Fault displacement hazard: Taming the beast for engineering applications

Vasileios E. Melissianos & Nikolaos D. Karaferis

The 49th Risk, Hazard & Uncertainty Workshop

Introduction

Tectonic fault displacement

2

Introduction

Failure of lifelines due to tectonic faulting

Fault displacement

How to calculate the fault displacement?

- Until now ...
 - Empirical fault scaling relations
 - Full seismological study $\in \in \in \in \in$
- From now on ...
 - & Code approach: Annex E (informative) of prEN 1998-4:2022 💡

+ -× ÷

Fault displacement

Empirical fault scaling relations

- Advantages
 - \circ Easy-to-use

- Minimum data requirement
- Based on fault dimensions (length, width, depth, rupture zone, earthquake magnitude, etc.)

- Disadvantages
 - \odot Unknown or insufficient defined level of safety
 - ${\rm \circ}$ Actual distribution of fault events not considered
 - No guidelines available for choosing a set or relations

Full seismological study

Probabilistic Fault Displacement Hazard Analysis (PFDHA) by Youngs et al. (2003) or Petersen et al. (2011).

- A simplified approach of PFDHA for lifeline-fault crossings.
- Mean annual frequency:

$$\lambda_{\Delta_F}(\delta_F) = v_F \sum_i P(\Delta_F > \delta_F | m_i) P_M(m_i)$$

 $P(\Delta_F > \delta_F | m_i) = \sum_j \sum_t \sum_k P(\Delta_F > \delta_F | m_i, RL_j, ADS_t, Pos_{j,k}) P(RL_j, ADS_t | m_i) P(Pos_{j,k})$

Full seismological study

- Advantages
 - Compatibility with Performance-based Earthquake Engineering
 - Actual distribution of fault events
 - ${\rm \circ}$ Calculation of fault displacement for given return period
- Disadvantages
 - $\odot\,\text{A}$ lot of specialized seismological data
 - \odot Advanced calculations
 - \odot Not compatible "as is" with code provisions

Fault displacement

Empirical fault scaling relations versus a full seismological study

Greece: medium length 40.14km + high seismicity

Northern Turkey: small length 20.66km + medium seismicity

Northern France: very high length 215.71km + very low seismicity

Our goal

Outline

- PFDHAs
- Handling of uncertainties via logic trees
- Parameters of faults in Europe from the 2020 European Fault-Source Model (EFSM20)

Approach background

Statistical processing of fault data

recurrence rate: $v_{F}(M > 5.5)$ (year⁻¹)

prEN 1998-4:2022

Approach implementation

- 1st step: Fault mechanism and length & fault crossing site
- 2nd step: Recurrence rate v_F
- 3^{rd} step: Return period (T_R) for given fault displacement (Δ_F) or vice-versa:

$$T_R(\Delta_F) = \frac{1}{C_F \nu_F f_L(\Delta_F, L_F, X_L)}$$

where:

 C_F = confidence factor

 $f_L(\Delta_F, L_F, X_L)$ = function depending on the fault mechanism, fault length, and crossing point; estimated using tables

Evaluation of results

Fault	Country	Tectonic env.	Mechanism	Length (km)	Recurrence rate (years ⁻¹)
ESCF002	Spain	Interplate	Reverse	114.06	0.00778
TRCF00Z	Turkey	Interplate	Strike-slip	25.28	0.00298
GRCF024	Greece	Interplate	Normal	38.42	0.08486

Case studies

Short and medium length faults in Central Greece with high recurrence rate

Case studies

Short and medium length faults in Northern Turkey with very high recurrence rate

15

Engineering implementation

• A structure-independent approach \rightarrow use for on-ground or buried (not deep-buried tunnels) lifelines

• A tool for:

- \odot Route selection of lifelines in seismic areas
- Preliminary earthquake-resistant design
- \odot Assess the need for full seismological study

Thank you for your attention!

Acknowledgements

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers" (Project Number: 2515).