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Introduction / Motivation

Typical acceleration traces of 
earthquake induced ground 

motions (GMs) exhibit a time-
evolving frequency composition 

due to the dispersion of the 
propagating seismic waves, and a 

time-decaying intensity after a 
short initial period of 

development. 

1st~2nd second: 

15 zero crossings

6th~7th second: 

7 zero crossings
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Introduction / Motivation

Yet, the evolving frequency content of GMs is not taken into account by any of 
the commonly-used GM properties, widely used to characterize the structural 

damage potential of GMs.

Tm



Introduction / Motivation

• PGA, PGV, PGD

• Arias intensity

• Spectral shape, Sa(T1), AvgSa,…

• Dominant frequency/period (where the GM Fourier spectrum peaks)

• Mean period Tm (e.g. Rathje et al. 1998)

GM properties 
(some used as intensity measures, IMs, or for record 
selection to feed in the performance-based earthquake 
engineering, PBEE, machinery)  

with ωk = [0.25Hz, 20Hz] where

(DFT of GM)



Introduction / Motivation

First things first…

We need to come up with a “new” GM property, which:

-is a “good” metric of the temporal change of GM frequency content 

-is a scalar (number), ideally scaling invariant (to accommodate PBEE)

-is “relatively easy” to compute



The Continuous (Morlet) Wavelet Transform

Imperial Valley, 1979, Plaster City (045) record

Joint time-frequency signal analysis is not only “somewhat complicated”, 
it also is not “exact science”…  



The continuous wavelet transform (CWT) given by the equation
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decomposes any finite energy signal f(t) onto a basis of functions 

generated by scaling a single mother wavelet function ψ(t) by the 

scale parameter α and by shifting it in time by the parameter b.  
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• Variable size wavelet “windows” are employed

• Long duration windows capture lower 

frequencies (large scales) 

• Short duration windows are used to capture 

higher frequencies (small scales) 

• Heisenberg’s uncertainty principle holds
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The Continuous (Morlet) Wavelet Transform



Such an analysis results in a three-dimensional spectrum having the 
wavelet coefficients plotted versus time and scale (scalogram). A certain 
wavelet-dependent relationship between scale and frequency should be 

established to yield a wavelet- based spectrogram. 
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Both time and frequency resolutions cannot be arbitrarily high.

We cannot precisely know at what time instance a frequency component is located. We can 
only know what interval of frequencies  are present in which time intervals.
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Uncertainty principle

Resolution trade-off

Wavelet shape

Wavelet smoothness

Vanishing moments of wavelets

etc.

So, we need to know what we 
are aiming for:

Time or Frequency 
(resolution/smoothness/bias)???

time

frequency

The Continuous (Morlet) Wavelet Transform



At scale α and time position b the modified Morlet wavelet is given by

Analytic (complex) Morlet wavelets

Its Fourier transform is a shifted Gaussian function, that is:
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The constant Ωb controls the bandwidth of the Gaussian function in the 
frequency domain

The Continuous (Morlet) Wavelet Transform



The scaling operation by α<1

moves the central frequency Ωc/α

towards higher frequency levels.

It also compresses (narrows) the 

time domain waveforms which 

leads to reduced resolution in the 

frequency domain (uncertainty 

principle).
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Both time and frequency resolutions cannot be arbitrarily high.

We cannot precisely know at what time instance a frequency component is located. We can 
only know what interval of frequencies  are present in which time intervals.
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A wavelet based time-varying instantaneous period (MIP)  
can be defined as (Margnelli/Giaralis 2015):

Frequency range: [0.25 25]Hz

The mean instantaneous period (MIP) of GMs
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The mean instantaneous period (MIP) of GMs



The average slope “alpha” α of the MIP
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 RSN122: Friuli, Italy (1976), Codroipo component

 

b)
 

c) d)

a)
 

e)
 

f)
 

The angle “alpha” (α) is a scalar 
that serves well the purpose of 

quantifying the evolution of the 
mean frequency content in time.

(Margnelli/Giaralis 2017)

RSN122: Friuli, Italy (1976), Codroipo station 

It is the average slope of the MIP 
in time measured in degrees.

Higher α== faster variation in time 
of the mean frequency content 

from high to low frequencies (or 
short to long periods)
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Tm=0.36s

Spectrally equivalent ground motion ensembles of 
different α values

Selection of 611 recorded GM pairs (1222 GMs) from PEER database
-30 different seismic events
-6.5<M<8.0; 
-20km<Rrup<120km; 
-No pulses

Magnitude-distance, and angle α- magnitude scatter plots for all components

103 GMs with α<0 discarded (less than 10% of GMs)
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A high-α GM set is constructed by taking the 50 GMs with the highest a 
values from the GM database

A low-α GM set is constructed by choosing 50 GMs out of half the GMs of the 
original database with the lowest positive  value possessing equivalent 
spectral shapes with the GMs of the high-a set using a greedy matching-

pursuit algorithm with scaling (Chandramohan/Baker/Deirlein 2015)

Spectrally equivalent ground motion ensembles of 
different α values

Matching period range: 0.1s to 3s; max scaling factor allowed= 5
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α histogram of the two sets

The two sets have significantly different  values in terms of median and spread, 
while non-significant differences in terms of duration which is known to affect 

peak response of yielding structures (Chandramohan/Baker/Deirlein 2015)

Spectrally equivalent ground motion ensembles of 
different α values

Effective duration histogram 
of the two sets
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The two GM sets have significantly different rate of change of frequency content in time 
(i.e., different  values) but their average in time stationary frequency content Tm statistics 

are very similar (Tm is known to affect peak inelastic response of yielding structures: 
Katsanos/Sextos/Elnashai 2014)

Spectrally equivalent ground motion ensembles of 
different α values

Average frequency content Τm histograms of the two sets
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Numerical evaluation of the influence of α to GM 
damage potential using Incremental dynamic analysis

• High-a GM set imposes significantly higher drift demands to the structure across a 
wide range of post-yield limit states

• 20% higher scaling is required to the median Sa(T1) of the low-α GM set to induce 
the same MIDR as the high-α GM set for MIDR= 0.02

• Up to 25% higher scaling is required to the median Sa(T1) of the low-α GM set to 
induce the same MIDR as the high-α GM set for MIDRs≥0.04

IDA curves of benchmark 7-storey reinforced concrete MRF designed for 
PGA=0.60g for the two sets (OpenSees inelastic modelling Kazantzi/Vamvatsikos 2015) 
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Difference in the median seismic structural collapse demand persists 
even after re-scaling using more efficient IMs, e.g:
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(Kohrangi/Bazzuro/Vamvatsikos/Spillatura 2017)

Numerical evaluation of the Influence of α to GM 
damage potential using Incremental dynamic analysis


