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Abstract

This paper presents an introduction to the probabilistic basis for a new set of seismic design and
assessment procedures that consider explicitly nonlinear dynamic displacements. Two new
seismic design and assessment guidelines make use of these developments. The new 2000 SAC
steel moment-resisting seismic design and assessment guidelines prepared for FEMA and a new
draft of the ISO offshore seismic guidelines use two different formats derived from this same
probabilistic model.

Basic Approach:

The three primary random elements begin with the ground motion intensity, as characterized
here by the level of the spectral acceleration, aS  (at some period roughly equal to the first natural
period of the structure, and 5% or higher damping), Shome et al., (1998). The other two elements
are the (maximum interstory) drift demand, D , and the drift capacity, C .  Future intense ground
motions at the site are represented in the standard way by the hazard function, )( asH , which
gives the annual probability that the (random) intensity aS  at the site will equal or exceed level

as .  This is provided by earth scientists, e.g., in the US on the USGS web site. The prediction of
the drift demand given any particular level of ground motion and the estimation of the capacities
of various ‘failure modes’ are the purview of the structural engineer.  These developments focus
on these second two elements including their probabilistic representations. Finally it must be
recognized that all such predictions and representations are estimates; quantification and analysis
of these uncertainties will be addressed subsequently.
First we couple aS  hazard and drift demand (versus aS ) to produce a (structure-specific) drift
hazard curve, )(dHD , i.e., the annual probability (or strictly the mean annual frequency) that the
drift demand D  exceeds value d . The second step combines this with the drift capacity
representation to produce PLP , the (annual) probability of the performance level not being met
(e.g., of collapse).

� =≥= |)(|]|[)( xdHxSdDPdH aD (1)

and

� ≤= |)(|][ ddHdCPP DPL  (2)
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In order to reduce the conclusions to simple demand and capacity factors, these integrals must be
tractable; this is achieved by three analytical approximations of the representations. First, assume
that the site hazard curve can be approximated in the region around PLP

as , i.e., in the range of
spectral accelerations in the region of probabilities around the limit state probability PLP , by the
form:

k
aoaaa sksSPsH −=≥= ][)( (3)

Typical values of the important (log) slope k  are 1.5 to 3.
Next looking more closely at the structural elements, assume that, given the level of aS , the

predicted (median) drift demand, D̂ , can be represented (again in the region around PLP
as , at

least) by

( )b
aSaD =ˆ (4)

Experience to date suggests that 1=b  may be an effective default value, which is consistent, for
example, with the “equal displacement rule” for moderate period structures. The coefficient a
can be estimated by various approximate methods or by nonlinear time history analyses; in the
latter case, for accuracy in what follows it is necessary only that the leading coefficient a  be
estimated from records with aS  levels near PLP

as .  In order to complete their probabilistic
representation, assume that drift demands are distributed lognormally about the median with
“dispersion” (formally, the standard deviation of the natural log), 

aSD|β . This notation 
aSD|β

emphasizes that this is the (record-to-record) dispersion for D  at a given aS  level, but the

simpler notation Dβ  will be used normally. There are several practical ways to estimate the three
parameters, a , b , and 

aSD|β  (or Dβ ). The most direct, in principle, is to conduct a number of
nonlinear analyses and then conduct a regression analysis of Dln  on aSln . One may also use
Incremental Dynamic Analysis (Luco and Cornell, 1998), as will be shown below, or with an a
priori estimate of the slope b , it is sufficient to conduct nonlinear (or even simpler displacement
prediction analyses) at a single ground motion intensity level, as will be clear below.
With these assumptions it follows that the first factor in Eq. 1 is:

)/]/(ln[1]|[ | aSD
b

a axdxSdDP βΦ−==≥ (5)

The drift capacity, C , is assumed to have a median value, Ĉ , and to be lognormally distributed
with dispersion, Cβ . Therefore the first factor in Eq. 2 is

)/]ˆ/(ln[ CCd βΦ (6)

Substituting and carrying out the integrations one finds this primary result (Jalayer and Cornell,
2000):
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in which for simplicity we have introduced C
as ˆ  as the spectral acceleration "corresponding to" the

median drift capacity:
bC

a aCs /1ˆ )ˆ(=  (8)

To transform this result into a convenient, more conventional LRFD checking format, one sets
the PLP  equal to the performance objective, oP , e.g., 1/2500 per year (or 2% in 50 years), and
rearranges (making use of the Eq. 3), yielding:

oP
a

a

s
SDC D

b
kC

b
k ˆ]}

2
1{exp[ˆ]}

2
1{exp[ 2

|
2 ββ ≥−

or
oPDC ˆˆ λφ ≥  (9)

in which oP
asD̂  (or oPD̂  for future simplicity of notation) is the median drift demand under a

given ground motion of a particular intensity oP
as , which in turn is defined as the aS  level with

annual probability oP  of being exceeded, i.e., bP
a

P oo saD )(ˆ = .
A preliminary practical conclusion: Eq. 9 implies that to confirm whether an existing building or
a design of new building meets the performance objective, oP , one (1) finds from the hazard
curve the ground motion with the corresponding intensity, oP

as , (2) determines the (median) drift

demand, D̂ , for this aS , and (3) compares the factored (median) capacity, Ĉ , versus the factored

D̂ .

Examples

Figure 1 shows the results of 30 Incremental Dynamic Analysis (IDA) curves of a steel braced
frame (an offshore jacket). Each is a spline fit to several nonlinear dynamic analyses of the
structure under increasing levels of the same record. The maximum story drift is plotted versus
the spectral acceleration of the record (at 1.8 seconds, the natural period, and 5% damping). At a
given aS  there are thus 30 values of displacement. The variety and dispersion of these curves is

remarkable. The conditional median D̂  is plotted in Figure 2 versus aS  together with the
conventional (maximum story) static pushover. The latter has a negative slope in the
displacement regime where diagonal braces are buckling, while the “dynamic pushover” softens
there and then re-stiffens beyond 0.01 drift. This median and the 16th and 84th fractiles of the
conditional displacement distribution are plotted in log scale in Figure 3; the regions of
proportional dependence ( 1=b ), such as the elastic region and the region above 0.01 drift,
appear as straight lines with unit slope. The slope, b , is about 2.3 in the intermediate (brace-
buckling) regime. The definition of global system dynamic capacity is an open question; for
many of the curves (records) numerical non-convergence occurs at higher aS  levels. The
flattening of any one such curve is effectively analogous to a static instability: large displacement
increases for small “load” increases. In any case the capacity varies from record to record.
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Following the SAC format we adopt here the definition that the displacement capacity is that
value at which the local slope of the IDA curve is 20% of the initial (elastic) slope, or 0.02 drift
(whichever is smaller).  These points are plotted in Figure 1 where the median and dispersion of
the displacement capacity are reported (0.018 and 0.42). A representative (Santa Barbara
Channel) seismic hazard curve is shown in Figure 4 for the same aS  definition.
With these results we can consider examples. Consider the onset-of-buckling limit state; its
median capacity appears to be about 0.003 with a dispersion (arbitrarily selected to be) 0.2. The

aS  corresponding to the median capacity is 0.25g and the “slope” of the (log) median drift curve
in this region is 3.2=b . The dispersion of drift given aS  is about 0.2 in this regime. The value
of the hazard at 0.25g is 3104 −×  with a local (log) slope of about 56.2=k . Substituting into Eq.
7 we find for the annual probability of brace buckling

( ) ( )[ ] 3322223 102.4)05.1(1042.02.03.2/56.22/1exp104 −− ×=⋅×=+⋅⋅⋅× .

Next, consider the use of Eq. 9 to confirm whether the probability of collapse is less than the
allowable value of 1/2500. The value of aS  at this hazard level is 0.65g, and the local slope of
the (log) hazard curve about 3.3.  The median displacement at this aS  level is about 0.013 in a
regime where 1=b  and the dispersion is 0.35. As discussed above the global collapse limit state
has a median capacity of 0.016 with dispersion 0.44. Substituting for the LRFD factors we obtain

72.0=φ  and 22.1=λ , and the checking result (Eq. 9) is 0.72(0.016) >(?) 1.22(0.013) or 0.115
< 0.0159, implying that the allowable failure probability has been exceeded (even though the
median drift given the 1/2500 ground motion intensity is less than the median capacity).
Appendix A shows IDA results for two models of a steel building frame.

Uncertainty and its Treatment

The (epistemic) uncertainty in the hazard curve is commonly represented in probabilistic hazard
analysis practice, including the 50% confidence level (or median estimate, )(ˆ

asH ) and other
levels (e.g., the 84%, the 95%, etc.) from which one can deduce a dispersion, Hβ , and a mean
estimate, )( asH . As above, here it is sufficient to assume that Hβ  is constant in the region
around oP

as .  It is assumed too that the lognormal distribution is an adequate representation of this
uncertainty.
To represent the uncertainty in the drift demand estimation, it is assumed that a  in Eq. 6 is a
(lognormally distributed) uncertain quantity with median estimate â  and dispersion aβ . The

implication is that (always given aa sS = ) the median drift D̂  is uncertain with median
b

asaD )(ˆˆ̂ = and (uncertainty) dispersion aD ββ =ˆ . (For future notational simplicity we shall use

simply D̂  for D̂̂ .) For further notational simplicity we shall use DUβ  for this uncertainty in

(median) drift demand, and DRβ  for, in contrast, the (record-to-record) randomness in drift
associated with 

aSD|β  (or Dβ ) defined in the section above.
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Finally to represent the uncertainty in drift capacity it is assumed that the median drift capacity,

Ĉ , is (lognormally) uncertain with ‘best estimate’ (median) Ĉ̂  (or simply again just Ĉ ) and
dispersion CUβ ; the latter uncertainty dispersion is in contrast to randomness in drift capacity
measured by CRβ  (which we now use in place of the notation Cβ  used in the section above).
Next it must be recognized that PLP  is now itself an uncertain quantity because it is a function
(Eq. 7) of the uncertain quantities )( asH , D̂ , and Ĉ  just described.  It is straightforward to
deduce that, because of this uncertainty, the probability PLP  is lognormally distributed with
parameters below.  For cost-benefit-risk assessments and other purposes it is useful to know the
mean value (or mean estimate) of PLP :
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One can see that second version of Eq. 10 looks much like Eq. 7 except it is now specified that it
is the mean hazard curve into which one must substitute C

as ˆ , and now all four dispersion
contributions appear.  Some say that the effect of the uncertainty in the hazard curve is
“captured” by using this mean (rather than the median) estimate. The dispersion (standard
deviation of the natural log) of PLP  is

)( 22
2

2
2

CUDUHP b
k

PL
ββββ ++= (11)

The median estimate of PLP  is just the mean times [ ]22/1exp
PLPβ− .  From these results one can

produce, for example, an upper confidence interval estimate:

]exp[ˆ
PLPxPL

x
PL KPP β= (12)

in which xK is the appropriate value from a gaussian table for specified confidence x .
Finally, the following are examples of safety or performance checking schemes that can be
developed from the information above. The simplest form results from using the mean
probability as the objective: substitute the performance objective oP  in the second form of Eq.
10, and rearrange as done in the section above (when uncertainty was not recognized), obtaining
now:

oP
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DUDRCUCR D
b
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b
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in which the capacity and demand factors are defined by the obvious two exponential terms.  The
application of this format would parallel that of the example above except that the mean
(estimate of the) hazard curve should be used and the two factors need to be based on the total
aleatory and epistemic uncertainty in capacity and in dynamic response (given ground motion
intensity). A structure or design satisfying the condition above (Eq. 13) can be said to have a
mean PLP  less than or equal to the performance objective oP .  Somewhat analogous reasoning
has been used for the DOE 1020 seismic criteria, which is, however, explicitly neither
displacement nor nonlinear-analysis based, and which is couched in terms of different factors.
The current draft of the ISO offshore guidelines (Younan et al., 2001) follow a scheme that has
the engineer compare the median capacity versus the median displacement estimated for a
ground motion level that has been appropriately enhanced, by a factor

)]()2/exp[( 22
|

2
TCSTDc a

bkC ββ +⋅= , such that the check is equivalent to Eq. 13. (The notation

such as 2
TCβ  is shorthand for the total of random and uncertain - aleatory and epistemic - squared

dispersions.)
In the development of the SAC structural checking procedure (Hamburger, et al., 2000) a
decision was made to focus on the uncertainty in the two structural elements of the problem, i.e.,
drift demand (given ground motion intensity) and capacity.  The uncertainty in the hazard is, in
effect, presumed to have been dealt with as per the second version of Eq. 10 above, i.e., by using
the mean hazard curve, which reflects Hβ .  Then the uncertainty in PLP  (given the mean hazard
curve) is considered explicitly, i.e., the uncertainty due to the two structural elements. Recall that
satisfying Eq. 13 implies that the mean PLP  is less than the target value. If, as SAC has chosen,
one wants to set the criterion that there must be a confidence of at least 95%, say, that the actual
probability of the limit state is less than the objective oP , then the checking procedure or format

becomes: insure that the ratio of factored capacity to factored demand, oP
con DC ˆ/ˆ λφγ = , is

greater than a certain critical value:

��

�
��

� −= 2

2
1exp UTUTxcon b

kK ββγ (14)

in which 222
DUCUUT βββ +=  is the “total” epistemic uncertainty (again given the mean hazard

curve). This result can be derived from the mean and dispersion of the uncertain PLP which look
like the results above (Eq. 10 and 11) without the hazard curve dispersion.
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Figure 1: Braced Frame: Multiple IDA Curves. Figure 2: Median Drift vs. Static Pushover

Figure 3: Median, 16th, and 84th Fractiles Figure 4: Seismic Hazard Curve
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Appendix A. Building Frame Examples

Figures A1 and A2 show summary plots of IDA analyses of two models of a 9-story steel
moment-resisting building frame.  The first is a model with ductile connections and hence
represents the anticipated behavior of such frames prior to the 1994 Northridge earthquake when
many connections were found to have fractured.  The second model contains connection
representations that mimic the fracturing behavior observed. The summary plots report the
median and 16th and 84th fractiles, as well as the two most robust and two most flexible curves
(records) in the data sets considered. Capacities defined as above are also shown. Note that the
fracturing model shows larger median displacements especially at larger spectral accelerations
and typically smaller displacement capacities.

Figure A1: IDA Summary: Ductile 9-Story                           Figure A2: IDA Summary: Fracturing
Building Moment Frame Connections Model of 9-Story Frame
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