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Abstract. Nonlinear static procedures, which relate the seismic demand of a structure to that 

of an equivalent single-degree-of-freedom (SDOF) oscillator, are well-established tools in the 

performance based earthquake engineering  framework and have gradually found their way 

into modern codes for seismic design and assessment. Initially, such procedures made recourse 

to inelastic spectra derived for simple elastic-plastic or bilinear oscillators, but the request for 

demand estimates, which delve deeper into the inelastic range, shifted the trend towards inves-

tigating the seismic demand of oscillators with more complex backbone curves. 

 Meanwhile, the engineering relevance of near-source (NS) pulse-like ground motions has been 

receiving increased attention, since it has been recognized that such ground motions can induce 

a distinctive type of inelastic demand. Pulse-like NS ground motions are usually the result of 

rupture directivity, where seismic waves generated at different points along the rupture front 

arrive at a site at the same time, leading to a double-sided velocity pulse, which delivers most 

of the seismic energy. Recent research has led to a methodology being proposed for incorpo-

rating this NS effect in the implementation of nonlinear static procedures.  

Both of the aforementioned lines of earthquake engineering research motivate the present study, 

which investigates the ductility demands imposed by pulse-like NS ground motions on SDOF 

oscillators who feature pinching hysteretic behavior with trilinear backbone curves. This in-

vestigation uses incremental dynamic analysis (IDA) considering a suite of one hundred and 

thirty pulse-like-identified ground motions. Median, as well as 16% and 84% fractile, IDA 

curves are calculated, on which an analytical model is fitted. Least-squares estimates are ob-

tained for the model parameters, which importantly include pulse period Tp. The resulting equa-

tions effectively constitute an R-μ-T/Tp relation for pulse-like NS motions. A potential 

application of this result is briefly demonstrated in an illustrative example of NS seismic de-

mand estimation. 
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1 INTRODUCTION 

Estimating the seismic demand for structures expected to respond inelastically to future 

earthquakes attaining a certain intensity, is one of the key issues in performance based earth-

quake engineering (PBEE, see for example [1]). What sets near-source (NS) seismic input apart 

is the fact that NS ground motions often contain significant wave pulses. In fact, the engineering 

relevance of NS pulse-like ground motions has been receiving increased attention during the 

past decades, since it has been recognized that such ground motions can be more damaging than 

ordinary ground motions and can induce a distinctive type of inelastic demand. The primary 

cause of these impulsive characteristics in NS strong ground motion is rupture forward directiv-

ity (FD). During fault rupture, shear dislocation may propagate at velocities very near to the 

shear wave velocity. As a result, there is a probability that, at sites aligned along the direction 

of rupture propagation, shear wave-fronts generated at different points along the fault arrive 

almost simultaneously, delivering most of the seismic energy in a single double-sided pulse 

registered early in the velocity recording [2], [3]. See Figure 1 for a schematic representation 

of this effect and an example of a velocity pulse due to FD. 

Procedures relating the structural seismic demand to that of an equivalent single-degree-of-

freedom oscillator, collectively known as nonlinear static procedures [4], have carved their own 

niche in the PBEE framework and have gradually found their way into modern codes for seis-

mic design and assessment.  

 

Figure 1: Snapshot of wave fronts; pictorial representation of the directivity of seismic energy adapted from [2] 

(a) and initial segment of the velocity time history of the fault-normal component of ground motion recorded on 

the left abutment of the Pacoima Dam, during the 1971 San Fernando (California) earthquake (b). 

Initially, these static nonlinear procedures made recourse to inelastic spectra derived for sim-

ple elastic-perfectly-plastic or bilinear oscillators. One such procedure applicable in NS condi-

tions has been suggested in [5]. However, the request for demand estimates that delve deeper 

into the inelastic range and arrive at quantifying collapse capacity (definition to follow), led 

researchers to also investigate the seismic demand of oscillators with more complex backbone 

curves such as the trilinear backbone depicted in Figure 2.  

In order to fully describe this backbone curve mathematically in ductility - reduction factor 

normalized coordinates, three parameters are required: the slope, h , of a plastic or hardening 

branch that simulates post-yield ductility and the slope, c  and “capping point” ductility c of 

a softening branch that is typical of the behavior of most structures, either brittle or ductile, that 

reach a maximum strength and then exhibit in-cycle degradation that leads them to negative 

stiffness due to strength loss. The phenomena that actually lead to negative stiffness in a real 

structure can include P-∆ effects and material strength degradation (often both). Negative stiff-

ness can be encountered on the static pushover curves of many types of structures, such as 

braced steel frames, moment resisting steel frames, concrete frames or other types of structure 

that exhibit sensitivity to second order effects. 
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Figure 2: Representation of trilinear backbone curve in normalized coordinates (ductility μ in the abscissa and 

reduction factor R in the ordinate) and defining parameters: post-yield hardening slope h , softening branch neg-

ative slope
c  and capping ductility 

c which separates the hardening and softening branches. 

This study employs incremental dynamic analysis (IDA, [6]) in order to investigate the seis-

mic demand of oscillators with tri-linear backbones, when subjected to NS pulse-like ground 

motions, with the ultimate goal of developing an analytical model. Development of this model 

closely follows the methodology of Vamvatsikos and Cornell [7] and uses a dataset of one-

hundred and thirty pulse-like ground motions exhibiting FD effects [8]. 

The remainder of this article is structured as follows: after a brief note on the ground motion 

suite employed, the methodology is laid out in detail followed by a description of the parameter-

fitting procedure that leads to the analytical model. Finally, an illustrative example, involving 

a NS design scenario, is presented to highlight the applicability of the model, followed by a 

brief discussion on the main conclusions of this study. 

2 DATASET OF NS PULSE-LIKE GROUND MOTIONS 

The present study employs a dataset of one-hundred and thirty pulse-like NS ground motions, 

whose impulsive nature is most likely related to rupture directivity. This is motivated by the 

fact that the stated objective is the characterization of NS structural response in relation to pulse 

duration Tp. Velocity pulses significantly deviating from the characteristic double-sided, early-

arriving waveform associated with directivity, may not exhibit the same type of correlation 

between inelastic structural response and pulse period.  

Having as a starting point the dataset used in [9], the pulse identification approaches sug-

gested in [10] and [11] were used to seek out additional directivity ground motions. This search 

mainly focused on more recent seismic events which provided a multitude of NS recordings, 

such as the Parkfield 2004 (California) event, the Darfield 2010 and Christchurch 2011 (New 

Zealand) events and the South Napa 2014 (California) event. During this search, some effort 

was made to discern those velocity pulses most likely to have been the result of directivity for 

eventual inclusion in this investigation. A more detailed account on the methodology employed 

in order to assemble this dataset, along with a complete list of the ground motion recordings 

and relevant metadata can be found in [8]. 

3 MODELLING NEAR-SOURCE PULSE-LIKE SEISMIC DEMAND FOR TRI-

LINEAR BACKBONE OSCILLATORS 

Incremental dynamic analysis is a procedure to semi-empirically estimate probabilistic seis-

mic structural demand and capacity. This well-established procedure, typically entails a non-

linear numerical model of the structure which is subjected to a suite of ground motion records, 
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all scaled at a common seismic intensity measure (IM) level. This IM level is gradually in-

creased by applying a common scale factor simultaneously to all the records, in order to reveal 

the entire range of post-yield response of the structure, conditional to several IM values, up to 

global dynamic instability and consequent collapse. 

During IDA, structural response to a single record is usually represented by plotting two 

scalars against each other: an IM characterizing the various scaled incarnations of the record 

and an engineering demand parameter (EDP) representing the amplitude of response, to obtain 

a single record IDA curve. Once a set of IDA curves has been collected, representing the entire 

suite of ground motions, it is an efficient practice to summarize the curves into sample fractile 

statistics. Typically sample medians, 16% and 84% fractiles are calculated [6]. 

IDA can be a computationally intensive procedure. This fact motivated Vamvatsikos and 

Cornell to develop a software tool, which provides a shortcut, at the cost of introducing some 

approximation in the process [7]. Having observed that summary IDA curves of SDOF systems 

with multi-linear backbone curves exhibit a consistent behavior in correspondence with each 

segment of the backbone (elastic, post-yield hardening, post-cap softening and residual strength 

segments, the first three represented in Figure 1), they used IDA to investigate the response of 

a large population of oscillators with varying backbone parameters.  

Having thus mapped the behavior of many backbone shapes against a suite or ordinary 

ground motions, not affected by directivity, they proposed a tool, aptly named SPO2IDA, ca-

pable or reproducing the IDA curves of these SDOF systems without having to run any analysis. 

Essentially SPO2IDA is nothing less than a complex R-μ-T relation applicable to ordinary 

ground motions (SPO2IDA tool available online at http://users.ntua.gr/divamva/soft-

ware/spo2ida-allt.xls , last accessed April 1st, 2015). 

The objective of this study is to follow in the footsteps of Vamvatsikos and Cornell [7] and 

employ IDA on trilinear backbone SDOF systems using a set of pulse-like records, in order to 

develop the equivalent of an R-μ-
pT T  relation appropriate for NS FD ground motions. 

3.1 Predictor variables  

A parametric model that predicts the fractile IDA curves of pulse-like FD ground motions 

(which will occasionally be referred to as pulse-like IDAs for brevity in the following) for SDOF 

oscillators featuring a generic trilinear backbone will necessarily include  all the parameters that 

uniquely define the geometry of the backbone curve. This means h , c  and c   (see Figure 

1) should all be included as explanatory variables in the model. The effect of varying these 

parameters on the seismic response to pulse-like ground motions has already been the object of 

investigation [12]. An additional variable that must be included in the model is pulse period, by 

virtue of its demonstrable value as a predictor for the inelastic response of this type of ground 

motion [9], [13]. In this case, pulse period is included as the denominator of the normalized 

period ratio pT T , in a manner analogous to [9]. Consequently, the ground motion IM adopted 

for the IDAs is strength reduction factor R, defined as per Equation (1). EDP of choice for the 

SDOF systems is ductility μ defined as the ratio of maximum displacement to displacement at 

yield – Equation (2). 

 
 

 
a i p,i

yield

a i p

S T T , 5% T
R ,    0.10, 2.00

S T ,5% T

    
   

 

(1) 

http://users.ntua.gr/divamva/software/spo2ida-allt.xls
http://users.ntua.gr/divamva/software/spo2ida-allt.xls
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max

yield


 


 

(2) 

This effectively means that IDA curves computed in this study for given values of the 
pT T  

ratio, collect the responses of oscillators with different vibration periods (since, in general, 

every record has a different pulse duration 
pT  associated with it) and thus only make sense as 

cross-sectional data when plotted in normalized  ,R   coordinates. This approach raises the 

concern that one should avoid mixing the response of very low-period oscillators, which is 

characterized by high ductility demands even when ordinary records are concerned, with the 

response of moderate-to-long period oscillators subjected to long duration pulses. To address 

this concern an additional restriction is imposed, that of only considering response data at each 

pT T cross-section for which T 0.30s . 

3.2 Hysteretic rule 

When oscillators featuring a descending branch are concerned, it was found that a kinematic 

hardening hysteretic rule is not representative of how actual structures have been observed to 

behave during experiments [14]. With this information in mind, a peak-oriented, moderately 

pinching hysteresis rule developed by Ibarra and Krawinkler [15] was adopted for the present 

study. This hysteretic rule does not include any cyclic strength degradation, but this is consid-

ered to be of secondary importance. Strength degradation only tends to supersede the shape of 

the backbone in importance when severe degradation is encountered in low-period structures. 

However, given the range of pulse-periods associated with the NS-FD record suite employed 

in this study [8], the model is more oriented towards moderate to long period structures and 

cyclic degradation is not included in the hysteretic rule used in the analyses. 

3.3 Equivalent ductility concept 

A straightforward way of tackling the problem of modelling pulse-like IDAs could be to run 

a very large number of individual incremental dynamic analyses in an attempt to span the entire 

parameter space of c , h , c  and
pT T . However, structural responses exhibit a complicated 

interdependency with respect to the four parameters (backbone characteristics and normalized 

period), which cannot be regarded independently one from another; this means that considering 

all their meaningful combinations leads to a population of SDOF oscillators numbering in the 

thousands, and an amount of IDAs which can be hard to obtain and manage. 

Fortunately, one can take advantage of the experience accumulated in [7] to drastically re-

duce the amount of necessary analyses. More specifically, it was found that the equivalent duc-

tility eq  concept (see Figure 3), which was introduced in the analogous study of ordinary 

ground motion IDAs [7], can also be employed for the case at hand. In that study Vamvatsikos 

and Cornell found that oscillators with a generic backbone containing both a hardening segment 

and negative-stiffness softening branches with coincident post-capping slope, such as those 

shown in Figure 3, have a very similar part of the IDA between capping ductility   and the flat-

line. The flat-line actually develops at some point slightly prior to reaching zero strength at  , 

which is given by Equation (3). 

c h h
end c

c

1  
   


 

(3) 
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Figure 3: Schematic representation of the “equivalent ductility” 
eq  concept. 

Furthermore, flat-line height among these oscillators varies in an almost linear fashion be-

tween the two extremes marked by h 0   and h 1  in Figure 3. Therefore, for any tri-linear 

oscillator with given capping ductility c , one needs only determine ductility at maximum 

strength reduction factor 
peak , given by Equation (4) and equivalent ductility 

eq where an 

h 0   oscillator meets the common negative branch and is given by Equation (5). 

 c c h c

peak

c

1 1

1

      
 

 
 

(4) 

 h c

eq c

c

1   
   


 

(5) 

As long as a comprehensive model is available for these limit cases, interpolation can be 

used to provide the IDA curves of the intermediate oscillators, as will be shown in a subsequent 

example. 

4 ANALYTICAL FORM AND FITTING OF THE MODEL 

4.1 Bilinear oscillators with hardening post-yield behavior  

The analytical functional form selected to model the pulse-like IDA curves for bilinear os-

cillators with hardening (positive post-yield slope) is given by Equation (6). It is a rational 

function (in log-space) of ductility given reduction factor fractiles, containing a total of four 

parameters to be determined by fitting the model to the data.  

   
2

x% x%
x% (100 x)% c

x% x%

a ln R b ln R
ln ,   R 1,R ,  x= 16,50,84

c ln R d


  
       

(6) 

The fit follows a two-stage procedure: the first stage entails obtaining non-linear least 

squares estimates of the model parameters x% x% x%a ,  b ,  c  and x%d for each distinct backbone 

(uniquely characterized by h ), normalized period pT T  and x% fractile IDAs, for a total of 
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nine-hundred instances of parameter estimation. Subsequently, a linear model represented by 

Equation (7) is fit to each of the parameters, in order to capture their dependence on the remain-

ing variables of the problem, namely h  and 
pT T . This second stage entails a total of twelve 

two-dimensional fits, since for each one of the four parameters, three fractile curves must be 

accommodated. 

     x% x% x% x% x%,i i h i h p

i p

T
a , b ,c ,d p q ,  0,0.8 ,  T T 0.1, 2.0

T

 
         

 
  (7) 

The terms  i hp   and i

p

T
q

T

 
  
 

 represent simple functions of the variables in parentheses. 

A sample of the obtained results can be seen in Figure 4, where the fitted curves for all 3 fractile 

x% R  IDA curves are plotted against the analysis results for three oscillators with increasing 

post-yield stiffness and for different 
pT T  ratios. Coefficient estimates for Equation (7) can be 

found in [8]. 

 

Figure 4: Comparison of the fitted model of Equation (6) with the underlying data for SDOF systems (a) with 

h 3%   at
pT T 0.50 , (b) h 15%   at

pT T 0.30  and (c) h 50%   at
pT T 0.40 . 

4.2 Bilinear oscillators with softening (negative slope) post-yield behavior  

The appearance of a softening on the backbone curve, automatically introduces the question 

of collapse capacity (i.e. strength reduction factor that causes dynamic instability in the oscil-

lator) into the problem. In the trilinear backbones examined here (where no residual strength 

part is taken into consideration), the segment with negative post-yield slope will eventually 

cross the zero capacity axis at end ; see Equation (4). Dynamic instability, indicated by the 

typical IDA flat-line will actually occur at a ductility level slightly lower than end . The height 

of the flat-line will be henceforth referred to as collapse capacity capR  while the corresponding 

ductility will be indicated as cap  (ductility at capacity, not to be confused with capping ductil-

ity c ). 
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In the case of bilinear oscillators, ascending post-yield slopes starting from close to unity 

and running up to (and including) the horizontal, were examined in the previous section. How-

ever, as soon as the slope of the backbone past the yielding point begins to descend, the addi-

tional variable of flat-line height 
capR  must be also accounted for by the model. 

Contrary to the hardening case, for which Equation (6) gives fractile   given R ( x% R ) 

IDAs, for the negative post-yield slope case it was chosen to fit a reduction factor given ductility 

(fractile x%R  ), model, which is given by Equation (8) and supplemented by Equation (9).  

  x%
x% cap(100 x)%

x%

a ln
ln R ,   1, ,   x= 16,50,84

ln b


 
    

 
(8) 

     x% x% x%,i i c i c p

i p

T
a , b p q , 4.0, 0.05 ,  T T 0.1, 2.0

T

 
           

 
  (9) 

According to [16], the x% R  and 
(100 x)%R    fractile IDA curves are almost identical, even 

when the typical IDA properties of continuity and monotonicity are slightly violated. Therefore, 

collapse capacity 
cap,x%R  should also appear on the corresponding 

(100 x)% R curve. The moti-

vation behind this modeling choice lies in the prediction of collapse capacity. As can be seen 

in Figure 5, the tangent slope of each summary IDA curve, progressively decreases as ductility 

approaches end . This means that, as strength reduction factor approaches 
capR , small varia-

tions in reduction factor correspond to much greater variations in ductility.   

 

Figure 5: Model fit of Equation (8) plotted over calculated SDOF pulse-like IDAs for oscillators with (a) 

c 0.20    at
pT T 0.30 , (b) c 0.50    at

pT T 0.50  and (c) c 0.90    at
pT T 0.80 . Note that the 

fitted model has been extended past the collapse capacity point only for presentation reasons. 

This observation has an important practical implication. Given a hypothetical model for 

x%R   or (100 x)% R  fractile IDAs with misfit (i.e., a model exactly reproducing the data) and 

a separate model for capR , some inevitable misfit in the latter will cause the point of collapse 

not to fall exactly on the predicted IDA curve. Recalling now the observation about the tangent 
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slope of the curve, it becomes apparent that a small misfit in predicted flat-line height can cause 

the flat-line to intersect the IDA “too early” or even unrealistically “late” (beyond end ). 

On the other hand, if one were to adopt a model that predicts ductility at collapse capacity 

cap( ) , any fitting error would perturb the prediction along the abscissa (assuming μ is plotted 

on the horizontal axis as in Figure 5) resulting in negligible difference on the corresponding 

reduction factor. However, modelling 
cap does not automatically resolve the problem; an ordi-

nary least squares fit of Equations (8-9) does not guarantee that the x%R   curve passes 

through 
capR . For this reason, the finally adopted solution is the combination of a weighted 

least squares fitting scheme for Equation (8) with a model for 
cap,x%  fractiles given by Equa-

tions (10-11). 

 
     h c

cap,x % c x% h c

c

1 1
c , 0,0.8 ,  4.0, 0.05 ,  x= 16,50,84

   
          


 (10) 

   c peak

x% x% x%

eq peak

c ,  0.85,1.00,1.05  for x= 16,50,84
 

    
 

 (11) 

This concept, employs an adaptive weighting scheme when fitting Equation (8) to the data; 

the point of collapse capacity is given an increased weight until the fitted curve passes through 

this point within a prescribed tolerance on the ordinate axis (reduction factor). Essentially, the 

model is forced to prioritize capturing the point of collapse capacity with increased accuracy. 

Thus, we may consider that cap,x% x% cap,(100 x)%R R      as per Equation (8), having ensured 

that this estimate is less susceptible to fitting error than direct modelling of the flat-line height. 

Coefficient estimates for Equation (9) can also be found in [8]. 

5 RESULTS AND DISCUSSION  

The analytical models whose development was presented in the preceding paragraphs, can 

be combined to obtain a prediction for pulse-like IDAs of oscillators in procession of a fully-

trilinear backbone curve. The empirical principles underlying this approach have already been 

either detailed or alluded to in the previous sections. What remains is an illustration of their 

application. Such an application is shown in Figure 6, for an oscillator characterized by back-

bone parameters h 0.20  , c 6   and c 0.50   . In order to obtain this composite predic-

tion, Equation (6) is implemented for as long as  , with each segment culminating at reduction 

factor levels  indicated as   in Figure 6.  Subsequently, the negative slope part is modeled, by 

using Equation (8) for an interval of ductility  . This segment is adjusted in height at the inter-

section with the previous model, so that the   points will belong to both segments, in the interest 

of continuity. 
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Figure 6:  Model prediction of the fractile pulse-like IDAs for a trilinear backbone oscillator (
h 0.20  ,

c 0.50   and c 6  ) at 
pT T 0.40 . 

6 ILLUSTRATIVE APPLICATION  

Despite the fact that the model provides output in the form of fractile IDA curves, these 

should not be employed to directly estimate the probabilistic distribution of EDP given IM. The 

reason behind this is the fact that the IDA curves refer to a given 
pT T  ratio, rather than a 

specific structure. In fact, the model acts like an R-μ-
pT T  relation, which must be combined 

with site-specific information on pulse period and likelihood of directivity. As such, it could be 

employed in a manner analogous to the methodology of [5] in order to render a static non-linear 

procedure, for example the capacity spectrum method [17], applicable in NS conditions. 

An illustrative example of this concept is presented in Figure 7. In the first panel, Figure 

7(a), the median SPO2IDA ordinary prediction for a bilinear oscillator characterized by a 

T=1.0s period of natural vibration, post-yield hardening slope h 0.20   and spectral accelera-

tion at yield yield

aS 0.10g  is compared against various median IDAs which incorporate pulse-

like effects in both arbitrary and systematic fashion. 

The median IDAs used for the comparison, consist of one curve obtained by running IDA 

for a set of thirty randomly selected pulse-like ground motions (with an average pulse period 

pT 1.62s ), another obtained by means of Equation (6) for pT T 0.40  and a third curve ob-

tained by integrating Equation (6) over various potential pulse periods from a site-specific NS 

design scenario (to follow). A final comparison is made with an IDA curve that accounts for 

both the ordinary and pulse-like component of seismic demand at the site, each weighted by its 

respective likelihood. 

The NS scenario under consideration refers to a site being affected by a seismic source char-

acterized by a nearly vertical strike-slip mechanism, with seismicity governed by an M7 char-

acteristic earthquake model and maximum rupture area of 1330km2. The site is 5km distant 

from the horizontal projection of the assumed fault plane and therefore some directivity effects 

are to be expected (Figure 8).  
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Figure 7: (a) Ordinary SPO2IDA median prediction for a bilinear oscillator with vibration period T=1.0s, post-

yield hardening slope h 0.10  and spectral acceleration at yield yield

aS 0.10g  compared with  curves incorpo-

rating pulse-like effects in both arbitrary and systematic fashion. (b) Information obtained from site-specific (see 

Figure 8) NS hazard incorporated into the pulse-like IDA model to obtain site-specific IDA curves. 

 

Figure 8: Schematic representation of NS design scenario used in the illustrative example. 
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NS hazard at the site expressed in terms of spectral acceleration at the oscillator’s period was 

disaggregated for various values of   chosen to translate into reduction factors . Thus, the con-

ditional probability density functions of pulse period   are obtained at each stripe of reduction 

factor (the interested reader is referred to [18] and [19] for a detailed treatment of the method-

ology involved in these NS probabilistic seismic hazard analysis calculations).  

This information is incorporated into Equation (6) by assuming that ductility given demand 

follows a lognormal distribution, leading to Equation (12), where the abbreviated notation is 

used to indicate the conditional probability mass , resulting from discretizing the random vari-

ables involved  (see Figure 7b) in order to avoid integral notation when writing the law of 

conditional expectation. 

 
p,i50% p,i t

i

E ln R,pulse ln R,T t P       
 

(12) 

Under the same assumption of log-normality, the law of conditional variance can be written 

as in Equation (13), where the notation Var[∙] indicates the variance operator. It should be men-

tioned that in order to maintain a more parsimonious notation, the condition a aS (T) s , which 

holds for all expected values and variances, is replaced by strength reduction factor R in the 

following equations (for the specific structure, yield force is known).  

 

p,i

p ,i

p t

i
2

50% p,i t

i

Var ln R,pulse Var ln R,T T P

E ln R,pulse ln R,T t P

          

         




 (13) 

Note that in Equation (13)    
2

p 84% p,i 16% p,iVar ln R,T T 1 4 ln R,T t ln R,T t          

due to the log-normality assumption invoked earlier. This procedure and its end result (in terms 

of both mean and variance), are illustrated in the second panel, Figure 7(b). To the right of the 

IDA curves plot, the conditional densities of pulse period for two stripes of  aS 1s 0.2g and 

 aS 1s 0.4g  are shown, while on the left of the vertical axis, the probabilities of pulse occur-

rence being causal of  a aS 1s s ,  a aP pulse S 1s s     are plotted, which are also the result of 

NS hazard disaggregation. 

The final step of the procedure consists of accounting for both cases, i.e. occurrence of di-

rectivity pulse and absence thereof, in a single set of IDA curves. As already mentioned, the 

SPO2IDA prediction serves as an estimate of the ordinary component of seismic demand in this 

example. Applying the laws of conditional expectation and variance one more time, Equations 

(14) and (15) are obtained, where E ln R,nopulse     is the logarithm of the median SPO2IDA 

prediction and the corresponding variance is estimated as Var ln R,nopulse    

   
2

SPO2IDA,84% SPO2IDA,16%1 4 ln R ln R       . These results lead to the curves labeled “NS 

IDAs” in Figure 5.7(b). 

 E ln R E ln R,pulse P pulse R E ln R,nopulse 1 P pulse R                            (14) 
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 
 
   

2

2

Var ln R

Var ln R,pulse P pulse R Var ln R,nopulse 1 P pulse R

E ln R,pulse E ln R P pulse R

E ln R,nopulse E ln R 1 P pulse R

    
                      

                

                

 (15) 

7 CONCLUSIONS 

The present study saw the use of IDA to investigate the response of oscillators with trilinear 

backbone curves to NS pulse-like ground motions. To this end, an analytical model was devel-

oped for the prediction of pulse-like IDA curves. This model includes the pulse period as a 

predictor variable and captures central tendency and dispersion of NS pulse-like seismic de-

mand and capacity.  

Overall, it can be observed that the assumption of a specific pulse period being considered 

representative across all scale factors of the IDA can lead to overestimation of NS seismic de-

mand, when said pulse period corresponds to a fraction of structural period associated with 

aggressive NS FD ground motions. On the other hand, a random sample of pulse-like ground 

motions, where 
pT  is not accounted for explicitly, can result in demand which is even less than 

the ordinary estimate (albeit said ordinary estimate corresponds to an analytical model). 

Finally, consideration of 
pT in manner consistent with NS hazard, can result in seismic de-

mand which supersedes the ordinary estimate, when site-to-source geometry renders the site 

prone to FD effects. In the provided example, the NS median seismic demand represented by 

the corresponding IDA curve shows a trend of increasing detachment from the ordinary curve 

as aS  levels increase. The example further demonstrates that it is possible to integrate the model 

into the SPO2IDA tool, in order to extend applicability of the latter into the domain of NS 

demand. However, such integration will require that the model be extended to also cover a 

residual strength segment on the backbone curve, as well as lower period ( 0.10s T 0.30s  ) 

oscillators, in order to match the applicability range of the existing SPO2IDA tool.  
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