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Introduction / Motivation
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motions (GMs) exhibit a time-
evolving frequency composition

due to the dispersion of the
propagating seismic waves, and a
time-decaying intensity after a
short initial period of
development.
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Yet, the evolving frequency content of GMs is not taken into account by any of
the commonly-used GM properties, widely used to characterize the structural
damage potential of GMs. 3



Introduction / Motivation

GM properties

(some used as intensity measures, IMs, or for record
selection to feed in the performance-based earthquake
engineering, PBEE, machinery)

* PGA, PGV, PGD
* Arias intensity
* Spectral shape, Sa(T,), AvgSa,...

 Dominant frequency/period (where the GM Fourier spectrum peaks)

* Mean period T, |(e.g. Rathje et al. 1998)
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Introduction / Motivation

First things first...

We need to come up with a “new” GM property, which:

-is a “good” metric of the temporal change of GM frequency content
-is a scalar (number), ideally scaling invariant (to accommodate PBEE)

-is “relatively easy” to compute



The Continuous (Morlet) Wavelet Transform

Imperial Valley, 1979, Plaster City (045) record
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Joint time-frequency signal analysis is not only “somewhat complicated”,
it also is not “exact science”...



The Continuous (Morlet) Wavelet Transform

w . analyzing or mother wavelet A

w5

Variable size wavelet “windows” are employed

Long duration windows capture lower
frequencies (large scales)

Short duration windows are used to capture
higher frequencies (small scales)

@ The continuous wavelet transform (CWT) given by the equation

W (s,t,) \/_[o ( St°jdt

decomposes any finite energy signal f(t) onto a basis of functions
generated by scaling a single mother wavelet function y(t) by the
scale parameter a and by shifting it in time by the parameter b.

Scale

Time

Heisenberg’s uncertainty principle holds

Y



The Continuous (Morlet) Wavelet Transform

Such an analysis results in a three-dimensional spectrum having the
wavelet coefficients plotted versus time and scale (scalogram). A certain
wavelet-dependent relationship between scale and frequency should be

established to yield a wavelet- based spectrogram.

@ Uncertainty Principle @Reciprocal relationship
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The Continuous (Morlet) Wavelet Transform
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So, we need to know what we | o o
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The Continuous (Morlet) Wavelet Transform

Analytic (complex) Morlet wavelets
@ At scale a and time position b the modified Morlet wavelet is given by

L=t 1 Q (t-t,)
o | e (-t )-
v ( S j S, eXp(l a( o) $°Q, J

@ Its Fourier transform is a shifted Gaussian function, that is:

N

PV (sw)= \/Eexp(—%(sa)—ﬂc)2 — isa)toj

@ The central (pseudo-) frequency observed at scale « is usually computed by

@ The constant Q, controls the bandwidth of the Gaussian function in the
frequency domain



The Continuous (Morlet) Wavelet Transform

@ The scaling operation by a<1
moves the central frequency Q/J/a
towards higher frequency levels.

@ It also compresses (narrows) the
time domain waveforms which
leads to reduced resolution in the
frequency domain (uncertainty
principle).
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The mean instantaneous period (MIP) of GMs

Morlet Wavelet Power Spectrum - MIP(t)
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A wavelet based time-varying instantaneous period (MIP)

can be defined as (Margnelli/Giaralis 2015): .
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Frequency range: [0.25 25]Hz



The mean instantaneous period (MIP) of GMs
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The average slope “alpha” a of the MIP

RSN122: Friuli, Italy (1976), Codroipo station
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The angle “alpha” (a) is a scalar

that serves well the purpose of
quantifying the evolution of the
mean frequency content in time.
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a-PGA
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Spectrally equivalent ground motion ensembles of
different a values
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Selection of 611 recorded GM pairs (1222 GMs) from PEER database
-30 different seismic events
-6.5<M<8.0;
-20km<R,,,<120km;

-No pulses

Magnitude-distance, and angle a- magnitude scatter plots for all components
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103 GMs with a<0 discarded (less than 10% of GMs)
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cda  Spectrally equivalent ground motion ensembles of
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oA high-a GM set is constructed by taking the 50 GMs with the highest a |
. values from the GM database l

| ongmal database with the lowest positive & value possessing equivalent
: spectral shapes with the GMs of the high-a set using a greedy matching-
| pursuit algorithm with scaling (Chandramohan/Baker/Deirlein 2015)

Matching period range: 0.1s to 3s; max scaling factor allowed= 5
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v=a  Spectrally equivalent ground motion ensembles of
Al [ different a values
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The two sets have significantly different a values in terms of median and spread,
while non-significant differences in terms of duration which is known to affect
peak response of yielding structures (Chandramohan/Baker/Deirlein 2015)
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v=a  Spectrally equivalent ground motion ensembles of
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The two GM sets have significantly different rate of change of frequency content in time
(i.e., different « values) but their average in time stationary frequency content T, statistics
are very similar (T, is known to affect peak inelastic response of yielding structures:
Katsanos/Sextos/Elnashai 2014)
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i Numerical evaluation of the influence of o to GM

it
@ S

AL damage potential using Incremental dynamic analysis

<R

IDA curves of benchmark 7-storey reinforced concrete MRF designed for
PGA=0.60g for the two sets (OpenSees inelastic modelling Kazantzi/Vamvatsikos 2015)
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* High-a GM set imposes significantly higher drift demands to the structure across a
wide range of post-yield limit states

* 20% higher scaling is required to the median Sa(T,) of the low-a GM set to induce
the same MIDR as the high-oo GM set for MIDR= 0.02

* Up to 25% higher scaling is required to the median Sa(T,) of the low-a GM set to
induce the same MIDR as the high-a GM set for MIDRs>0.04
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ﬂa Numerical evaluation of the Influence of a to GM
Al ] damage potential using Incremental dynamic analysis

Difference in the median seismic structural collapse demand persists
even after re-scaling using more efficient IMs, e.g:

Set of J natural periods, T, equally spaced in the

) 7
AvgSA = HSa(T,- ) range T, to 1.5T, by an increment of 0.1s
- (Kohrangi/Bazzuro/Vamvatsikos/Spillatura 2017)
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