The 49th Risk, Hazard and Uncertainty Workshop

Influence of Manufacturing Tolerances on the Cyclic Behavior of Steel Members

Cyrus Eshaghi, Xavier Romão, José Miguel Castro

Hydra, 16 June 2023

Seismic Design and Assessment of Steel Buildings

Steel moment frame buildings **dissipate energy** through hysteretic behaviour developing at **plastic hinges** located at the member ends.

Plastic Hinge Behaviour – Monotonic Loading

Plastic Hinge Behaviour – EQ Loading

Cross-Section Slenderness

The **cross-section slenderness** of a steel member directly influences its susceptibility to **local buckling**.

Larger slenderness ratios **increase the likelihood of buckling** due to reduced stiffness and decreased ability to resist compressive stresses.

Experimental and Numerical Data

- Backbone curve parameters for frame modelling.
- Damage criteria for seismic performance assessment.

Code-Based Requirements

Limit states defined as a function of member ductility.

ASCE 41-16

Modeling Parameters and Acceptance Criteria for Nonlinear Procedures—Structural Steel Beams and Columns—Flexural Actions

Modeling Parameters		Acceptance Criteria			
		Plastic P	rotation angle (r erformance Leve	adians) el	
Plastic rotation angle a and b (radians) Residual strength ratio c		10	LS	СР	
Beams 1. When: $\frac{b_f}{2t_f} \le 0.30 \sqrt{\frac{E}{F_{ye}}}$ and $\frac{h}{t_w} \le 2.45 \sqrt{\frac{E}{F_{ye}}}$	$a = 9\theta_y$ $b = 11\theta_y$ c = 0.6	0.25 ^a	a	b	
2. When: $\frac{b_f}{2t_f} \ge 0.38 \sqrt{\frac{E}{F_{ye}}}$ or $\frac{h}{t_w} \ge 3.76 \sqrt{\frac{E}{F_{ye}}}$	$a = 4\theta_y$ $b = 6\theta_y$ c = 0.2	0.25 ^{<i>a</i>}	0.75 ^a	а	

Other: Linear interpolation between the values on lines 1 and 2 for both flange slenderness (first term) and web slenderness (second term) shall be performed, and the lower resulting value shall be used.

EC8-3

Plastic rotation capacity at the end of beams or columns with dimensionless axial load v not greater than 0,30.

	Limit State		
Class of cross section	DL	SD	NC
1	1,0 <i>θ</i> _y	6,0 <i>θ</i> _y	8,0 <i>θ</i> _y
2	$0,25 \theta_{\rm y}$	$2,0 \theta_{\rm v}$	$3,0 \theta_{\rm y}$

Tolerances on Dimensions (EN 10034:1993)

Standards allow for **significant variability in thicknesses**, which can greatly affect the **slenderness ratios** and the overall performance of the members.

Dimensional tolerances for structural steel I and H sections							
Section he	eight <i>h</i>	Flange wid	th <i>b</i>	Web thickness s		Flange thickn	less t
height	tolerance	width	tolerance	thickness	tolerance	thickness	tolerance
mm	mm	mm	mm	mm	mm	mm	mm
<i>h</i> ≤180	+3.0	<i>b</i> ≤110	+4.0	<i>S</i> < 7	<u>+</u> 0.7	t < 6.5	+1.5
	-2.0		-1.0				-0.5
$180 < h \le 400$	+4.0	110 <i><b< i=""><i>≤</i>210</b<></i>	+4.0	7 <i>≤ s</i> < 10	<u>+</u> 1.0	6.5 <i>≤ t</i> < 10	+2.0
	-2.0		-2.0				-1.0
$400 < h \le 700$	+5.0	210 < <i>b</i> ≤ 325	+4.0	10 ≤ <i>s</i> < 20	<u>+</u> 1.5	10 ≤ <i>t</i> < 20	+2.5
	-3.0		-4.0				-1.5
<i>h</i> > 700	+5.0	<i>b</i> > 325	+6.0	$20 \le s < 40$	<u>+</u> 2.0	$20 \le t < 30$	+2.5
	-5.0		-5.0				-2.0
				$40 \le s < 60$	<u>+</u> 2.5	$30 \le t < 40$	+2.5
							-2.5
				$s \ge 60$	<u>+</u> 3.0	$40 \le t < 60$	+3.0
							-3.0
						<i>t</i> ≥60	+4.0
							-4.0

Variation for geometric imperfections in **code** is based on research from the **1970s**.

Evaluation of the influence of geometrical variability due to the manufacturing process on the flexural cyclic behaviour of steel members.

Focus on different parameters:

- Flexural Overstrength (M_{max}/M_y)
- Rotation at max moment (θ_{max})
- Rotation at 80% of max moment ($\theta_{80\%}$)
- Energy dissipation
- Axial shortening

Research Methodology

Development of a detailed 3D FE model in ABAQUS

Analyses of samples of profiles reflecting realistic variability of relevant geometrical properties

- Six variables: b₁, b₂, t_w, t_f (top),t_f (bottom), h
- Constant imperfection in shape (variable in magnitude)
- IPE300 to IPE600 and HEB300 to HEB450
- Four **different lengths** L = 2, 2.5, 3, 3.5 m

Research Methodology

Quantity	Mean	Standard deviation	Skewness	Kurtosis	Min Value	Max value
h	1.001	0.00443	-0.4063	3.0150	0.989	1.013
b ₁	1.012	0.01026	-0.3939	4.239	0.975	1.049
b ₂	1.015	0.00961	-0.5448	3.887	0.975	1.037
t ₁	1.055	0.04182	1.0545	7.4730	0.949	1.3
t ₂₁	0.988	0.04357	-0.2991	2.663	0.880	1.094
t ₂₂	0.998	0.04803	0.3303	2.766	0.858	1.129

Relative statistical geometric characteristics

Quantity	h	b ₁	b ₂	t ₁	t ₂₁	t ₂₂
h	1	-0.0068	0.0534	0.0399	-0.0686	-0.0989
b ₁	-0.0068	1	0.6227	-0.2142	-0.2681	-0.1456
b ₂	0.0534	0.6227	1	-0.2132	-0.1596	-0.0423
t ₁	0.0399	-0.2142	-0.2132	1	0.2368	0.2451
t ₂₁	0.0686	-0.2681	-0.1596	0.2368	1	0.7634
t ₂₂	-0.0989	-0.1456	0.0423	0.2451	0.7634	1

Correlation matrix of geometric characteristics

Melcher et al. (2005) conducted experimental survey on 700 steel hot rolled IPE profiles

Probabilistic distributions of each parameter defined by a distribution from the Pearson family based on survey data.

Sensitivity analysis to evaluate the influence of each individual geometrical parameter (sample of size **50** using LHS).

Global analysis involving the variability of all the considered geometrical parameters (sample of size **50** using LHS and the empirical correlation between parameters).

Numerical Model

3D model in **ABAQUS** with one edge fully restrained **Voce-Chaboche** combined isotropic and kinematic model Cyclic loading: **SAC protocol Unbraced length** according to AISC 341-16 $L_b = 0.095 i_z \frac{E}{F_V}$

Model Validation

Experimental Test on IPE 300

Rotation (mRad)

D'Aniello et al (2012)

Results

Backbone Curve of an IPE300 with L=2m

Sensitivity Study

Flange and web thickness have the greatest influence.

Tolerance of \mathbf{t}_2 (flange thickness) represents a variation of (-14%, +23%) Tolerance of \mathbf{t}_1 (web thickness) represents a variation of (-14%, +14%)

Backbone Curves of IPE 300 to IPE 600 (L=2m)

- The pattern of dispersion of the data is not constant for the range of IPE profiles.
- The behaviour of the **nominal profile** in relation to the sample is **variable**.

 M_{max}/M_{y} for the IPE profiles with L=2m

- For most of the profiles the flexural overstrength exceeds that prescribed in EC8.
- Capacity design may not be as effective as one would expect.

Normalized energy dissipation for the IPE profiles with L=2m

• Relatively limited dispersion but dependent on the height of the profile.

Results (HEB)

Backbone Curves of HEB 300 to HEB 450 (L=2m)

Normalized axial force = 0%Normalized axial force = 30%2000 Average Average M_80% M 80% 1500 Mmax Mmax 1500 1000 HEB450 1000 HEB450 Moment (kN.m) Moment (kN.m) 500 500 0 0 **HEB300 HEB300** -500-500-1000-1000-1500-1500-200020 -20Ó -60-4040 60 -2020 40 60 -80-60 -400 80 Rotation (mRad) Rotation (mRad)

• As expected, the presence of **axial force reduces the ductility** of the members.

Results (HEB)

 $\theta_{80\%}$, M_y/M_{max} , Energy dissipation and axial shortening for the HEB profiles with L=2m

• Overall, the conclusions are similar to those obtained for the IPE profiles.

Predictive Models

Nonlinear regression model

$$\theta_{80\%}(mRad) = a \left(\frac{L}{h}\right)^b \left(\frac{h_w}{t_w}\right)^c \left(\frac{b_f}{2t_f}\right)^d$$

Model parameters

Dataset	a	b	с	d
All IPE data	273.35	0.16	-0.45	-0.38
Dataset	a	b	с	d
HEB with	207	0.07	0.71	0.52

IPE

Y=X

30

 $\theta_{80\%}$ (mRad)

32

34

42

40

38

36

34

32

30

Predicted $\theta_{80\%}$ (mRad)

1.83

0.93

 $\theta_{80\%}$

Prediction	RMSE	R ²
θ _{80%}	1.11	0.72

36

Measured $\theta_{80\%}$ (mRad)

38

42

40

Predictive Models

Neural network model

Input Variables	Description	
h	Height of the profile	
b ₁	Top flange width	
b ₂	Bottom flange width	
t ₁	Web thickness	
† ₂₁	Top flange thickness	
t ₂₂	Bottom flange thickness	
L _b	Unbraced length	
С	Web depth	

Training data set:

- 1600 results for IPE profiles
- 300 results for HEB profiles subjected to axial loading

Predictive Models

Neural network model

IPE

- The **neural network** model exhibits **higher accuracy**. ۲
- But what should be the "delivery mode" in a seismic code? ۲

Conclusions

- Manufacturing tolerances induce geometrical variability on steel profiles.
- The effect on **cross-section slenderness** is directly reflected on the **ductility** of the members.
- Rotation associated to the near collapse limit state is highly influenced by the geometrical variability.
- Flexural overstrength is also greatly influenced by the geometrical variability and can easily exceed the EC8 prescriptions.
- Neural network models can provide accurate predictions of different behaviour parameters.
- **Challenges** regarding the implementation of these models in a code context.

Thank You