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Abstract: A mixture model is presented for combining the results of different models or analysis 
approaches into a single probabilistic seismic demand model that is suitable for fragility 
assessment. A structure can be represented using different model types or even levels of 
resolution for the same type, while it may also be analysed via methods of different complexity, 
most notably static versus dynamic nonlinear approaches. Combining the results from different 
models or analysis methods can be beneficial as it allows updating the results of a simpler 
approach or combining the strengths of two different models. For example, different model types 
may offer accuracy advantages in complementary response regions. This is the case of 
distributed-plasticity fiber models that offer higher fidelity for reinforced concrete frames at low 
(pre-capping) deformations, while lumped-plasticity models are more reliable for larger (post-
capping) deformations closer to collapse. Through the combination of the results of both models 
we can potentially better capture the performance of the frame at all levels of seismic intensity. 
By employing a minimal 5 parameter power-law-based model we offer viable options for forming 
mixed probabilistic seismic demand models that can combine both different models and different 
analysis methods into a single output suitable for fragility assessment. 

Introduction  

The Performance-Based Earthquake Engineering (PBEE) framework, originally developed by 
Cornell and Krawinkler (2000) for the Pacific Earthquake Engineering Research (PEER) Center, 
is commonly employed for seismic risk assessment. The PBEE methodology can be summarized 
as an implementation of the total probability theorem: 

     ( ) ( | ) ( | ) ( | ) ( )
DM EDP IM

DV G DV DM dG DM EDP dG EDP IM d IM   (1) 

where IM is the ground motion Intensity Measure (e.g. peak ground acceleration, spectral 
acceleration), EDP is the Engineering Demand Parameter (e.g. maximum interstory drift ratio), 
DM is the damage measure and DV is the Decision Variable. The final product of this calculation 
is the mean annual frequency of exceeding DV. Thus, risk can be estimated in terms of decision 
variables that make sense even to non-engineers such as casualties, monetary loss, repair cost, 
or down time. 

Of essence in this calculation is the estimation of the third term of Eq. (1) which represents the 
fragility curve. System fragility curves arise naturally from the partitioning of the continuous DM 
to N discrete damage states, DSi (i = 0...N-1), separated by N-1 associated limit-states LSi, 
i = 1…N-1. Each fragility curve is a continuous function that provides the probability of exceeding 
a given LSi, or equivalently of being in DSi or worse, given the IM. They can be expressed as: 

      ( )  violated | |LSi i LSiF IM P LS IM P D C IM   (2) 

where limit state LSi violation is typically defined as the seismic demand, D, exceeding the 
associated limit-state capacity, CLSi. The most comprehensive analytical methods for fragility 
assessment rely on advanced numerical models subjected to nonlinear response history  
analyses (NLRHA). Single-stripe analysis (e.g. Jalayer and Cornell 2009), multistripe analysis 
(e.g. Jalayer 2003, Jalayer and Cornell 2009), cloud analysis (e.g. Jalayer 2003) or Incremental 
Dynamic Analysis (IDA, Vamvatsikos and Cornell 2002) can be performed to derive such curves 
(Bakalis and Vamvatsikos 2018).  
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However, different models of the same structure tend to offer different accuracy at complementary 
response regions. This is the case when lumped- or distributed-plasticity elements are employed 
to model a reinforced concrete (RC) structure. Distributed-plasticity models consist of fiber 
elements that allow representation of phenomena such as concrete cracking and gradual 
plastification of sections, thus they can better reproduce the behavior of the structure in the pre-
yield segment. However, they fail to capture the post-capping response of the system and they 
often fail to converge in the region of negative global lateral stiffness. On the contrary, lumped-
plasticity elements can model the post-capping response well enough but often fail to capture the 
transition of the system from the initial uncracked stiffness to the cracked one, thus they cannot 
reproduce well enough the pre-yield structural response. At the same time, they offer an easier 
convergence thus they can be applied when multiple NLRHA are performed even close to 
collapse. To overcome such model accuracy and convergence constraints, a mixed surrogate 
model can be employed and used for fragility assessment, able to combine the results of both 
lumped- and distributed-plasticity models, at the response region where each one in more 
reliable. 

Case-study building  

To illustrate the proposed framework, a 4-story RC building is studied. The building has two 
perimeter MRFs of four bays that act in each principal direction and internal columns that carry 
only gravity loads. The plan view of the building and the elevation of the moment frame are shown 
in Figure 1. The overall plan dimensions are about 55x37m (120’x180’) while the total height is 
about 16.5m (54’), with a 4.5m (15’) fist story and 4m (13’) height of each of the remaining stories. 
Dead load of 8.4kN/m2 (175psf) and live load of 2.4kN/m2 (50psf) were assumed, with the latter 
not acting on the roof of the building. The building was designed by Aschheim et al. (2019) 
following a performance-based approach that enables the direct design of the structure subject 
to a set of predefined performance objectives through the use of the Yield Frequency Spectra 
(Vamvatsikos and Aschheim 2016). A single performance objective was targeted during the 
design to limit the MAF of exceeding an interstory drift ratio of 2% under dynamic response to 
2.11x10-3, which is equivalent to a 10% probability of exceedance in 50 years, while a confidence 
level against uncertainties of 68% was adopted. 

 

Figure 1. Plan view of the building and elevation of the perimeter moment resisting frame 
(adopted from Aschheim et al. 2019). 

Modeling 

A two-dimensional model of the building was prepared in OpenSees (Mazzoni et al. 2000). Only 
one out of the two perimeter 4-story and four-bay moment resisting frames that act in each 
principal direction was modeled along with a leaning column. The leaning column was pinned at 
the foundation and modeled using linear elastic elements having cross sectional properties of one 
half of the gravity columns of the building plus one half of the columns that belong to the moment 
frames acting in the other direction. The 2D model of a building may employ either lumped- or 
distributed-plasticity elements. Lumped-plasticity elements are computationally more efficient but 
are based on phenomenological models of the plastic-hinges that cannot capture axial-moment 
interaction or the spreading of inelasticity. On the contrary, distributed-plasticity fiber-element 
models can model the evolution of plasticity throughout both the member and the section while 
accounting for axial force and bending moment interaction at a considerable higher computational 
cost. On the other hand, the simpler lumped plasticity models are far more robust, especially in 
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the negative stiffness region of response, and can thus better capture collapse. Herein, both 
modes were employed. 

In the distributed-plasticity model, beams and columns were modeled using force-based fiber 
elements discretized into longitudinal steel and concrete fibers. A bilinear constitutive law 
accounting for pinching and stiffness degradation was used to model the steel reinforcing bars. 
The unconfined cover concrete was modeled without confinement, while the confinement related 
parameters of the core concrete were calculated on the basis of the Mander et al. (1988) model. 
The strength of the steel and concrete materials was set at their expected values, rather at 
nominal characteristic strengths, thus fye = 475MPa (69ksi) and fce = 44.8MPa (6.5ksi). To 
simulate the rigid diaphragm, frame nodes were rigidly connected by stiff truss elements at each 
floor level. One end of each horizontal beam element was provided with a low stiffness axial 
spring at the connection with the column. This solution was preferred instead of imposing rigid 
kinematic constraints. Such constraints would impose the condition of zero axial strain on beams 
resulting in the generation of fictitious axial compression forces increasing the bending moment 
capacity of beam sections. Rayleigh damping of 1% was assigned to the first and second mode. 
Although this is lower than a typical value of 5% usually assigned to reinforced concrete 
structures, it is considered realistic as cracking is directly incorporated in the fiber model giving 
rise to early hysteretic damping. 

In the lumped-plasticity model, beams and columns were modeled using a single force-based 
beam-column element per member with plastic hinges located at each end. Moment-rotation laws 
for each plastic hinge were defined in terms of the backbone curve of ASCE SEI 41/13. As 
suggested in ASCE SEI 41/13 instead of the sudden drop at the post-capping region of the 
moment-rotation law, a more gradual slope was implemented. Rigid kinematic constrains were 
applied on all nodes of each floor thus enforcing the same lateral displacements. Regarding the 
stiffness properties of the interior elastic part of each member, typically the code suggests that 
the effective stiffness EI of the elements should be reduced to account for cracking of the member. 
As mentioned in ASCE-SEI 41/13, if Ig is the gross section moment of inertia and E is Young’s 
modulus for concrete, one should employ 0.3EIg for non-prestressed concrete beams and 0.3 or 
0.5EIg for concrete columns, depending on the design axial load acting on each member. 
Although this approach stems from analyses targeting a conservative result, it is common practice 
to extend it to cases were unbiased results should be sought, such as in performance-based 
design, introducing considerable inaccuracies. For this reason, two different lumped-plasticity 
models were created, namely a non-calibrated and a calibrated. In the non-calibrated model, the 
aforementioned EIg values were adopted while in the calibrated case the “cracked” moment of 
inertia of both beams and columns was increased by averaging the initial “uncracked” stiffness 
and the nominal “cracked” stiffness at yield, as derived by moment-rotation analyses of the actual 
fiber sections. This calibration allowed for better matching the pre-yield behavior of the lumped- 
and the distributed-plasticity models, thus reducing the differences in response for low-to-
moderate levels of deformation.  

A Rayleigh damping of 5% was assigned in the first and second mode for the lumped-plasticity 
models. In all cases, P-Δ effects were accounted for via a first-order treatment. 

Analysis results 

The static pushover capacity curves resulting from a first-mode-proportional lateral load pattern 
are shown in Figure 2 for all models in terms of base shear and maximum interstory drift ratio, 
θmax. The fundamental period of the distributed-plasticity model, the calibrated and the non-
calibrated lumped-plasticity models are T1,f = 0.82sec, T1,cl = 0.99sec and T1,ncl = 1.71sec, 
respectively. Note that the small difference in the fundamental periods of the calibrated lumped 
and the distributed-plasticity model is not of concern as it is only indicative of the higher stiffness 
in the fully uncracked model that only exists for small deformations. The true effect of the 
calibration of the lumped-plasticity model is obvious in the match of the pre-yield segments of the 
calibrated lumped and the distributed-plasticity model. The non-calibrated model, by being far 
more flexible, fails to capture the pre-yield segment of the response of the fiber model, and will 
thus be discounted henceforth. 
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Figure 2. Static pushover capacity curves of the distributed-plasticity model (grey dash-dotted 

line) versus the calibrated (black line) and non-calibrated (grey solid line) lumped-plasticity 
ones. 

IDA was performed in all models using the far-field ground motion set of FEMA P695 (FEMA 
2009). This set comprises of 22 ground motions, each having two horizontal components, 
resulting in a total of 44 accelerograms. The first-mode spectral acceleration at the fundamental 
period of each structure was adopted herein as the IM, thus Sa(T1,cl,5%) and Sa(T1,f,5%) were 
used for the calibrated lumped- and the distributed-plasticity model, respectively. The maximum 
interstory drift over all stories at each time step, θmax, was chosen as the EDP. Individual record 
IDA curves along with their 16%, 50% and 84% fractiles are presented for illustrative purposes in 
Figures 3 a-b for the fiber and the calibrated lumped-plasticity model. IDA 16, 50 and 84% fractiles 
are shown in Figure 3c for both models after being modified to the same IM, i.e. the spectral 
acceleration at the fundamental period of the calibrated lumped-plasticity model.  

In Figure 3 we can observe that the variability in structural response for low IMs is higher for the 
distributed-plasticity than the lumped-plasticity model. Structural variability can be directly 
estimated through IDA quantiles since the greater the distance between the 16% and 84% 
quantiles is, the higher the variability. This comes as no surprise since distributed-plasticity 
models do exhibit variability up to the nominal yield due to the contribution of higher modes and 
because they are already manifesting some non-linear response, as cracking appears and 
plasticity is developed. On the contrary, in lumped-plasticity models an assumption of initial elastic 
behavior has been made thus the variability in the response for low IMs is only influenced by the 
higher modes. This lower variability of the lumped-plasticity model at low IM levels may potentially 
bias the results especially when low-damage limit states are being examined (e.g. damage 
limitation).  

For higher IMs the opposite tendency seems to appear. Due to convergence issues, the 
distributed-plasticity model even for relatively low IMs seems to have collapsed and flatlines in 
IDA curves are artificially generated. Therefore, EDP-IM points with high EDP values do not 
appear in the results resulting in a lower variability in the structural response for higher IMs. On 
the contrary, lumped-plasticity models converge easier even at high IMs so they can retain such 
EDP-IM pairs resulting in higher variability. The lower variability of the distributed-plasticity model 
in this region cannot be consider representative of the actual behavior of the system as it is 
caused due to the inability of the system to converge. 
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(a) calibrated lumped-plasticity model (b) distributed-plasticity model 

 

(c) IDA fractiles modified to the same IM 

Figure 3. Incremental Dynamic Analysis results for the (a) calibrated lumped-plasticity model 
and (b) the distributed-plasticity model in terms of the first-mode spectral acceleration of each 
model and maximum interstory drift ratio, θmax. The 16%, 50% and 84% IDA fractiles of both 
models are shown in (c), after being modified to the spectral acceleration at the fundamental 

period of the calibrated lumped-plasticity model. 

Fragility assessment via mixed modeling 

The aforementioned observations generate thoughts on the suitability of either single model for 
fragility assessment, and the potential for improvement by combining their respective results. To 
give preference to each model where we know its predictive power to be higher, one option is to 
assign relative weights to their results. This is essentially a Bayesian belief that one model is more 
reliable than the other, thus a higher weight (or probability) can be assigned to the former and a 
lower to the latter. For low IMs, the fiber model seems to better capture the structural response 
distribution, thus a higher weight should be assigned. For higher IMs, the lumped-plasticity model 
is considered to be much more reliable and this should be translated into the weight assigned. 
The selection of the relative weights will depend on the details of the case at hand but obviously 
by modifying the relative weights we can vary the mixed model results to capture either of the two 
models and any combination in between.  

An interesting question of computational significance is how many nonlinear analyses to employ 
for estimating the response of each model. At one end, full IDA can be performed for both models, 
as in Figure 3, and their results combined in postprocessing. Given our previous observations for 
the case at hand, results of the distributed-plasticity model for Sa < 0.3g were combined with 
those of the lumped-plasticity model for Sa > 0.3g and the empirical fragility curves of Figures 5 
a-c were derived for θmax = 1.0, 1.5 and 3.0%, respectively. These limit states were indicatively 
selected to cover the range of structural response up to the point where the fiber model can 
contribute to the results. The empirical fragility curves were estimated as the fraction of analyses 
exceeding LS capacity for each IM level. An obvious non-monotonicity is observed in fragility 
curves near the critical Sa of 0.3g since up to this value fiber model results are used for the 
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generation of the fragility curve and from this value and above, those of the lumped-plasticity 
model were used. Interpolation, discarding the higher of the two IMs for each probability level or 
some more complex fitting approach may be employed to restore the desired monotonicity. 

Obviously, employing full IDAs is an expensive solution that (at least for the case at hand) also 
requires some post-processing to achieve monotonic results. Instead, only a few, say 4, stripes 
can be performed and the results can be more easily combined via weighted regression to 
estimate fragility. The lumped-plasticity model can better reproduce the behavior of the structure 
for higher IM levels and near collapse thus two stripes can be performed with this model. In the 
fiber model, two stripes of analyses should be performed for relatively low IM levels aiming to 
capture the variability in the structural response at this region. The results of the two models can 
be combined for fragility assessment by assigning relative weights to each one and applying a 
five-parameter power-law based approximation (Jalayer and Cornell 2009) that comprises of a 
linear regression in the log-log space for the no collapse data and a logistic regression for collapse 
data.  

In cases where sparse data is available, as is the case at hand since only a limited number of 
stripe analyses are performed, a form of regression needs to be applied in order to obtain a 
continuous EDP|IM representation. Generally, the model chosen for the regression does 
influence the results yet simpler models are preferable for our purposes. Cornell et al. (2002) 
proposed the power-law approximation of Eq. (3): 

   bEDP a IM   (3) 

where b is the slope in log-space, ln(a) is the intercept and ε is the lognormal random variable 
with unit median and a logarithmic standard deviation of σlnε. The basic assumption of this 
approach is that the EDP|IM dispersion is constant for all IM levels hence by globally applying 
Eq. (3) a constant dispersion for all IMs is assumed. The linear fit in the log-log space of Eq. (3) 
provides reasonable results when data in the no collapse region are processed. Global collapse 
is generally deemed to occur when numerical non-convergence appears in a rigorous model that 
incorporates both material and geometric nonlinearities and large values of EDP are captured. 
Such large or infinite EDP values would bias the results at lower IMs if a single regression was to 
be applied in all data. To overcome this issue, collapsing points were treated separately via 
logistic regression to estimate probability of collapse given the IM. It can be expressed as: 

 
 

  
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0 1

[ | ]
ln

1 [ | ]

P C IM
b b IM

P C IM
  (4) 

where P[C | IM] is the probability of collapse given the IM and b0, b1 are parameters estimated 
trough the regression. Other alternatives for the estimation of P[C | IM] do exist, such as the 
method of moments or the maximum likelihood method (Baker 2015).  

The total probability theorem can be applied for a given level of IM to combine the results of the 
mutually exclusive events of Collapse, C, and No Collapse, NC. The probability of exceeding a 
LS for a given level of IM is defined as: 

      [ | ] [ | , ](1 [ | ]) 1 [ | ]C CP EDP EDP IM P EDP EDP NC IM P C IM P C IM   (5) 

where P[EDP > EDPC | C,IM] always equals 1.0. The resulting P[EDP > EDPC | IM] is a mixture 
distribution that depends on the individual distributions of C and NC and a lognormal curve may 
not fit the computed fragility curve. For a given limit state, the terms of Eq. (5) are estimated 
according to Eq. (3) and (4). Consequently, a fragility curve for a given limit state can be directly 
determined if a total of five parameters are estimated; three for the no collapse points (i.e. a, b 
and σlnε) and two for collapse data (i.e. b0 and b1). It should be noted that adding more terms in 
the linear regression for the NC points may result in a more flexible model but at the same time it 
may overfit the data. In general, when limited analysis data is available, the five-parameter model 
is preferred for simplicity. 

In the case at hand, two stripes were performed with the distributed-plasticity model at 
Sa(T1,cl) = 0.1g and 0.15g and two for the lumped-plasticity model at Sa(T1,cl) = 0.85g and 1.2g. 
For each stripe 20 NLRHA were conducted using records from the far-filed ground motion set of 
FEMA P695. The two higher stripes were employed for collapse fragility assessment. The results 
indicate that more than 16% of the records caused structural collapse in the higher second stripe 
of the lumped-plasticity model. For this reason, this stripe was excluded from the power-law fitting 
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of the no collapse data. Consequently, to estimate the probability of demand exceeding capacity 
given no collapse, P[EDP > EDPc | NC,IM], only the lower three stripes were employed. 

The lower three stripes employed in fitting Eq. (3) appear in Figure 4. Different assumptions 
regarding the relative weights of the two models were made and the power-law approximation of 
Eq. (3) was applied to estimate the P[EDP > EDPC |NC,IM]. The resulting linear fits are also 
presented for two extreme cases having wl = 0.00 – wf = 1.00 (dash-dotted grey line) and 
wl = 1.00 – wf = 0.00 (dash-dotted black line), as well as for wl = 0.10 – wf = 0.90 (grey solid line), 
where wl and wf are the relative weights assigned to the lumped and the distributed plasticity 
model, respectively. In the case of wl=1.00, given that only one stripe of results is available and 
the slope of the linear fit in the log-log space cannot be computed analytically, a value of 1.0 was 
adopted for the latter.  

  

(a) log-log coordinates (b) linear coordinates 

Figure 4. IM-EDP stripes considered in the power-law fit of the lumped-plasticity (back color) 
and the distributed-plasticity model (grey color). The power-law based approximation is shown 
for wf = 1.00 – wl = 0.00 (dash-dotted grey line), wf = 0.00 – wl = 1.00 (dash-dotted black line) 
and wf = 0.90 – wl = 0.10 (grey solid line). For the latter case, the slope of the linear fit in the 
log-log space was assumed to be equal to 1.00. The red lines indicate the θC values of three 

limit states that were examined. 

In Figures 5 a-c the fragility curves for different combinations of the relative weights of the lumped- 
and the distributed-plasticity model are presented for θC = 1.0%, 1.50% and 3.0%. The empirical 
fragility curves calculated based on IDA results along with those computed by applying Eq. (5) for 
each single model are also presented for comparison purposes. It is worth mentioning that the 
weights assigned in the two models are not indicative of their relative importance, since they 
highly depend on the leverage of the lumped-plasticity model’s stripe performed at a higher IM 
level than the two stripes of the distributed-plasticity model. However, the results can be 
regularized to obtain the relative importance of the two models for each case. Obviously, by 
modifying the relative weights of the lumped- and the distributed-plasticity models, the fragility 
curves of the mixed model can capture the response of either of the two models and any 
combination in between. 

For comparison purposes, the mean annual frequency (MAF) of exceeding each limit state, for 
the fragility curves of Figure 5 was also computed. The MAF of exceeding a limit state can be 
estimated considering the last two terms of Eq. (1) as: 

        ( ) |D C P D C IM d IM   (6) 

where |dλ(IM)| is the differential of the hazard curve and P(D > C | IM) is the fragility curve of a 
given limit state. The hazard curve of San Jose California (latitude = 37.33659o and 
longitude = 121.89056o) was used to estimate MAFs and the results for all limit states are listed 
in Table 1. The empirical fragility curves estimated trough IDA results (Figure 5 black solid lines) 
were converted to monotonic ones simply by ignoring the vertical dropdown of the curve and 
adopting the lowest IM point wherever multiple such points are provided at any given probability 
level.  
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(a) θC = 1.0% (b) θC = 1.5% 

 
(c) θC = 3.0% 

Figure 5. Empirical fragility curves from IDA results of the fiber model for Sa < 0.3g and lumped-
plasticity model for Sa > 0.3g (black solid line) and fragility curves estimated through the mixed 
model when different weights were applied on each model. The weights highly depend on the 
leverage of the stripes and do not represent the relative importance of each model. Three limit 

states are examined i.e. (a) θC = 1.0%, (b) θC = 1.5% and (c) θC = 3.0%. 

 
weights θc = 1.0% θc = 1.5% θc = 3.0% 

wf = 1.00 – wl = 0.00 0.0233 0.0135 0.0041 

wf = 0.90 – wl = 0.10 0.0174 0.0076 0.0013 

wf = 0.00 – wl = 1.00 0.0114 0.0050 0.0010 

monotonically made  
empirical fragility  

0.0205 0.0060 0.0010 

Table 1. Mean annual frequency of exceeding LS for different fragility curves. 

For θc = 1.0%, when wf = 100% the obtained fragility curve matched well enough with the portion 
of the empirical fragility coming from IDA results of the fiber model. The θc value for this limit state 
is close to the stripe results of the fiber model, as can be observed in Figure 4, which allows an 
accurate estimation of the fragility. On the contrary, when wl = 100% the derived fragility curve 
could not reproduce the empirical one of lumped-plasticity model’s IDA results. This was expected 
to happen, since the targeted LS was far from the regions where results of the lumped-plasticity 
model were available (see Figure 4). The fragility curve derived from the fiber model is more 
conservative than the one of the mixed model thus resulting in a higher MAF. This is attributed to 
the small difference in low Sa values, which by the way, are the most critical ones when it comes 
to MAF estimation. By employing the mixed model with wf = 0.90 and wl = 0.10 the derived fragility 
curve offers a good compromise between the two models. 

For θc = 1.5% the opposite tendency seems to appear regarding matching the portion of the 
empirical fragility curve with the computed fragilities through the five-parameter power law based 
approximation for each single model. This limit state, falls in a region far from the stripe results 
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where not enough data is available. For instance, in Figure 4 neither of the three stripes crosses 
the θc = 1.50% vertical line. For this reason, for 100% weight assigned on the fiber model, the 
obtained fragility curves fails to perfectly capture the one estimated through IDA results. For 100% 
weight on the lumped plasticity model, the fragility curve seems to well reproduce the behavior of 
IDA results but this is generally not the rule in regions where not enough data is available. By 
employing the mixed probabilistic model, the obtained fragility curve is a combination of those of 
the two models. In terms of MAF, although the fiber-model offers more conservative results (i.e. 
higher MAF) it cannot be considered representative of the actual performance of the system in 
this θc region. The mixed model may offer more reliable results,  yet only comparison with a true 
benchmark could offer solid evidence in favor of one or the other. 

For θc = 3.0% the fragility curve of the fiber model seems not to be able to capture the 
performance of the system. In this region, the distributed-plasticity model cannot be considered 
reliable since stripe results are far from the LS being examined. However, the lumped plasticity 
model seems to better reproduce the behavior of the building and even if a relatively high weight 
is assigned to the fiber model, the results fall closer to those of the lumped plasticity model. The 
MAF of exceeding this LS when only the lumped-plasticity model is used is about the same as 
the one obtained through the (forced to become monotonically) empirical fragility. Generally, 
given the stripe analysis results (as per Figure 4) one may directly understand whether each 
model should be treated separately or how the two models should be combined into a mixed 
model.  

Conclusions 

The presented approach can take into account different analysis options into a single output 
suitable for fragility assessment by using a weighted combination of different sets of results. In 
this case, the example shown by the five-parameter power-law-based model, originally introduced 
by Jalayer (2003), enabled us to obtain reliable estimations of the fragility curves even in regions 
where not enough data was available. The selection of the relative weights assigned to each 
model depends on user’s own preferences and beliefs about the validity of each model in each 
region. Obviously, by modifying the relative weights, the mixed probabilistic seismic demand 
model is capable of capturing the response of each single model and any combination in between.  
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