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Introduction / Motivation

Typical acceleration traces of 
earthquake induced ground 

motions (GMs) exhibit a time-
evolving frequency composition 

due to the dispersion of the 
propagating seismic waves, and a 

time-decaying intensity after a 
short initial period of 

development. 

1st~2nd second: 

15 zero crossings

6th~7th second: 

7 zero crossings
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Introduction / Motivation

Yet, the evolving frequency content of GMs is not taken into account by any of 
the commonly-used GM properties, widely used to characterize the structural 

damage potential of GMs.

Tm



Introduction / Motivation

• PGA, PGV, PGD

• Arias intensity

• Spectral shape, Sa(T1), AvgSa,…

• Dominant frequency/period (where the GM Fourier spectrum peaks)

• Mean period Tm (e.g. Rathje et al. 1998)

GM properties 
(some used as intensity measures, IMs, or for record 
selection to feed in the performance-based earthquake 
engineering, PBEE, machinery)  

with ωk = [0.25Hz, 20Hz] where

(DFT of GM)



Introduction / Motivation

First things first…

We need to come up with a “new” GM property, which:

-is a “good” metric of the temporal change of GM frequency content 

-is a scalar (number), ideally scaling invariant (to accommodate PBEE)

-is “relatively easy” to compute



The Continuous (Morlet) Wavelet Transform

Imperial Valley, 1979, Plaster City (045) record

Joint time-frequency signal analysis is not only “somewhat complicated”, 
it also is not “exact science”…  



The continuous wavelet transform (CWT) given by the equation
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decomposes any finite energy signal f(t) onto a basis of functions 

generated by scaling a single mother wavelet function ψ(t) by the 

scale parameter α and by shifting it in time by the parameter b.  
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• Variable size wavelet “windows” are employed

• Long duration windows capture lower 

frequencies (large scales) 

• Short duration windows are used to capture 

higher frequencies (small scales) 

• Heisenberg’s uncertainty principle holds
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The Continuous (Morlet) Wavelet Transform



Such an analysis results in a three-dimensional spectrum having the 
wavelet coefficients plotted versus time and scale (scalogram). A certain 
wavelet-dependent relationship between scale and frequency should be 

established to yield a wavelet- based spectrogram. 
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Both time and frequency resolutions cannot be arbitrarily high.

We cannot precisely know at what time instance a frequency component is located. We can 
only know what interval of frequencies  are present in which time intervals.
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HEISENBERG’S INEQUALITY

TIME-FREQUENCY REPRESENTATION

Uncertainty Principle
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Reciprocal relationship 

between scale-frequency:

Frequency=
Constant

Scale

The Continuous (Morlet) Wavelet Transform



Uncertainty principle

Resolution trade-off

Wavelet shape

Wavelet smoothness

Vanishing moments of wavelets

etc.

So, we need to know what we 
are aiming for:

Time or Frequency 
(resolution/smoothness/bias)???

time

frequency

The Continuous (Morlet) Wavelet Transform



At scale α and time position b the modified Morlet wavelet is given by

Analytic (complex) Morlet wavelets

Its Fourier transform is a shifted Gaussian function, that is:
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The central (pseudo-) frequency observed at scale α is usually computed by
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The constant Ωb controls the bandwidth of the Gaussian function in the 
frequency domain

The Continuous (Morlet) Wavelet Transform



The scaling operation by α<1

moves the central frequency Ωc/α

towards higher frequency levels.

It also compresses (narrows) the 

time domain waveforms which 

leads to reduced resolution in the 

frequency domain (uncertainty 

principle).
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Both time and frequency resolutions cannot be arbitrarily high.

We cannot precisely know at what time instance a frequency component is located. We can 
only know what interval of frequencies  are present in which time intervals.
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A wavelet based time-varying instantaneous period (MIP)  
can be defined as (Margnelli/Giaralis 2015):

Frequency range: [0.25 25]Hz

The mean instantaneous period (MIP) of GMs
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The mean instantaneous period (MIP) of GMs



The average slope “alpha” α of the MIP
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RSN726: Superstition Hills, CA (1987), Salton Sea Wildlife Refuge component

 

 RSN122: Friuli, Italy (1976), Codroipo component

 

b)
 

c) d)

a)
 

e)
 

f)
 

The angle “alpha” (α) is a scalar 
that serves well the purpose of 

quantifying the evolution of the 
mean frequency content in time.

(Margnelli/Giaralis 2017)

RSN122: Friuli, Italy (1976), Codroipo station 

It is the average slope of the MIP 
in time measured in degrees.

Higher α== faster variation in time 
of the mean frequency content 

from high to low frequencies (or 
short to long periods)
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Tm=0.36s

Spectrally equivalent ground motion ensembles of 
different α values

Selection of 611 recorded GM pairs (1222 GMs) from PEER database
-30 different seismic events
-6.5<M<8.0; 
-20km<Rrup<120km; 
-No pulses

Magnitude-distance, and angle α- magnitude scatter plots for all components

103 GMs with α<0 discarded (less than 10% of GMs)
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A high-α GM set is constructed by taking the 50 GMs with the highest a 
values from the GM database

A low-α GM set is constructed by choosing 50 GMs out of half the GMs of the 
original database with the lowest positive  value possessing equivalent 
spectral shapes with the GMs of the high-a set using a greedy matching-

pursuit algorithm with scaling (Chandramohan/Baker/Deirlein 2015)

Spectrally equivalent ground motion ensembles of 
different α values

Matching period range: 0.1s to 3s; max scaling factor allowed= 5
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α histogram of the two sets

The two sets have significantly different  values in terms of median and spread, 
while non-significant differences in terms of duration which is known to affect 

peak response of yielding structures (Chandramohan/Baker/Deirlein 2015)

Spectrally equivalent ground motion ensembles of 
different α values

Effective duration histogram 
of the two sets
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The two GM sets have significantly different rate of change of frequency content in time 
(i.e., different  values) but their average in time stationary frequency content Tm statistics 

are very similar (Tm is known to affect peak inelastic response of yielding structures: 
Katsanos/Sextos/Elnashai 2014)

Spectrally equivalent ground motion ensembles of 
different α values

Average frequency content Τm histograms of the two sets
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Numerical evaluation of the influence of α to GM 
damage potential using Incremental dynamic analysis

• High-a GM set imposes significantly higher drift demands to the structure across a 
wide range of post-yield limit states

• 20% higher scaling is required to the median Sa(T1) of the low-α GM set to induce 
the same MIDR as the high-α GM set for MIDR= 0.02

• Up to 25% higher scaling is required to the median Sa(T1) of the low-α GM set to 
induce the same MIDR as the high-α GM set for MIDRs≥0.04

IDA curves of benchmark 7-storey reinforced concrete MRF designed for 
PGA=0.60g for the two sets (OpenSees inelastic modelling Kazantzi/Vamvatsikos 2015) 
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Difference in the median seismic structural collapse demand persists 
even after re-scaling using more efficient IMs, e.g:
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Set of J natural periods, Tj, equally spaced in the 
range T2 to 1.5T1 by an increment of 0.1s

(Kohrangi/Bazzuro/Vamvatsikos/Spillatura 2017)

Numerical evaluation of the Influence of α to GM 
damage potential using Incremental dynamic analysis


