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my research

• non-smooth and nonlinear structural dynamics
• seismic pounding
• rocking dynamics
• vehicle-bridge interaction

intro & motivation
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why bamboo?

• high carbon sequestration capacity
• high strength-to-weight ratio
• low-cost
• abundant where mostly needed

bamboo habitat

developing/developed world

23%

77%

global economic activity
CO2 emissions

construction 
sector1

1Huang et al, RSER 2018, Carbon emission of global construction sector

intro & motivation
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bamboo forms/types
• timber mimicking

laminated, cross laminated etc
processed and industrialized 

• culm morphology 
(akin to uni-directional, fiber-reinforced 
polymers) low tensile strength 
perpendicular to the fibers

Dixon & Gibson, JRSI 2014, The structure and mechanics of Moso bamboo material
lashing fish-mouth

challenges

intro & motivation

engineering design → lack
• standardization and design codes 
• member connections
• durability
• fire resistance
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bamboo structures

IBUKU Green Village, Bali

https://inhabitat.com/tag/bamboo-architecture/

intro & motivation
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earliest systematic research
Janssen  (1981)

connections with strength
Morisco and Mardjono (1995)

connections with ductility
Sassu et al. (2016)

rational design
Wang & Yang  (2019), 
Correal et al. (2021)

empirical design
Columbian code 
NSR-10 (2010)

state of the art 

dowel-type connections
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2

design for variability: 
• culm geometry 

along the length (longitudinal axis), 
cross section, thickness

• mechanical properties
… all of them, natural material, 
multiple species

transverse axis

compressive strength MPa

how to cope with and design for the 
natural variability of the bamboo culms?

axial member behaviour

question 1
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embedment behaviour

db=6 mm

• 2 bamboo species (Moso and Kao Jue)

• testing standard ASTM D5764 for timber

experimental force-displacement 
curves exhibit high variability can 
we predict the behaviour?

question 2
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bamboo culm flexure

gradual 
stiffness loss

1Lorenzo et al, CBM 2021, Non-linear behavior and failure mechanism of bamboo poles in bending
2Trujillo et al, ICE-Struct and Build 2017, Flexural properties as a basis of bamboo strength grading

question 3

nonlinear force-displacement 
without material plasticity
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outline

intro & motivation

design for variability

explain flexural behavior

predict embedment behavior

full-scale bamboo footbridge

conclusions
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3

2

• proposed structural members: 
multiple bamboo culms 
bolted on steel connectors at their ends

• multiple culms per member: 
more bamboo species 
increased redundancy on structural member

• steel ends enable the steel-to-steel connection of 
structural members, 
negating many design ambiguities

• thorough understanding of mechanical behaviour
of the proposed structural members → 
emphasis on the bolt embedment phenomenon 

• conventional structural forms (trusses) →
facilitates adoption of bamboo 

dowel 
connections

gusset 
plate

bamboo 
culms

design premise

multi-culm bamboo member with steel connectors
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natural variability of bamboo culms 
managed through an original combination of 

i. grading
• unviable and defective culms removed
• use bamboo culms with

eg 40 – 60 mm external diameters

ii. multiple bamboo culms
• eg 4 bamboo culms combined 

into a single member

iii. capacity design principles
• establish a desired hierarchy of capacities

[Pradhan & Dimitrakopoulos ASCE J. of Struc. Eng., 2021]

gusset plate

bamboo 
culms

dowel 
connections

design premise

coping with variability
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multiple parallel elements in a member is 
a common practice/ observed in nature

multiple culms - premise: 
• highly unlikely for multiple culms to possess 

unfavourable values of (e.g. geometric/material) 
properties simultaneously

• same average value:
ത𝑋 = σ𝑖=1

𝑁 (𝑋𝑖/𝑁)

• variance reduces:

[Pradhan & Dimitrakopoulos ASCE J. of Struc. Eng., 2021]

𝐶𝑉ത𝑋 = 𝐶𝑉𝑋1/ 𝑁

𝜎ത𝑋
2 = σ𝑖=1

𝑁 𝜎𝑋𝑖/𝑁
2 = 𝜎𝑋

2/𝑁

design premise

coping with variability
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single culm multi-culm

coping with variability - example: 
tensile strength of bamboo (Kao Jue) culms

• found to be normally distributed

• expected value and variance of 
a single bamboo culm:

expected value and variance of average 
tensile strength in
• 2-culm axial member

• 4-culm axial member

127.33 MPaX 
2 521.3X 

2 / 2 260.6X 127.33 MPa
X

 

2 / 4 130.3X 127.33 MPa
X

 

design premise

coping with variability
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characteristic values as per EN 1990:2002:
• 5𝑡ℎ ( ҧ𝑥0.05) and 

95𝑡ℎ ( ҧ𝑥0.95)  percentile values

design values
• 0. 1𝑡ℎ ( ҧ𝑥0.001) percentile values of 

material properties

• material partial safety factor 
for N-culm member:

𝛾 ത𝑋,𝑚 =
ҧ𝑥0.05
ҧ𝑥0.001

• the specific percentile values and 
material partial safety factors become 
less conservative as number of bamboo 
culms N increases in the member

number of 
culms

ҧ𝑥0.05 𝛾 ത𝑋,𝑚

1 culm 89.8 MPa 1.58

2 culm 100.8 MPa 1.30

4 culm 108.6 MPa 1.18

[Pradhan & Dimitrakopoulos ASCE J. of Struc. Eng., 2021]

characteristic value for 1-culm

characteristic value for 2-culms

characteristic value for 4-culms

design premise

coping with variability



17

adopted fit:

truncated

normal

adopted fit:

log3

adopted fit:

log-normal

adopted fit:

normal

adopted fit:

log-normal

adopted fit:

log-normal

[Pradhan & Dimitrakopoulos ASCE J. of Struc. Eng., 2021]

characteristic value for 1-culm

characteristic value for 2-culms

characteristic value for 4-culms

design premise

coping with variability
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gusset plate

dowel 
connections

bamboo 
culms

[Pradhan & Dimitrakopoulos ASCE J. of Struc. Eng., 2021]

capacity design to achieve  

reliable and predictable mechanical performance, 

including a desirable failure mode

premise: establish a desired hierarchy of capacities

I. dowel connections yielding
• predictable and ductile → should fail first !

II. bamboo culms are brittle
• designed stronger than the dowels

• confinement (hose-clamps) to prevent 
premature failure by longitudinal splitting

III. gusset plates
• for joint integrity Gusset plates should be 

designed stronger than dowel connection

design premise

coping with variability
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connection yield 
capacity

p
ro

b
ab

ili
ty

 d
en

si
ty

force, kN

scanM

design capacity of

experimental yield capacity 
of dowel-type connection

design capacity of  
dowel-type connection

(1)

(2)

(3)

(4)

bamboo culms:

steel gusset plate:

95th percentile: 

5th percentile: 

characteristic yield capacity 
of dowel-type connection

dE ,v dR

,v kR

,0.05vR ,0.95vR ,m dR,s dR

,m kR

,mX


total factor of safety against 

undesirable failures F

Rd

𝑅𝑚,𝑑 ≥ 𝑅𝑣,0.95

𝑅𝑠,𝑑 ≥ 𝑅𝑣,0.95

𝑅𝑣,0.95 = 𝛾𝑠𝑐𝑅𝑣,0.05

𝑅𝑣,0.05 = 𝛾𝑎𝑛𝑅𝑣,𝑘

𝑅𝑣,𝑘 = 𝛾𝑀𝑅𝑣,𝑑

𝑅𝑣,𝑑 ≥ 𝐸𝑑

only the experimental distribution of 
connection yield capacity required

[Pradhan & Dimitrakopoulos ASCE J. of Struc. Eng., 2021]

design premise

capacity design principle: 

hierarchy of failure modes
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• average yield capacity: 34.11 𝑘𝑁
• average maximum capacity: 78.33 𝑘𝑁
• average ductility: 7.44
• 15 samples

𝑅𝑣,𝑘 = 26.24 𝑘𝑁
yield load, kN

n
o

. o
f 

sp
ec

im
en

s

[Pradhan & Dimitrakopoulos ASCE J. of Struc. Eng., 2021]

experimental program

hollow section tension (Type B)
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• average yield capacity: 35.04 𝑘𝑁
• average maximum capacity: 79.95 𝑘𝑁
• average ductility: 7.94
• 15 samples

yield load, kN

n
o

. o
f 

sp
ec

im
en

s

𝑅𝑣,𝑘 = 26.24 𝑘𝑁

[Pradhan & Dimitrakopoulos ASCE J. of Struc. Eng., 2021]

experimental program

hollow section compression (Type B)
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experimental program

compression 

fracture 

(buckling)

plate 

yielding

crushing

row-
shearing

row-

shearing

longitudinal 

splitting 

(buckling)

compression 

failure 

(buckling)

mortar 

push-

out

[Pradhan NPN & Dimitrakopoulos EG, ASCE J. of Struc. Eng., 2021]

damage modes
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connection 
yield capacity

overstrength factor: 𝛾𝑅𝑑 = 𝛾𝑠𝑐 × 𝛾𝑎𝑛 × 𝛾𝑀

• 𝛾𝑠𝑐 = 𝑅𝑣,0.95/𝑅𝑣,0.05 = scatter in experimental yield capacity
• 𝛾𝑎𝑛 = 𝑅𝑣,0.05/𝑅𝑣,𝑘 = error in analytical prediction of yield capacity

• 𝛾𝑀 = 𝑅𝑣,𝑘/𝑅𝑣,𝑑 = safety factor of resistance

• 𝑅𝑣,𝑘 is estimated analytically using European Yield Model equations 
• 𝑅𝑣,𝑑 = 𝑅𝑣,0.001 as per EN1990

p
ro

b
ab

ili
ty

 d
e

n
si

ty

force, kN

scanM

dE ,v dR

,v kR

,0.05vR

,0.95vR ,m dR,s dR

,m kR

,mX


total factor of safety against 

undesirable failures F

Rd

[Pradhan NPN & Dimitrakopoulos EG, ASCE J. of Struc. Eng., 2021]

capacity design

calibration of partial factors
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total factor of safety against undesirable failure is:

𝛾𝐹 = 𝛾𝑅𝑑 × 𝛾 ത𝑋,𝑚

• 𝛾 ത𝑋,𝑚 is the pertinent average material partial factor of safety 
for  𝑁-culm member

[Pradhan NPN & Dimitrakopoulos EG, ASCE J. of Struc. Eng., 2021]

connection 
yield capacity

p
ro

b
ab

ili
ty

 d
e

n
si

ty

force, kN

scanM

dE ,v dR

,v kR

,0.05vR

,0.95vR ,m dR,s dR

,m kR

,mX


total factor of safety against 

undesirable failures F

Rd

capacity design

calibration of partial factors
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type ҧ𝛾𝑠𝑐 ҧ𝛾𝑎𝑛 ҧ𝛾𝑀 ҧ𝛾𝑅𝑑

hollow-section 1.65 1.02 1.31 2.20

infilled-section 2.05 0.97 1.61 3.09

• 𝛾𝑎𝑛 ≈ 1, i.e. 𝑅𝑣,𝑘 ≈ 𝑅𝑣,0.05
• analytical approach can predict experimental yielding
• this is partial verification of proposed approach

• ҧ𝛾𝑀 = 1.31 for hollow-section specimens, 
is same as that recommended for timber connections (i.e. 𝛾𝑀 = 1.30 in EN 1995)

• partial factors are larger for mortar infilled specimens
• larger variability compared to hollow-section specimens

Pradhan & Dimitrakopoulos, Journal of Structural Engineering (2021)

𝛾𝑠𝑐 =
𝑅𝑣,0.95

𝑅𝑣,0.05
→ variability

𝛾𝑎𝑛 =
𝑅𝑣,0.05

𝑅𝑣,𝑘
→ error in analytical 

prediction of EYM equations

𝛾𝑀 =
𝑅𝑣,𝑘

𝑅𝑣,𝑑
→ safety factor 

to achieve desired 
probability of failure

design premise

calibration of partial factors
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outline

intro & motivation

design for variability

explain flexural behavior

predict embedment behavior

full-scale bamboo footbridge

conclusions
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falure load prediction

Wegst & Ashby, JMS 2007, The structural efficiency of orthotropic stalks, stems and tubes

R

t
 

1
2

3
2

1

9

B
E EM

A 

 
  

 

1
2

3
2

1

8

l
c

M

A
 




:E Young’s modulus parallel to the fibers

:E
Young’s modulus perpendicular to the fibers

:c compressive strength parallel to the fibers

:t 
tensile strength perpendicular to the fibers

Brazier moment 
(local kinking):

longitudinal compression:

circumferential tension:

MB / Ml / Mo / Ms

shear failure?

 
1

2

3
2

0.18 1 1.24o t
t

M
E

EA


 





  
   

  

bamboo culm flexure
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Case 1  (M*
1) Case 3  (M*

3)Case 2  (M*
2)

Case 4  (M*
4)

M*: bending moment in 
the cross-section plane

four load cases:

 
sin

,
W

v
R







max4w R
W




N

maximum M* at pont N

E

falure load prediction: circumferential tension

bamboo culm flexure
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Case 1 Case 2 Case 3 Case 4

 
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,1 2

3
2

0.1364 1 0.7012
o t

t

M
E

EA


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
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3
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0.1041 1 0.4086
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M
E

EA


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



  
   

  

 
1

,4 2

3
2

0.1547 1 0.9024
o t

t

M
E

EA


 





  
   

  

R

t
 

:E Young’s modulus parallel to the fibers

:E
Young’s modulus perpendicular to the fibers

:t 
tensile strength perpendicular to the fibers

MB / Ml / Mo / Ms

falure load prediction: circumferential tension

bamboo culm flexure

Mouka, Dimitrakopoulos, Lorenzo  (2022) Journal of the Royal Society Interface



30

3
2

2

1
2

us
nM

A








 

 
 

R

t
 

:u shear strength parallel to the fibers

*

max

1
2

V

A




 
  
 

maximum shear stress in 
the cross-section: V = shear force

A = cross-section area

failure moment:

MB / Ml / Mo / Ms

V P

:
2

L
n

R


normalized with culm diameter 
shear span length

*Hoogenboom & Spaan, 2005, Shear stiffness and maximum shear stress of tubular members

accounts for shear stress concentrations in
thick-walled sections

falure load prediction: shear failure

bamboo culm flexure

Mouka, Dimitrakopoulos, Lorenzo  (2022) Journal of the Royal Society Interface
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φ =5.0

n=10

n=5

Case 4

Moso (ML3)

Case 3

Case 2

Case 1

Case 3Case 1 Case 2 Case 4

typical shape 
factor range

φ =3.4
n=10

n=5

Case 4

Kao Jue

Case 3

Case 2

Case 1

typical shape 
factor range

φ =4.2

n=10

n=5

Case 4

Guadua

Case 3

Case 2

Case 1

typical shape 
factor range

critical failure modes: 
• circumferential tension
• longitudinal compression

falure load prediction: failure maps

bamboo culm flexure

Mouka, Dimitrakopoulos, Lorenzo  (2022) Journal of the Royal Society Interface
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Fmax
0.9Fmax

0.6Fmax

0.2Fmax

Fu

Moso

experimental data from:
Lorenzo et al, CBM 2021, Non-linear behavior and failure mechanism of bamboo poles in bending

Fmax Fu     

Moso (circumferential tension failure)
• prediction of Case 3 is closer to Fu

• prediction of Case 1 is closer to Fmax

Case 1  (M*
1) Case 3  (M*

3)

falure load prediction: comparison with experimental data

bamboo culm flexure

Mouka, Dimitrakopoulos, Lorenzo  (2022) Journal of the Royal Society Interface
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Guadua

experimental data from:
Trujillo et al, ICE-Struct and Build 2017, Flexural properties as a basis of bamboo strength grading

Guadua: failure either because of longitudinal
compression or because of circumferential tension

6 3.1383.00 10 D

Mmax

Mf

(failure initiation)

6 3.4960.44 10 D

falure load prediction: comparison with experimental data

bamboo culm flexure

Fmax
0.9Fmax

0.6Fmax

0.2Fmax

Fu

Mouka, Dimitrakopoulos, Lorenzo  (2022) Journal of the Royal Society Interface
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lc

Case A

Case B

lc lc

cracked cross-section:

2

64
1 0.28

9

CCI

I 
  

:CCI cracked cross-section

cross-section moment of inertia:

:I intact cross-section

stiffness loss (virtual work method):

1
cln
L


crack length

shear span length

 
1

, 2

1 1 11 3 3 ,
c i

i

b

K
b n n n

K



    
 

2P
K




stiffness of cracked culm

stiffness of intact culm

0.45 for Case A

0.90 for Case B
ib


 


1 0.5n 

69%

53%





stiffness loss prediction: two parallel cracks

bamboo culm flexure

Mouka, Dimitrakopoulos, Lorenzo  (2022) Journal of the Royal Society Interface
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outline

intro & motivation

design for variability

explain flexural behavior

predict embedment behavior

full-scale bamboo footbridge

conclusions
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db=6 mm db=8 mm

db=10 mm

• two bamboo species (Moso and Kao Jue)
• three bolt diameters (6 mm, 8 mm and 10 mm)
• testing standard ASTM D5764 for timber

experimental force-displacement 
curves exhibit high variability

confinement to 
prevent early 
splitting

experimental program

bolted connections: embedment property prediction 

Mouka& Dimitrakopoulos (2022) Construction and Building Materials 
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• moisture content has 
minimal effect

• density is determining
parameter

,
2

y

emb u

b

F

d t
 

embedment strength

:yF experimental “yield” force

(5%-offset method)

:bd bolt diameter

:t culm thickness

:embK slip modulus

based on individual parameters

embedment property prediction 

Mouka& Dimitrakopoulos (2022) Construction and Building Materials 
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bolt diameter accurately predicts
average property values

but expressions are…
• not dimensionally 

consistent
• species-specific

based on individual parameters

embedment property prediction 

Mouka& Dimitrakopoulos (2022) Construction and Building Materials 

bolt diameter predicts poorly
the individual datapoints
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embedment property determining parameters:
• bolt diameter db

• material density ρ
• culm thickness t

general dimensionless product

  2 31 4

,

x xx x

Gen emb bK g t d    

gravity acceleration (for 
dimensional consistency)

1

2

3

4

1 0

1 0

0 1

2 1

x

x
a b

x

x

     
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     
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    

2 fundamental`, 
linearly independent solutions

2
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K

b b

K t
t

gd d
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2 dimensionless products
Buckingham’s theorem1

, 0K

b

t
f

d

 
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 

K K

b

t

d

 
    

 

2

emb K b

b

t
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d


 
   

 

,emb E b

b

t
E gd

d


 
   

 

,emb u b

b

t
gd

d
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 

   
 

1 2

n

b b

t t
a a

d d

   
     
   

dimensional analysis

embedment property prediction 

Mouka& Dimitrakopoulos (2022) Construction and Building Materials 
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specific exponent range 
for which  both R2

fit and 
R2

pred are maximum

1.731.48

1.60

bolt diameter:

Kao Jue Moso Guadua1

species:

1Trujillo & Malkowska, CBM 2018, Empirically derived connection design properties for Guadua bamboo

1.60

111.2 10 0.10K

b b

t t

d d


    
       
     

species-independent slip modulus
prediction equation (combined
datasets for Moso, Kao Jue and
Guadua1)

average property prediction
1 2

n

b b

t t
a a

d d

   
     
   

dimensional analysis

embedment property prediction 

Mouka& Dimitrakopoulos (2022) Construction and Building Materials 
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separate equations for Moso-Kao Jue 
and for Guadua because of difference 
in experimental setup (confinement)

1.170.34

0.66

0.980.84

1.00

dimensional analysis

embedment property prediction 

Mouka& Dimitrakopoulos (2022) Construction and Building Materials 
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dimensionless bilinear embedment stress-displacement curve
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Kao Jue and Moso
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“yield” displacement
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dimensional analysis

embedment property prediction 

Mouka& Dimitrakopoulos (2022) Construction and Building Materials 
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outline

intro & motivation

design for variability

explain flexural behavior

predict embedment behavior

full-scale bamboo footbridge

conclusions
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• Kao Jue bamboo (Bambusa pervariabilis)
• stainless steel gusset plates (3 mm)
• M6 bolts of A2-70 grade
• hose-clamps (40-63 mm)

2
.3

0
 m

 

1.30 m 

1 2

3

3

2

[Pradhan, Paraskeva, Dimitrakopoulos EngStr 2022]

full-scale bamboo footbridge

description
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𝑘𝑒

𝑢𝑦 , 𝐹𝑦

(𝑢𝑚𝑎𝑥, 𝐹𝑚𝑎𝑥)

bolt 

yielding

em
b
ed

m
en

t 
d
am

ag
e

from structural element tests, back-calculate
• connection yielding (𝑢𝑦 , 𝐹𝑦) and maximum (𝑢𝑚𝑎𝑥, 𝐹𝑚𝑎𝑥) states

• connection elastic stiffness 𝑘𝑐,𝑒 and plastic stiffness 𝑘𝑐,𝑝

estimate elastic stiffness of bamboo culms 𝑘𝑚 from material strength tests

[Pradhan, Paraskeva, Dimitrakopoulos EngStr 2022]

bilinear model of axial member

full-scale bamboo footbridge
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SAP2000 implementation/validation 
of the model
• a single frame element develops 

the total elastic stiffness 𝑘𝑒

• connection plastic behavior 
developed by means of plastic 
hinges

• validated numerical model is 
implemented on 2-culm and 4-
culm members of truss 
footbridge

• non-linear response and damage 
progression simulated in 
SAP2000

[Pradhan, Paraskeva, Dimitrakopoulos EngStr 2022]

compression 

member

tension member

full-scale bamboo footbridge

bilinear model of axial member
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• first failure by yielding of bolted connections
• further loading results in buckling of steel plate, causing tilting of upper 

story nodes A5-B5

plastic stagebolt-yielding at node A6

plate A5 buckling

inner diagonal bolt-

yielding at node A6

12

3

A6

A5 B5

[Pradhan, Paraskeva, Dimitrakopoulos EngStr 2022]

full-scale bamboo footbridge

experimental testing
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A6

experimental response

SAP2000 5th

percentile response

photogrammetry

plate buckling

bolt yielding*

• first failure by yielding of bolted connections
• further loading results in buckling of steel 

plate, 
causing unbounded displacement of nodes

A6

[Pradhan, Paraskeva, Dimitrakopoulos EngStr 2022]

plate A5 

buckling

inner diagonal

bolt yielding

5th percentile damage 

mode

full-scale bamboo footbridge

numerical simulation vs experiment
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outline

connection design

design premise

experimental program

capacity design

implementation of full-scale bamboo footbridge

embedment simulation

conclusions
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connection design

• proposed method manages variability of bamboo culms through 
(i) grading, (ii) use of multiple culms, and (iii) capacity design principles

• axial members display high ductility and 
predictability owing to dowel yielding before other components

• characteristic values of average material/geometric properties 
can predict 5th percentile yielding of dowel connections 

implementation on an original footbridge

• proposed bilinear model of axial member 
can simulate the non-linear behavior of bolted connections

• numerical simulation of the footbridge predicts correctly the non-linear 
response and damage sequence of the experimental structure

conclusions
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