Performance-based comparison via IDA 

IDA is arguably the most comprehensive analysis method available for determining the 

seismic performance of structures. It involves performing a series of nonlinear dynamic anal-

yses by scaling a suite of ground motion records to several levels of intensity, characterized 

by a scalar Intensity Measure (IM), and recording the structural response via one or more En-

gineering Demand Parameters (EDPs). The results typically appear in terms of multiple IDA 

curves, one for each record, plotted in the IM – EDP plane. These can be in turn summarized 

into the 16, 50, 84% fractile curves of EDP given IM (EDP|IM) or, equivalently (Vamvatsikos 
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and Cornell [18]), as the practically identical 84, 50, 16% fractile curves of IM given EDP 

(IM|EDP). The summarized curves thus provide the (central value and the dispersion of the) 

distribution of EDP seismic demand given the IM intensity of the earthquake or, vice-versa, 

the distribution of a structure’s IM-capacity that a ground motion should exceed to achieve 

the given value of EDP response. 

To perform IDA for each exact and approximate oscillator considered, a suite of sixty 

ground motion records was used, comprised of both horizontal components from thirty re-

cordings [19] from the PEER NGA database. They are all characterized by relatively large 

magnitudes of 6.5 – 6.9 and moderate distances of 15 – 35km, all recorded on firm soil and 

bearing no marks of directivity. Using the hunt & fill algorithm [18], 34 runs were performed 

per record to capture each IDA curve with excellent accuracy. The IM of choice was the 5%-

damped spectral acceleration at the period T of the oscillator, Sa(T), while the oscillator dis-

placement δ was used as the corresponding EDP, being the only SDOF response of interest 

when applying the NSP method. To avoid the appearance of arbitrary displacement scales and 

units, using a normalized displacement δn is also attractive. Unfortunately, the concise defini-

tion of a single yield point on a curved backbone is impractical, unless tied to some preselect-

ed bilinear fitting rule; therefore using some yield displacement to normalize δ to a ductility 

equivalent is not possible without bias. It was chosen, instead, to normalize by the value of 

0.1m that signals the onset of constant stiffness in the oscillator backbone (Figure 1a). 

Once the IM and EDP are decided, interpolation techniques allow the generation of a con-

tinuous IDA curve from the discrete points obtained by the 34 dynamic analyses for each 

ground motion record. The resulting sixty IDA curves can then be employed to estimate the 

summarized IDA curves for each exact and approximate pair of systems considered. Still, in 

order to be able to compare an exact system with reference period T with its approximation 

having an equivalent period Teq it was necessary to have their summarized IDA curves ex-

pressed in the same IM. In this case it is chosen to be Sa(T), i.e. the spectral ordinate at the 

period of the curved backbone oscillator. Thus, while the approximate system IDA curves are 

first estimated as curves in the Sa(Teq) – δ (or δn) plane, they are now transformed to appear on 

Sa(T) – δ axes. This is achieved on a record-by-record basis by multiplying all 34 Sa(Teq) val-

ues comprising the i-th IDA curve by the constant spectral ratio [Sa(T) / Sa(Teq)]i that charac-

terizes the i-th record [20].  

The error is evaluated for every value of displacement in terms of the relative difference 

between the two system median Sa-capacities, both evaluated at the reference period T of the 

exact system: 
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Alternatively, one could use the relative error in the median displacement response given the 

level of spectral acceleration: 
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Similarly, the same definitions can be used to estimate the errors for different response or ca-

pacity fractile values, e.g., 16% or 84%, or even for the dispersion in response or capacity, 

which, assuming lognormality, can be defined as one half the difference between the corre-

sponding 84% and 16% values. Thus, two different ways of measuring the discrepancy be-

tween IDA curves are available, e.g., the two median IDA curves shown in Figure 1b. In one 

case “horizontal statistics” are employed, working with the median EDP given IM, and in the 
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other case “vertical statistics” of IM given EDP. As Vamvatsikos and Cornell [18] have 

shown, the median IDA curve is the same, regardless of how it is calculated, while, as dis-

cussed earlier, the 16, 84% fractiles are simply flipped. In addition, while there might be dif-

ferences in the error estimates using these two different methods, these are only an issue of 

scale. Figures 2a, 2b compare the two error quantification methods for the median IDAs 

shown in Figure 1b. The observed trends are actually the same, but simply inverted: obviously, 

an overestimation in response becomes an underestimation in capacity and vice-versa. 

Why then should one method be preferred over the other? There are three important rea-

sons that make the IM-based method (IM|EDP) a more attractive solution. First, parameteriz-

ing the error in terms of the displacement response simplifies its visualization as displacement 

is directly mapped to specific regions of the oscillator force-deformation backbone. Thus, it is 

possible to see directly in Figure 2b whether the elastic or the post-elastic part is causing the 

accumulation of error, when it is compared vis-à-vis Figure 1a. Figure 2a is much more diffi-

cult to understand, especially if more complex backbones, than the ones used here, are con-

sidered. Second, comparing on the basis of Sa-capacity is actually directly linked to 

comparing in terms of the seismic performance, as expressed by the mean annual frequency 

(MAF) of violating limit-states defined by the oscillator displacement (Vamvatsikos [21]). An 

over/under-estimation of Sa-capacity maps to a consistent (although not commensurable) un-

der/over-estimation of the MAF of limit-state exceedance. Finally, when collapse enters the 

problem it is obvious that the error in displacement may easily become infinite when at a giv-

en intensity level one system has collapsed, showing infinite response, while the other has not. 

In fact, on the contrary, this is never a problem for the Sa-based error. Although only non-

collapsing systems, whose backbones never drop to zero strength, are used herein, this is an-

other compelling reason to recommend the Sa-based comparison for general use. 

 

Figure 2. The relative error in the median (black line) shown versus the overall average (grey line) as introduced 

by the bilinear fit in Figure 1. It is expressed on the basis of (a) response given intensity (EDP|IM) and (b) inten-

sity given response (IM|EDP). 

3 INVESTIGATION OF BILINEAR FITS 

Bilinear elastic-plastic or elastic-hardening fits are the fundamental force-deformation ap-

proximations employed in all NSP guidelines. The simplicity of the bilinear shape means that 

the only need is to estimate the position of the nominal “yield point” and select a value for the 

constant post-elastic stiffness. Eurocode 8 [10] suggests a piecewise bilinear fit based on the 

equivalence of the area discrepancy above and below the fit, assuming an elastic-plastic ideal-

ized backbone for the equivalent SDOF. This approach is similar to the original N2 method 
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[2]. As a consequence, EC8 prescribes an R--T relationship [7] based on the elastic-

perfectly-plastic fit. FEMA documents [11, 12, 13] gradually upgraded the proposed piece-

wise linear fit by integrating rules to account for softening behavior. According to FEMA 356 

[12], the idealized relationship is bilinear with an initial slope and a post yield slope evaluated 

by balancing the area above and below the capacity curve up to the target displacement and 

calculating the initial effective slope at a base shear force equal to 60% of the nominal yield 

strength. The proposed graphical procedure is iterative. FEMA 440 [13] and ASCE/SEI 41-06 

[14] assume the basic approach of FEMA 356 with additional rules regarding the softening 

behavior. In the following pages only non-softening capacity curves (generalized elastic-

plastic or elastic-hardening) are investigated, thus in essence it is the original FEMA 356 and 

the EC8 fit rules that are tested. 

In order to develop an improved bilinear fit, we choose to investigate separately the fitting 

of the initial “elastic” segment and then focus on the post-elastic non-negative stiffness part. 

Thus, we will first study generalized elastic-plastic systems, where the stiffness becomes zero 

beyond a displacement of 0.10 m and the target displacement is assumed to be well into the 

fully plastic region. Thus the post-elastic segment is fixed to have zero stiffness while the ini-

tial “elastic” part can be fitted at will. In both the FEMA and EC8 fitting rules, the fitted 

“elastic” stiffness can be a function of the target displacement due to the area balancing used. 

This can make the bilinear fitting yield different results depending on the limit-state of inter-

est and may initially put the code-mandated fits (as implemented herein) at a slight disad-

vantage. It will be remedied in the second part of the study where generalized elastic-

hardening systems will be tackled. They have varying post-yield stiffness and lower target 

displacements, allowing more fitting flexibility and providing a more rigorous comparison of 

code fits against any proposal for a near-optimal fit. Generally, the target, herein, is the devel-

opment of a simple fitting rule that performs well for a continuum of limit states. Therefore, 

the performance of all rules will be carefully examined even outside the immediate region of 

interest defined by a target displacement. 

3.1 Bilinear fits of generalized elastic-plastic systems 

First a family of generalized elastic-plastic capacity curves is considered that exhibit a 

stiffness gradually decreasing with deformation, starting from the initial elastic and reaching 

zero slope. The shapes are characterized by the magnitude of the changes in stiffness. Figure 

3a and 3b give an example of the shapes employed in the investigation of this family of back-

bones and emphasize two opposing cases. The first (Figure 3a) is not characterized by signifi-

cant curvature, while the second (Figure 3b) shows a significant change in slope that can be 

representative of the behavior of a model that accounts for uncracked stiffness. Both the kin-

ematic strain hardening and the pinching hysteresis are considered. 

Three basic fitting rules are compared: (a) the FEMA fit (60% rule) assuming a target dis-

placement high enough so that the slope of the second branch of the bilinear can be assumed 

to be zero; (b) the EC8 fit using a simple equal area criterion; (c) the “10% fit”, defined so 

that the intersection between the capacity curve and the fitted elastic segment is at 10% of the 

maximum base shear. The latter is the proposal for a simple rule that can better capture the 

initial stiffness. Figure 3a shows that in the case in which the capacity curves are not charac-

terized by significant stiffness changes at the beginning of the backbone, the three fits are 

very similar to each other. They differ significantly though when the initial backbone stiffness 

diminishes rapidly, as in Figure 3b. In all cases the fitted post-elastic stiffness is set to zero. 

As described in the previous section, IDA is performed for each of the SDOF systems pre-

sented in Figure 3 and their fitted approximations for a range of periods. Figures 4 and 5 show 
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the comparison in the median Sa-capacity for T equal to 0.2 and 0.5 sec, respectively. Obvi-

ously, the shapes of the backbones have a significant impact. In all cases, the error becomes 

significant for the shape with non-trivial curved segments. In both cases though, the maxi-

mum error appears at the earlier backbone segments. Curiously, the 10% fit leads to a remark-

able decrease in the error for any deformation level, even for the highly curved shape of 

Figure 3b where it clearly violates any notion of equal area (or equal energy) that seems to be 

prevalent in current guidelines. The new fit introduced leads to a slightly non-conservative 

estimation of the capacity for displacements before the full plasticization (for δn up to 1) and 

only for short-period systems, T = 0.2 sec (Figure 4). On the other hand, even in case of high-

ly-curved backbones (Figure 4b) only a 10% underestimation appears at most. On the contra-

ry, it has to be noted that code approaches are always conservative for all the displacement 

levels and all the shapes considered, but at a cost of almost 20 – 40% underestimation of ca-

pacity. The trends identified are generally confirmed for all other periods considered (T equal 

to 1.0 and 2.0 seconds). 

 

Figure 3. Comparison of generalized elastic-plastic capacity curves and their corresponding fits having (a) insig-

nificant versus (b) significant changes in initial stiffness. 

 

Figure 4. Median relative error comparison between the 10%, FEMA and equal area fits for T = 0.2 sec, when 

applied to the capacity curves of Figure 3: (a) insignificant versus (b) significant changes in initial stiffness. 
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Figure 5. Median relative error comparison between the 10%, FEMA and equal area fits for T = 0.5 sec, when 

applied to the capacity curves of Figure 3: (a) insignificant versus (b) significant changes in initial stiffness. 

 

Figure 6. (a) Backbones and (b) hysteretic behavior according to standard kinematic strain hardening rule of the 

generalized elastic-plastic systems considered. 

 

Figure 7. The median relative error for (a) the 10% fit and (b) the 60% FEMA fit, T = 0.2 sec, in case of elastic-

plastic SDOF system family (grey dotted lines). 
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Figure 8. The median relative error for (a) the 10% fit and (b) the 60% FEMA fit, T = 0.5 sec, in case of elastic-

plastic SDOF systems family (grey dotted lines). 

 

Figure 9. The median relative error for (a) the 10% fit and (b) the 60% FEMA fit, T = 1.0 sec, in case of elastic-

plastic SDOF systems family (grey dotted lines). 

 

Figure 10. The median relative error for (a) the 10% fit and (b) the 60% FEMA fit, T = 2.0 sec, in case of elastic-

plastic SDOF systems family (grey dotted lines). 
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Beyond the two curved shapes shown in Figures 3a, b, a number of different generalized 

elastic-plastic shapes were also investigated A sample of ten backbones is considered aimed at 

drawing out general conclusions regarding the proposal fit investigated. The sample is con-

sists of five different shapes (see Figure 6a) times the two hysteretic rules described in section 

2. In Figure 6b the standard kinematic strain hardening rule is shown for the five shapes con-

sidered. 

 Figure 7 to Figure 10 show the relative error on the median Sa-capacity evaluated at each 

period for the 10% fit proposed and the conventional FEMA fit. The bias is evaluated up to n 

equal to 2, where most of the significant differences appear. This is evident for the two shapes 

in Figure 3a and 3b where it was evaluated up to δn equal to 10. Figure 7 to Figure 10 show 

grey dotted lines representing the error related to a specific shape of the backbone and to a 

specific hysteretic rule. The hysteretic rule chosen was found to be insignificant, as the error 

depends primarily on the shape of the fit; thus the two different hysteretic behaviors have 

been considered together to build up a heterogeneous family of generalized elastic-plastic be-

havior. 

The 10% fit enjoys an insignificant bias on average for all the periods considered and the 

error introduced by the fit never exceeds 20%. FEMA fits shows a strictly negative, i.e., con-

servative, bias of 20% or even 60%, depending on the shape of the original backbone. Most of 

the bias is concentrated at the beginning of the backbone as it was already emphasized by the 

examples in Figure 3. Error comparisons for the Sa-capacity dispersion (record to record) are 

not shown as all fits roughly achieve similar performance. Some differences may appear in 

the region preceding the nominal yield point of the approximation. Therein the fitted system 

will predict no dispersion whereas the actual one shows some small variability. Still, this is to 

be expected and it is not important enough to make us favor one fit over another. 

Summing up, it can be stated that the fit should capture as close as possible the initial stiff-

ness of the backbone while the generally low secant stiffness assumed in most of the guide-

lines and codes tends to be overly-conservative. The only possible exception to this rule 

appears only for initially ultra-stiff systems that very quickly lose their initial properties. This 

is the reason why fitting the “elastic” secant at 5% or 10% of the maximum base shear, as op-

posed to 0.5% or 1% is considered a more robust strategy. 

3.2 Bilinear fits of generalized elastic-hardening systems 

The second family of shapes investigated is characterized by a generalized elastic-

hardening behavior. Only the pinching hysteretic rule was considered for this family of back-

bones, given the insignificant differences observed earlier when compared to the kinematic 

hardening. Each backbone considered was characterized by different curvatures and final 

hardening stiffness, allowing a wide coverage of the typical shapes that can be obtained con-

sidering different structural behaviors and modeling options. 

In analogy with the two examples showed in the previous subsection, two different back-

bones will be presented in detail from the family considered. The first (Figure 11a) is not 

characterized by significant changes in the stiffness, in contrast to the second (Figure 11b). 

The target displacement is assumed to be equal to 0.2 m. The EC8 fit is not applied as it is 

restricted to elastic-plastic approximations which are clearly inferior for the shapes shown in 

Figure 11. On the other hand, the FEMA fit rule can be applied without problems, although it 

might call for different approximations depending on the value of the target displacement. 

Still, the results and the corresponding conclusions remain the same in all cases. The alterna-

tive fit proposed, termed the “H-10%” rule, determines the initial stiffness at 10% (instead of 

60%) of the nominal yield shear defined in accordance with FEMA, while the post-elastic 
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stiffness is determined by minimizing the absolute area discrepancy between the capacity 

curve and the fitted line. The area minimization leads to similar results as the balancing of ar-

eas above and below the fitted line. While easy to apply graphically, the latter is an ill-defined 

problem that can yield mixed results: Imagine two coincident equal-size linear segments 

where one, the “approximation”, is rotated by an arbitrary angle around the common center. 

Obviously, the rotated segment always satisfies the area balancing rule as a valid approxima-

tion to the original. Only when it becomes coincident does it satisfy the minimum area criteri-

on. Thus, area minimization is algorithmically superior. The proposed H-10% procedure came 

out as the simplest rule with a near-minimum error for this family of backbones. While many 

alternatives were considered, they are not showed herein for the sake of brevity. 

It has to be noted that elastic-plastic fits according to the proposal of the previous subsec-

tion have been also considered in the investigation of this family of backbones, assuming the 

plateau of the fit at the force corresponding to the target displacement (e.g. at 0.2m here); 

even if less performing than the H-10% rule, considered in the following, the still low bias of 

those trials compared to the FEMA-356 fitting rule, enforced the general conclusion that cap-

turing the initial stiffness is the dominant criterion that leads to a significant bias reduction 

with respect to actual code fit prescriptions. 

The results of the two fitting procedures (H-10% and FEMA-356) applied to the example 

shapes appear in Figure 11. Obviously, when the stiffness of the backbone is not characterized 

by abrupt changes in the curvature (Figure 11a) both fits tend to be practically the same. Fig-

ure 12 and Figure 13 show the error introduced by each fit, for both backbone shapes consid-

ered in Figure 11, in the cases of T = 0.2 and 0.5 sec, respectively. In analogy with the results 

presented for the elastic-plastic case, most of the error is concentrated at the beginning of the 

backbone. In the case of the backbone with low changes in the stiffness (low curvature), it can 

be observed that the error is very small and very similar for both fits. A higher curvature of 

the backbone increases the error introduced by the fit and emphasizes that although at the tar-

get displacement the backbones and their fits in both cases are coincident, this is not enough 

to guarantee the same error. The earlier fitted segments and especially the defined equivalent 

period can make a large difference. As the H-10% rule manages to capture the initial stiffness 

better, it provides better predictive capability for higher displacements. 

The evidence, again, confirms the general trend already shown in the previous section, that 

it is important to capture the initial stiffness of the capacity curve to have an unbiased fit. In 

this case, as well, the code approach results in a conservative error that can be over 50% in the 

case of non-trivial shapes and at the lower displacement values (see Figure 11b). In the same 

range, the H-10% fit leads to a slightly non-conservative solution only for the short periods (T 

= 0.2 sec), an effect that was also observed in the elastic-plastic backbone family. Otherwise 

the fit remains conservative and overall it can be considered to be relatively unbiased. 

In this case a sample of only four shapes is considered, the different shapes shown in Fig-

ure 14a and the pinching hysteretic rule assumed for this backbones appearing in Figure 14b. 

In Figure 15 to Figure 18 the relative errors in the median Sa-capacity, are compared for the 

four different periods and the different SDOF backbones. The importance of capturing the 

initial stiffness is highlighted by the results at each period, and the H-10% fit leads to a small 

and relatively unbiased error, which seldom exceeds 10%. In this case the sample of back-

bones considered for the elastic-hardening case was smaller than the elastic-plastic case but 

the robustness of the general results, showing the same trends in both cases, supports our re-

marks. It should be noted that the results of the FEMA approximation will improve somewhat 

at low displacements if we refit for a lower target displacement, but not enough to alter the 

above conclusions. 
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Figure 11. Comparison of generalized elastic-plastic capacity curves and their corresponding fits having (a) in-

significant versus (b) significant changes in initial stiffness. 

 

Figure 12. Median relative error comparison between the H-10% and FEMA fits for T = 0.2 sec, when applied to 

the capacity curves of Figure 10: (a) insignificant versus (b) significant changes in initial stiffness. 

 

Figure 13. Median relative error comparison between the H-10% and FEMA fits for T = 0.5 sec, when applied to 

the capacity curves of Figure 10: (a) insignificant versus (b) significant changes in initial stiffness. 
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Figure 14. Backbones (a) and hysteretic behavior according to pinching hysteresis rule (b) of the generalized 

elastic-hardening systems considered. 

 

Figure 15. The median relative error for (a) the H-10% fit and (b) the 60% FEMA fit, T = 0.2 sec, in case of elas-

tic-hardening SDOF systems family (grey dotted lines). 

 

Figure 16. The median relative error for (a) the H-10% fit and (b) the 60% FEMA fit, T = 0.5 sec, in case of elas-

tic-hardening SDOF systems family (grey dotted lines). 
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Figure 17. The median relative error for (a) the H-10% fit and (b) the 60% FEMA fit, T = 1.0 sec, in case of elas-

tic-hardening SDOF systems family (grey dotted lines). 

 

Figure 18. The median relative error for (a) the H-10% fit and (b) the 60% FEMA fit, T = 2 sec, in case of elas-

tic-hardening SDOF systems family (grey dotted lines). 

4 CONCLUSIONS  

Structural seismic assessment based on the nonlinear static procedure is a method that, in 

its different versions, has become common in the last decades among researchers and practi-

tioners. It is based on the fundamental approximation that the behavior of an MDOF system 

can be interpreted by the response of an equivalent SDOF. This necessitates a number of ap-

proximations at various stages of the procedure. Herein, the problem of the optimal bilinear fit 

to be chosen as the idealized base shear–displacement curve is systematically investigated by 

means of an IDA-based procedure applied to the case of non-softening capacity curves. 

Assessment of different fits is achieved on an intensity-measure capacity basis that allows 

a straightforward comparison of the performance of structural systems characterized by dif-

ferent periods, in this case the period of the capacity curve and its bilinear approximation. 

Therefore the approach followed allows the investigation of a continuum of limit states at the 

SDOF level, excluding other sources of error that have already been investigated by other de-

tailed studies. 

The investigation led to the general rule and recommendation that it is fundamental to cap-

ture the initial stiffness of the capacity curve rather than aiming at balancing or minimizing 
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the area above or below the elastic segment of the fit. A 10% of a reference value of yield 

base shear, i.e., the maximum attained for elastic-plastic and the nominal yield value for elas-

tic-hardening systems, is suggested as a robust point for the intersection between the capacity 

curve and the fit of the elastic secant segment. The subsequent non-negative stiffness segment 

should be chosen to minimize the area discrepancy between the fitted and the exact model in 

the region of interest. 

The low bias introduced by this enhanced fit is found to be an improvement with respect to 

existing code approaches. Essentially it can be assumed to be a near-optimal solution espe-

cially in the case of capacity curves with significant changes in stiffness, representative of 

modern modeling approaches that account for the uncracked section properties. The error in-

troduced by the near optimal bilinear fit does not exceed 20% for elastic-plastic fits and it sel-

dom exceeds 10% for systems with hardening, while codified approaches were found to be 

generally conservative, sometimes more than 50% for highly curved shapes. 
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