Site dependence and record selection schemes for building fragility and regional loss assessment

Mohsen Kohrangi, Dimitrios Vamvatsikos, Paolo Bazurro

UME School, IUSS Pavia, Italy NTUA, Greece

- Introduction
- Problem Definition
- Application of the method
- Results
- Concluding remarks

- Introduction
- Problem Definition
- Application of the method
- Results
- Concluding remarks

Introduction/Fragility Function

- What is a fragility function?
 - Shows the probability of exceedance of a limit state
 - Threshold of a EDP → usually MIDR
- What is it used for? → mainly in portfolio loss estimation
- How is it defined? → log normal, logarithmic mean and standard deviation

$$P(LS \mid IM = x) = \Phi\left(\frac{\ln(x/\theta)}{\beta}\right)$$

Introduction/Portfolio loss estimation

- How Fragility/vulnerability curves are obtained
 - ➤ Empirical → Best but lack of data
 - ➤ Analytical → most common (OUR FOCUS)
 - ➤ Engineering Judgement →
 - \rightarrow Hybrid \rightarrow combination of two or all above

- Introduction
- Problem Definition
- Application of the method
- Results
- Concluding remarks

Problem Definition/Analytical fragility curves

What is our concern here?

- Recent studies → building response is building and site dependent
- i.e. conditional spectrum & GCIM record selection
- Assume one building (class) at different sites → different seismicity
- Are fragilities site dependent too? (main question here)

What is usually done?

• One set of records \rightarrow IDA \rightarrow single fragility curve for all sites!

What is the most accurate approach? ("perfect" approach)

• Per building/per site → most accurate, large book keeping, time consuming.

Is there an alternative? \rightarrow more accurate than IDA & less time consuming than the perfect approach

Problem Definition/fragility curves

Two alternatives defined here:

1- "multi-run" approach (benchmark here)

- Select records for each site \rightarrow site dependent fragility for each
- Law of total variability \rightarrow combine the multiple fragilities to single one
- Use one fragility curve in the procedure

2- "Single-run" approach

- Select one set of records to represent all sites
- Obtain single analytical fragility
- Use one fragility curve the procedure

Problem Definition/multi-run approach

- "multi-run" approach
- Law of total variability → combine the fragilities
- Need to consider weight for each site (Ps)

$$P(LS \mid IM) = \sum_{s=1}^{n} P_{s} \cdot P(LS \mid IM, s)$$

Logarithmic mean

$$\theta_{tot} = \exp\left[\sum_{s=1}^{n} P_{s} \cdot \ln(\theta_{IM,s})\right]$$

Logarithmic dispersion

$$\theta_{tot} = \exp\left[\sum_{s=1}^{n} P_{s} \cdot \ln(\theta_{IM,s})\right] \qquad \beta_{tot} = \sqrt{\sum_{s=1}^{n} P_{s} \cdot \left[\beta_{\ln IM,s}^{2} + \left(\ln\left[\frac{\theta_{tot}}{\theta_{IM,s}}\right]\right)^{2}\right]}$$

Problem Definition/single-run approach

- "single-run" approach
- Conditional spectra (CS) -based record selection (Jayaram *et al.*, 2012)
- Considers both mean and variance in the target spectrum
- CS conditioned on $AvgSA \rightarrow CS(AvgSA)$, Kohrangi et al. (2016)

Problem Definition/single-run approach

- "single-run" approach
- Exact method of CS, Lin *et al.* (2012) \rightarrow law of total variability
- Variability for: For *causal events*, $GMPEs \rightarrow We$ extended to *site*

$$\mu_{\ln SAT_i \mid \ln IM} * = \sum_{s} \sum_{j} \sum_{k} p_{s,j,k} \cdot \mu_{\ln SAT_i,s,j,k \mid \ln IM} *$$

$$\sigma_{\ln SAT_i \mid \ln IM^*} = \sqrt{\sum_{s} \sum_{j} \sum_{k} p_{s,j,k} \cdot \left[\sigma_{\ln SAT_i,s,j,k \mid \ln IM^*}^2 + \left(\mu_{\ln SAT_i,s,j,k \mid \ln SAT^*} - \mu_{\ln SAT_i \mid \ln IM^*} \right)^2 \right]}$$

Problem Definition/single-run approach

EXAMPLE

- Six sites
- Black line: mean of all

Site #	S1	S2	S3	S4	S5	S6
R(km)	10	10	30	30	50	50
Mw	6	7	6	7	6	7

- Introduction
- Problem Definition
- Application of the method
- Results
- Concluding remarks

Application of the method/Building Examples

Description:

- ➤ Plan-symmetric moment-resisting frames
- ➤ 4-, 7-, 12- & 20-story buildings
- Post-1980 seismic design provisions regions (NEHRP site class D)

Modeling assumptions:

- OpenSees
- ➤ 2D centerline idealization
- lumped-plasticity elements
- \triangleright P- \triangle effects

Application of the method/Selected site—Hazard analysis

Hazard analysis/Disaggregation

- OpenQuake
- SHARE Project, hazard source model
- GMPE proposed by Boore and Atkinson (2008)
- Ankara, Erzincan and Istanbul

Application of the method/Record selection: Portfolio

SO WHAT IS THE SOLUTION?

- 1. Different site-specific fragilities (direct method) → multiple record set, multiple fragilities
- 2. Combine site-specific fragilities (mean-frag) → multiple record set, one fragility
- 3. Incorporating multiple-sites in one record set (mean-sites)→ one record set, one fragility

RESULTS/Local level

Building response:

- Records:
 - CS(AvgSA), $CS(SAT_1)$ & IDA
- Different record sets for each site
- Median IDR and PFA along the height
- Building response is a function of the seismicity of the site.

PRESULTS/Fragility curves

General findings: MIDR

- Building fragilities are site-dependent
- IDA with records regardless of the seismicity of the region \rightarrow less reliable fragilities
- Fragilities based on $AvgSA \rightarrow less$ scatter than SAT_1
- The two methods proposed here provide very similar results \rightarrow (Single run ~ multi run)
- To avoid heavy computations: use Single run → one record set, NDA once!

RESULTS/Fragility curves

General findings: MPFA

RESULTS/Vulnerability functions

General findings: MPFA

- ➤ MIDR-based fragilities
- ➤ Drift thresholds of 0.75, 1.2, 2.0 and 4.0%
- loss ratios are defined as 0.10, 0.3, 0.6 and 1.0 corresponding to slight, moderate, extensive and near-collapse limit states

- Introduction
- Problem Definition
- Application of the method
- Results
- Concluding remarks

CONCLUDING REMARKS

- Fragility &vulnerability for a set of buildings → analytical approach
- Fragilities → site-dependent → record selection is needed
- Three approaches proposed
- Most accurate → multiple record selection → multiple fragilities
- Easy and acceptable \rightarrow single record selection \rightarrow single fragility
- CS(AvgSA) reduces the spread in the fragilities

Thank you for your attention!