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Abstract. The dependence of mankind on the urban built environment is an integral part of 
culture that is so firmly embedded in our daily life that we are mostly unaware of its 
existence, as long as functionality is provided. The aging of our structures and the action of 
natural hazards, such as earthquakes, threaten the functionality of our urban environment 
and extraordinary expenditures are required to just maintain the status quo. Throughout the 
world, buildings are reaching the end of their useful life and develop new pathologies that 
increase their seismic risk, an effect that we aim to capture. In the paper, first, a methodology 
for structural performance assessment with consideration of capacity degradation over time is 
presented, utilizing IN2 analysis and an extension of the PEER probabilistic framework to 
rapidly achieve accurate estimates of limit-state exceedance probabilities of deteriorated 
structures. In the second part the methodology is applied to an example of a three-storey 
asymmetric reinforced concrete building. At this stage of the study only an influence of 
corrosion on longitudinal and transverse reinforcement of the structural elements is considered 
in the estimation of the seismic risk. The N2 method is used for seismic performance assessment 
of the structure. It is shown that the capacity in terms of the maximum base shear, as well as in 
terms of the maximum ground acceleration corresponding to limit states in the nonlinear range, 
is reduced over time, since the corrosion affects the capacity of both the beams and columns. 
Consequently, the expected frequency of violating life-safety or near-collapse limit states over 
the time interval increases in comparison to the typical case where the strength deterioration is 
neglected. 
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1 INTRODUCTION 
Structures are exposed to aggressive environmental conditions which may cause different 

types of structural damage. For example, wind, waves, corrosive environment, extreme 
temperatures and earthquakes are the influences that can impact many existing structures 
every day. The cycling loads mentioned above can cause corrosion or material fatigue that 
may lead to the extensive deterioration of mechanical properties of structural elements. 
Consequently, the structural capacity degrades over time and a lot of economic costs have to 
be paid just to maintain the serviceability of the structure and to assure the resistance to the 
loads that such structures were designed for.  

Driven by the frequent failures of bridge structures, the influence of corrosion on their 
traffic load capacity has been widely researched. There, the effects of weathering are more 
severe since the entire structure is subject to weather conditions. Even for bridges though, 
most work  [1] has focused on the assessment of aseismic structures. Less has been done for 
structures, especially when under seismic loads, so, we propose to investigate the effect of 
weathering on the seismic performance of RC structures. This effort becomes especially 
significant for older, RC-structures designed and constructed in the 1950–1960 era that are 
nearing the end of their nominal design life. The fundamental understanding of the effect of 
weathering on our aging infrastructure will help us to get the evidence of the implications of 
our initial design assumptions on the actual performance of the structures during their entire 
life, not just when they are still young. 

In the present study we are trying to estimate the seismic risk of three-storey asymmetric 
non-ductile reinforced concrete frame building with consideration of capacity degradation 
over time. The methodology introduced by Torres and Ruiz  [2] is used in analysis, and is 
based on probabilistic framework proposed by Cornell et al.  [3], in addition to which, the 
structural capacity is considered to changes in time. The structure was modelled using OS 
Modeler  [4] (the sets of Matlab  [5] functions) and a nonlinear seismic analysis were 
performed by employing program OpenSees  [6]. In this stage of study only the uniform 
corrosion along the longitudinal and transverse reinforcement bars of structural elements was 
considered, which is a simplified approach of modeling the corrosion if compared to more 
accurate spatial non-homogeneous pitting corrosion [7]. The concrete spalling and reduction 
of maximum bond stress between concrete and reinforcement bar were not included in the 
model. That means that corrosion influences only on the diameter of the steel bar. The limit 
state at structural level was defined independently for ductile and brittle collapse mechanism. 
It was assumed that the ductile near collapse limit state appears when the maximum strength 
of structure, in relation to static pushover curve, reduces for 20%, and the brittle near collapse 
limit state appears if the shear force in the strongest column exceeds its shear strength. The 
example shows the significant increase in expected frequency of exceedance of brittle near 
collapse limit if the capacity degradation over time is considered in analysis. 

2 SUMMARY OF PROBABILISTIC FRAMEWORK 

The reliability framework introduced by Torres and Ruiz  [2], which was used in this study 
for structural reliability evaluation considering the capacity degradation over time, is 
summarized. The summarized framework is straightforward extension of the probabilistic 
framework proposed by Cornell et al.  [3]. In addition to the probabilistic framework 
introduced by Cornell et al.  [3] it is assumed that capacity is random variable with a 
probability density function  which changes with time. Therefore the conditional 
probability of failure  is also a function of time and the expected value of the 
number of failures during the time interval (  can be expressed as: 

( )C τ
( )Cf c τ

( ) ,P C S yτ⎡ <⎣ ⎦τ ⎤
),t t t+Δ
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It was shown [2] that the Eq. (1) can be expressed in closed form, similarly as derived by 
Cornell et al. [3], and can be then written as: 
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where k0 and k are the parameters of the hazard curve, DR tσ  is the dispersion measure for 
randomness in displacement demand, CR tσ  is the dispersion measure for randomness in 
displacement capacity, DU tσ and CU tσ  are, respectively, the dispersion measure for uncertainty 
in displacement demand and capacity, and bt is the parameter of the relationship between the 
seismic intensity measure and engineering demand parameter (e.g. displacement). The 
seismic intensity measure yĈ|t is related to the limit state capacity  at the beginning of the 
evaluation time interval: 
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The simplified expression of Eq. (1) is based on several assumptions. The hazard curve has 
to be approximated around the yĈ|t and the relationship between the seismic intensity measure 
and the engineering demand parameter has to be fitted around the  by the following 
power-law expressions: 

ˆ ( )C t

 ( ) ( )0
ˆ ,   tbk

ty k y D t a yν −= = . (5) 

The median capacity Ĉ(τ) is assumed to vary linearly with time: 

 ( ) ,  >0 and 0C t tα β α β= + ⋅  ≤ . (6) 

In addition it is assumed that all dispersion measures and the parameters of the relationship 
between the seismic intensity measure and the engineering demand parameter (at, bt) are 
constant over the integration time interval . The demand D and capacity  are assumed 
to be lognormally distributed. The dispersion measures related to demand and capacity are 
therefore defined as standard deviation of logarithm of the demand and capacity, respectively.  

tΔ ( )C t

In our case the probabilistic framework is applied for probabilistic seismic performance 
assessment of the structure. Therefore determination of the relationship between the seismic 
intensity measure and the engineering demand parameter may become extremely time-
consuming if the engineering demand parameter is determined with nonlinear dynamic 
analysis, which has to be performed for several intensity measures and different ground 
motion records in order to capture randomness due to earthquakes, e.g. with incremental 
dynamic analysis  [8]. In addition, analyses have to be performed also for selected 
ages/milestones during the design life of the structure. Therefore, for practical application, 
simplified analysis methods become very attractive. In our study the relationship between the 
seismic intensity measure and the engineering demand parameter, which changes with time 
(age of structure), was determined with the incremental N2 analysis (IN2) [9,10], which is a 
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The global result of the IN2 analysis is an IN2 curve, which represents the “mean estimate” 
of the engineering demand parameter given the seismic intensity measure, and it is intended 
to approximate a summarized (i.e., mean) IDA curve. The procedure for determination of the 
IN2 curve is explained elsewhere  [10]. For common structural systems with moderate or long 
fundamental period(s) IN2 curve results in a straight line. In this case the “equal displacement 
rule” applies, i.e. bt=1.0 (Equation 5), up to the “failure” point, which is conservatively 
represented by the near collapse limit state. After “failure”, the IN2 curve becomes a 
horizontal line. In more general cases, the IN2 curve can be determined in the same way as in 
the case of IDA, i.e. from two points of the actual curve, e.g. from the points representing the 
damage limitation and near collapse limit states, or by regression over the whole curve.  

Since the IN2 curve is only a mean result, it does not contain any dispersion information. 
Therefore the dispersion measures for randomness in displacement demand σDR|t and 
displacement capacity σCR|t cannot be determined from such results. Still, we can use existing 
results from other works  [10], [11], who have found that the coefficient of variation for the 
displacement of SDOF systems varied from 0,4 for structures with a moderate or long natural 
period, to 0,7 for structures with a short predominant period.  
 The determination of dispersion measures for uncertainty in displacement demand σDU|t 
and capacity σCU|t is in general possible to determine with the IN2 method, but requires a 
probabilistic structural model, i.e. a model with appropriate consideration of parameter 
uncertainties, which is not within the scope of this paper. However, it is convenient to 
predetermine the dispersion measures for uncertainty even if the relationship between seismic 
intensity measure and engineering demand parameter is determined with incremental dynamic 
analysis. For example, dispersions for steel frames have been proposed in the FEMA-350 
Guidelines  [12]. They may serve as rough estimates also for some other structural systems. 
For example, the total uncertainty dispersion measure  was 
applied for a global inter-story drift evaluation in the case of low-rise buildings within the 
SAC-FEMA seismic performance evaluation  [13].  

2 2 0.5( ) 0.35UT DU CUσ σ σ= + =

3 EXAMPLE OF THE THREE-STOREY REINFORCED FRAME 

3.1 Description of the structure 
The example structure is a three-storey asymmetric reinforced concrete frame building. 

This structure was pseudo-dynamically tested within a SPEAR project (M. Fardis and P. 
Negro, coordinators) and analysed in previous studies  [14]. The elevation, the plan of the 
building and the reinforcement in typical cross sections of the columns and beams are shown 
in Figure 1. The structure was designed for gravity loads only. 

3.2 The structural model 
 The columns and beams of the structure were modelled by one-component lumped 
plasticity elements, which consist of an elastic beam/column element and two inelastic 
rotational hinges at the ends, defined by a moment-rotation relationship. These relationships 
were determined for the columns by properly taking into account their axial load and its 
interaction with the moment capacity. Gravity loads for this RC structure amounted to 6,3 
kN/m2 and 6,2 kN/m2 for first two stories and top storey, respectively. A schematic moment-
rotation envelope is shown in Figure 2.  
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Figure 1: a) The elevation and plan view of example structure, and b) the typical cross-sections and 

reinforcement in columns and beams. 
 
 Rigid diaphragms were assumed at the floor levels due to monolithic RC slabs. 
Consequently the masses and mass moments of inertia were lumped at the mass centres. The 
masses and the mass moments of inertia amounted to 65,5 t and 1196 tm2 for the first two 
stories, and 64,1 t and 1254 tm2 for the top storey, respectively. The centreline dimensions of 
the elements were used with the exception of beams which are connected eccentrically to the 
column C6. Using centreline dimensions, the storey heights of 2,75 and 3,0 m, respectively, 
for the first and upper two storeys, were assumed. 

The yield and maximum moment of the moment-rotation envelope was determined from 
appropriate section analysis. The characteristic rotations, which describe the moment-rotation 
envelope of a plastic hinge, were determined according to the procedure described by Fajfar et 
al.  [14]. The zero moment point was assumed to be at the mid-span of the columns and 
beams. Therefore the rotations θy for moment-rotation envelopes of columns and beams were 
calculated using the formula: 

  
6

Y span
y

eff

M l
E I

θ
⋅

=
⋅ ⋅

, (7) 
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where lspan is the length of a beam or column, E is the modulus of elasticity and Ieff is the 
effective moment of inertia of the element (0,5 I).  
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Figure 2: Schematic moment-rotation relationship of a plastic hinge in columns and beams.  

The ultimate rotation θu,c in the columns, which corresponds to a 20% reduction in the 
maximum moment, was estimated by means of the Conditional Average Estimate (CAE) 
method  [15], whereas the ultimate rotation for hinges in beams θu,b were determined using the 
formula defined in  [16]: 
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. (8) 

where γel is equal to 1,0 (mean values as for secondary elements), parameter ν is the 
normalised axial load (for beams: ν=0), ω and ω’ are the mechanical reinforcement ratios of 
the tension and compression longitudinal reinforcement, fcm and fyw are the mean strength of 
concrete (MPa) and yield strength of steel (MPa), respectively, ρsx is the ratio of transverse 
steel parallel to the direction of loading, ρd is the steel ratio of diagonal reinforcement in each 
diagonal direction and α is the confinement effectiveness factor. All beams are defined as 
members without detailing for earthquake resistance. Therefore the rotations at near collapse 
limit state θnc are multiplied by 0,825. The post-capping or negative-stiffness part of moment-
rotation envelope is determined considering the assumption that ratio between the ultimate 
rotation θu,b and rotation at maximum moment θm,b is 3,5. Schematic moment-rotation 
relationship of a plastic hinge in columns and beams is shown on Figure 2. 

The degradation of capacity over time was modelled only with the simplified model of 
corrosion of longitudinal and transverse reinforcement in the external (i.e. exposed) elements 
of the structure. In general, the corrosion decreases the diameter of reinforcement and the 
bond stress between the concrete and steel bars. The later phenomenon and as well as spalling 
of concrete were not considered in this stage of the study. Therefore in our model the 
corrosion influences only the diameter of the steel bar. The reduced diameter Drb(t) of a 
reinforcing steel bar with initial diameter of Db (mm), which is subjected to corrosion for a 
time period (years) Δt=t-t0 (t0 represents corrosion initiation time in years) is according to 
 [17]: 

  (9) 0,023 (mm),rb b corrD D i t= − Δ  

where icorr represent the mean annual corrosion current per unit anodic surface area off steel 
(μA/cm2). In our analysis the corrosion current icorr=1,2 μA/cm2 was considered, which 
corresponds to a high level of reinforcement corrosion exposure [17]. 
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In order to determine the structural capacity as linear function of time, six deterministic 
models M0, M10, M20, M30, M40 and M50 for time periods: 0, 10, 20, 30, 40 and 50 years after 
construction of the structure were generated. For example, the moment-rotation envelopes for 
column C5 and beam B1 (Figure 1) in the first storey for different time periods are presented 
on Figure 3. The first free modal periods of undamaged structure are: TX=0,80 s TY=0,67 s 
and TRZ=0,538 s. The period T2 and corresponding mode shape, which is the most important 
for seismic performance assessment of the structure in Y direction, were used in the N2 
method (Section 3.5). 

3.3 Definition of limit state and nonlinear static analyses 
 The frequency of exceedance was determined for a brittle and ductile near collapse limit 
state. According to European standard [16] the near collapse (NC) limit state at the element 
level is defined with the ultimate rotation of plastic hinge (e.g Eq. (8)), which corresponds to 
20% drop of moment (Figure 3) and is related to ductile collapse mechanism, and with the 
shear strength, which is related to brittle collapse mechanism. The shear strength of element 
was calculated according to  [16]: 

 
( ) ( )( )

( )

1 min ;0,55 1 0,05min 5;
2

             0,16max 0,5;100 1 0,16min 5; ,

pl
R c c

el V

V
TOT c c W

h xV N A f
L

L f A V
h

μ
γ

ρ

Δ

⎡ ⎤−⎢ ⎥= + − ⋅⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞⎟⎜ ⎟⎜⎢ ⎥− +⎟⎟⎜ ⎜ ⎟⎟⎜⎢ ⎥⎟⎜ ⎝ ⎠⎝ ⎠⎣ ⎦

 (10) 

where γel was assumed 1,0 in order to get the mean value of the shear strength, h is the depth 
of cross-section, x is the compressive axial force, Lv is the ratio moment/shear (M/V), Ac is the 
cross-section area calculated as bwd, fc is the concrete compressive strength, ρtot is the total 
longitudinal reinforcement ratio and Vw is the contribution of transverse reinforcement to 
shear resistance, taken as equal to: 

 .  (11) w w w yV b zfρ= ⋅ ⋅ w

 The limit state at structural level was defined independently for the ductile and brittle 
collapse mechanism. Since the limit state at structural level is not defined in the standard it 
was assumed that the ductile near collapse limit state appears when the maximum strength of 
structure, in relation to static pushover curve, reduces for 20% (limit state A), and the brittle 
near collapse limit state appears if the shear force in the strong column C6 (Figure 1) exceeds 
its shear strength. Limit states A and B are denoted on Figure 4. 
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Figure 3: The moment-rotation envelopes for (a) column C5 and (b) beam B1 in the first storey considering 

capacity degradation over time. 
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Figure 4: The pushover curves for different time periods and near collapse points at (a) limit state A and (b) limit 

state B. 
 
 In general nonlinear static analysis is performed independently in X and Y direction. For 
brevity, results are presented only for pushover analysis in Y direction of the global 
coordinate system that is in the direction of strong side of column C6 (Figure 1). The 
influence of the unsymmetrical plan of the structure on the results of analyses is practical 
negligible. The imposed horizontal loads were determined by the product of storey masses 
and modal shape  [9], which are presented later in Section 3.5. Displacement of structure was 
monitored at mass centre at the top of the building. 
 The nonlinear static (pushover) analyses were performed for the structure at time (age) 0, 
10, 20, 30, 40 and 50 years. The pushover curves for models M0, M10, M20, M30, M40 and M50 
corresponding to different time periods (age of structure) are presented in Figure 4. The 
values for maximum load resistance Fmax and displacements Dnc at limit state A and limit state 
B are outlined in Table 1.  
 The shear strength versus weight ratio is 11% for the new structure (time 0) and decreases 
during aging process. After 50 years the strength of the structure is reduced for about 13,3%. 
The difference in the top displacement in limit state A due to ageing of the structure is not so 
important as the difference in the strength of the structure (it amounts to 3,6%) since area of 
the longitudinal reinforcement does not have an important influence on the ultimate rotation 
in plastic hinges (Figure 3), whereas the top displacement in limit state B is significantly 
reduced (about 38 %). 

Model Time Max. load Limit state A Limit state B 
label t (y) Fmax (kN) dnc (m) dnc (m) 
M0 0 284 0,250 0,055 
M10 10 276 0,248 0,050 
M20 20 268 0,246 0,046 
M30 30 261 0,244 0,042 
M40 40 254 0,242 0,038 
M50 50 246 (-13%) 0,241 (-3,6%) 0,034 (-38%) 

Table 1: The values for maximum load resistance Fmax and displacements Dnc for limit states A and B. 

3.4 The elastic response spectrum and the seismic hazard curve 
 In the study the seismic hazard curve for the South-East part of Slovenia  [18] was used and 
it was idealized with function H(s)=k0×s-k, where k and k0 are the parameters of the hazard 
function  [3]. In the idealization procedure the intervals from 0,25 ag,nc(t0) to 1,25 ag,nc(t50) 
were selected  [18], where ag,nc(t0) is the peak ground acceleration for undamaged structure 
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k=3,275, k0=5,280×10-6 for limit state A 
and 

k=1,300, k0=3,260×10-6 for limit state B. 

 The seismic load is defined with the elastic response spectrum according to European 
standard  [19] for a soil class C. The seismic hazard curve for a peak ground acceleration and 
elastic response spectrum are presented on Figure 5. The intensities for return periods 225, 
475 and 2475 years as well as maximum ground accelerations for limit states A and B are 
marked on the curve. Note that the peak ground acceleration was selected for intensity 
measure. 

3.5 The maximum ground acceleration at different age of structure 
 The peak maximum ground acceleration (ag,nc) was determined by the N2 method  [9]. The 
process of determination of ag,nc is explicitly presented for limit state A for model M0 while 
for other age of structure and for limit state B only the results are presented.  
 The pushover curve has to be idealized as shown in Figure 6a in order to determine 
quantities of the single degree of freedom model (SDOF). The results of idealization are the 
yield force Fy and yield displacement Dy. The quantities of the SDOF system are determined 
by dividing the quantities of the MDOF system by the transformation factor Γ: 

 2 1, 27;  128,6 t,SDOF
SDOF i i

i i

m m m
m

φ
φ

Γ= = = ⋅ =
⋅

∑∑
   (12) 

where mSDOF is the mass of SDOF system, m={65,6 65,6 64,1} t is a vector of storey masses 
and φY={0,25 0,70 1.00} is the mode shape vector of the predominant translational mode 
shape in Y direction. Yield point of the SDOF system is obtained simply as 

0,034 my yd D= Γ=  and 224 kNy yf F= Γ= . The period of the SDOF system is 
calculated as follows: 

 2 0,870 sSDOF y
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y

m d
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f
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⋅
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The periods of all equivalent SDOF systems are obviously within the medium-period range of 
the spectrum (Figure 5) and exceed the characteristic period TC, which is the corner period 
between the constant acceleration and constant velocity ranges in an idealized Newmark-Hall 
type spectrum. The equal displacement rule can therefore be applied for the determination of 
spectral acceleration, which corresponds to the NC limit state. Therefore the Sae,nc is:  

 
2

2
,

2 10,3 /ae nc m
SDOF

S d m
T

π⎛ ⎞⋅ ⎟⎜ ⎟= ⋅ =⎜ ⎟⎜ ⎟⎜⎝ ⎠
s  (14) 

and peak acceleration ag,nc corresponding to the NC limit state is determined from the elastic 
spectrum as follows: 

 
( ), 2

, 5, 20 m/s 0,530 g
2,5

ae nc SDOF SDOF
g nc

C

S T Ta
S Tη

= ⋅ = =
⋅ ⋅

. (15) 

 The presented evaluation of the ag,nc is shown also in AD format together with the capacity 
diagram of the SDOF system (Figure 6b).The procedure for determination of the maximum 
ground acceleration, which corresponds to the NC limit state, was repeated for limit state B 
and for other selected age of structure. The results for ground accelerations ag,nc are outlined 
in Table 2. The reduction in maximum ground acceleration ag,nc is similar to that shown 
before for the maximum top displacement (Section 3.3, Table 1) and is about 4,7% for limit 
state A and 34% for limit state B.  

3.6 Structure capacity in terms of maximum top displacements as function of time 

The structure capacity is defined in terms of maximum top displacement corresponding to 
the NC limit states defined in Section 3.3 and varies linearly in time: C(t)=α+ β ×t. The 
parameters α and β  that defines linear function C(t) are calculated using linear regression 
(i.e. the method of least squares). The values are: 

0,2499 and 0,0002 for limit state A,α β= = →  
0,0548 and 0,0004 for limit state B.α β= = →  

The top displacements corresponding to defined limit states and ages/milestones of structures 
are presented in Figure 7a and 7b, respectively, for limit state A and B. The fitted lines 
approximate the decrease of median capacity over structural lifetime. The values of fitted top 
displacements dnc,fitt and corresponding maximum ground accelerations ag,nc for limit states A 
and B are presented in Table 2. Note, that top displacements dnc,fitt in Table 2 are values fitted 
with linear function and are different from those in Table 1. 
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Figure 6: a) Idealization of pushover curve for model M0 and b) the AD format  for SDOF sistem. 
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Figure 7: The values for maximum top displacement at predefined age of structure and fitted line that 

approximate structure capacity as function of time for a) limit state A and b) limit state B. 
 

Limit state A Limit state B Time 
(years) dnc,fitt (m) ag,nc (m/s2) dnc,fitt (m) ag,nc (m/s2) 

0 0,249 0,530 0,055 0,119 
10 0,248 0,525 0,051 0,109 
20 0,246 0,521 0,047 0,102 
30 0,244 0,516 0,043 0,094 
40 0,242 0,510 0,039 0,085 
50 0,240 0,507 0,035 0,077 

Table 2: The expected number of failures ηFT for NC limit states A and limit state B. 

3.7 Expected number of failures over lifetime of the structure 
 The expected number of exceedance of NC limit state ηF,T for different age of structure 
were calculated by means of Eq. (2), where the initial conditions correspond to time t=0 years 
and the time increments Δt = 10, 20, 30, 40 and 50 years were considered. The seismic hazard 
H(ag,c) was defined with the seismic hazard curve for the South-East part of Slovenia  [18] 
(Section 3.4) and dispersions for randomness in seismic demand and capacity were 
considered to be equal to 0,4 and 0,2, respectively. Dispersions for uncertainty in 
displacement demand and capacity were assumed equal to 0,25. In addition also the annual 
frequency of exceedance of NC limit state was calculated. The expression for annual 
frequency of exceedance of NC limit state is: 

 ( )
( )

2
2 2 2 2

| | | |22
, , |,1 ( )

DR t CR t DU t CU t
t

k
b

F T g nc tt H a e
σ σ σ σ

η
+ + +

= ⋅  (16) 
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Figure 8: a) The factor Ω (t) and b) annual frequency of exceedance ( ), ,1F T tη  for limit states A and B. 
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The factor Ω(t) and annual frequency ( ), ,1F T tη  are shown in Figure 8 and the expected 
number of exceedance of NC limit state ηF,T  for different periods are presented in Figure 9.  
 If degradation of structural capacity is neglected, the expected number of failures over the 
time interval (t, Δt) was evaluated considering the assumption that parameter β, that controls 
the capacity degradation gradient, is equal to 0. In that case the limit of parameter Ω: 

  (17) ( )
0

lim ,t t t
β→

Ω Δ =Δ

 The expected number of exceedance of NC limit state B in time interval (0, 50 years) is 
0,437 and it is 33 % higher than in the case where the degradation was not considered. For 
limit state A the difference is not so important, it amounts to 7,1 %. The values for both limit 
states and for different time periods are presented in Figure 9 and Table 3. The continuous 
curve represents the expected numbers of failures considering the capacity degradation over 
time and the dashed curve represents the case when the degradation was neglected. The 
picture 9a and 9b are related to limit state A and limit state B, respectively.  
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Figure 9: The expected number of failures ηFT for (a) NC limit state A and (b) NC limit state B for different 

periods of design structure life. 

Limit state A: ηFT (1/Δt) Limit state B: ηFT (1/Δt) 
Degradation Degradation 

Time 
(years)

Yes No Yes No 
10 0,004 0,004 0,069 0,066 
20 0,008 0,007 0,145 0,131 
30 0,012 0,011 0,230 0,197 
40 0,016 0,015 0,327 0,262 
50 0,020 0,018 0,437 0,328 

Table 3: The expected number of failures ηFT for NC limit state A and B presented for different periods of design 
structure life. 

4 CONCLUSIONS 
A simplified methodology has been presented for estimating the seismic performance of 

aged RC structures. Considering only the deterioration of longitudinal and shear 
reinforcement due to corrosion, and utilizing simplified analysis techniques within a 
SAC/FEMA-like probabilistic framework [20], we are able to estimate the changing mean 
annual frequency of limit-state exceedance as it worsens with time. Finally, the total 
probability of limit-state exceedance is quantified over the design life of the structure, 
providing us with a cumulative single measure of the structure’s performance as aging sets in.  
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In our case-study of a 3-story non-ductile RC structure, corrosion is shown to only slightly 
influence the moment capacity of beams and columns, while their shear capacity was heavily 
degraded. We observed a 33 % increase in the probability of collapse over the lifetime of the 
building, a significant increase that simply cannot be ignored. It is envisaged that further 
refinement of our techniques with inclusion of concrete spalling and bond degradation will 
only worsen such conclusions. Thus, further verification of such results is needed in order to 
better understand the actual risks faced by our aging infrastructure and appropriately amend 
our design codes. 
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