Netis-risk **Real Time Intercity Seismic Risk** seismic risk in urban and interurban road networks

Anastasios Sextos

Associate Professor

Aristotle University Thessaloniki

Resilience-based Seismic Design

Wider Performance Criteria

Mitigate Seismic Risk (in terms of direct damage and loss)

Minimize implications on disaster response (immediate after) and recovery (in the long term)

Objectives

Real-Time Seismic Risk of Intercity Highway Networks

|--|

Objective

Risk-informed Decision Making of Highway Networks

for

State & Stakeholders

by integrating

vulnerability, seismic hazard, traffic analysis, consequence analysis & SHM

Concept Objectives Methodology Pilot Study Conclusions

Case study

InterCity Network for the Prefecture of Western Macedonia, Greece

Concept Objectives Methodology Pilot Study Conclusions	Concept O	bjectives Methodo	logy Pilot Stu	udy Conclusions
--	-----------	-------------------	----------------	-----------------

1. Area of study

Concept	Objectives	Methodology	Pilot Study	Conclusions

2. Network Grid (portfolio of critical nodes)

Concept	Objectives	Methodology	Pilot Study	Conclusions

3. Classes of Critical Components

Seismic fragility of bridges within the highway network

 $P[(D \ge DS_i \middle| I_M)]$

Concept	Objectives	Methodology	Pilot Study	Conclusions

1. For each bridge class

2. Introduce uncertainty in material properties, geometry, finite element modelling, ground motion

 Generate analysis sample (Monte Carlo, Latin Hybercube sampling)

- 4. Run series of nonlinear response history analyses
 - 5. Define limit states
- 6. Compute structural damage proxies
 - 7. Predict the probability of exceeding a given limit state for a given Intensity measure (PGA, Sa(T))

Conclusions

Pilot Study

Multi-damage Fragility

Timit State	Piers / EDP : $d(x)$	m)	Abutments	Bearings
	Local	Global	EDP: $d(m)$	EDP: γ (%)
LS 1 – Minor/Slight damage	$\phi_1:\phi_y$	$\min \begin{cases} d(\varphi_1) \\ d(V_1) \end{cases}$	$d_1 = 1.1 \cdot d_{gap}$ $(\mu_{\varphi, backwall} = 1.5)$	20
LS 2 – Moderate damage	$\varphi_{2}: \min (\varphi: \\ \varepsilon_{c} > 0.004 , \varphi: \\ \varepsilon_{s} \ge 0.015)$	$\min \begin{cases} d(\varphi_2) \\ d(V_2) \end{cases}$	$d_2 = 0.01 \cdot h_{\scriptscriptstyle backwall}$	100
LS 3 – Major/Extensive damage	$\varphi_{3}: \min (\varphi: \\ \varepsilon_{c} \leq 0.004 + \\ 1.4 \cdot \rho_{w} \cdot \frac{f_{yw}}{f_{cc}} \\ \varphi: \varepsilon_{s} \geq 0.06)$	$\min \begin{cases} d(\varphi_3) \\ d(V_3) \end{cases}$	$d_3 = 0.035 \cdot h_{\rm backwall}$	200
LS 4 – Failure/Collapse	$\varphi_{4}: \min (\varphi: M < 0.90 \cdot M_{\max}, \varphi: \varepsilon_{s} \ge 0.075)$	$\min \begin{cases} d(\varphi_4) \\ d(V_4) \end{cases}$	$d_4 = 0.1 \cdot h_{\scriptscriptstyle backwall}$	300

0	~ +
Conce	ρι

Taskari & Sextos (2015)

ConceptObjectivesMethodologyPilot StudyConclusions

Sub-set 1(weak to moderate motions): $0 \le a_g \le 0.4g$, M<6.5,

Sub-set 2 (strong, far-field, motions): $0.4 < a_g \le 0.8$ g M ≥ 6.5 , R ≥ 30 km,

Sub-set 3 (very strong, near field, motions): $0.8 < a_g \le 1.0g$, M ≥ 6.5 , R ≤ 30 km).

Concept

Concept Objectives Methodology Pilot Study	Conclusions
--	-------------

5. Vulnerability of each class of tunnels

- Fragility of:

 Tunnels
 Slopes

 PGA/PGV/PGD as Intensity Measure
- Definition of Limit States

Pilot Study

Conclusions

5. Vulnerability of each class of tunnels

6. Seismic Hazard Assessment

Deterministic : DSHA

Single Magnitude, M Single Source-to-site distance, R Influence of M,R

Probabilistic : PSHA

Multiple probable Magnitudes, M Multiple probable Source-to-site distances, R Influence of M,R

$$\lambda_{GM}(gm^*) = \sum_{i} \left\{ \int \int \int I[GM > gm^* | m, r, \varepsilon] v_i f_{M,R,E}(m, r, \varepsilon)_i \, dm dr d\varepsilon \right\} (2.3)$$

$$\underbrace{\nu_{i}f_{M,R,E}\left(m,r,\epsilon\right)_{i}}_{i} = \underbrace{\nu_{i}f_{M}\left(m|\mathbf{x}_{hyp}\right)f_{X_{hyp}}\left(\mathbf{x}_{hyp}\right)}_{f_{X_{hyp}}\left(\mathbf{x}_{hyp}\right)}\underbrace{f_{R}\left(r|m,\mathbf{x}_{hyp},\mathbf{\theta}_{i}\right)}_{i} \underbrace{f_{E}\left(\epsilon\right)}_{i}$$

how many times per year do all possible levels of ground motion occur from source *i*?

how many times per year does an earthquake of M=m occur in source i with a hypocentre at x_{byp}?

when this event occurs, how likely are what sort of rupture does the possible GM values for this it produce? scenario?

Concept	Objectives	Methodology	Pilot Study	Conclusions

6. Seismic Hazard Assessment

Geographical distribution of expected Intensity Measures

Mean recurrence period: 475 years (V. Margaris & N. Theodoulidis)

PGA (cm/sec²)

PGV (cm/sec)

-mma

SAK

6. Seismic Hazard Assessment

- *k* Scenarios (50, 100, 475, 1000)
- *m* seismic events => *m* maps of IM
- Functionality of a critical component *i*

$ ilde{T}$ –	1 if $P_{i,k,m}[D \ge DS_2] im_{i,k,m} <$	< 0.5
$I_r - I_r$	0 if $P_{i,k,m}[D \ge DS_2] im_{i,k,m} \ge$	≥0.5

7. Traffic analysis

Concept

Objectives

Pilot Study

Conclusions

7. Repair cost and restoration vs. time

Traffic capacity over time for each scenario, source and restoration phase (as closed components gradually return to full function)

Concept

8. Total Traffic Cost

- ECp : additional cost due to traffic conjunction during phase p (per time unit)
- VOT : value of time
- Dp : total delays during phase p
- Vjp : traffic load in network link j
 - : travel time in network link j
- Vjo : traffic load in network link j before earthquake occurrence
- tjo : travel time in network link j before earthquake occurrence

\mathbf{C}	n	00	nt
		.ce	μι

tjp

8. Total Structural Cost

DS – Repair Cost Ratio Index

Damage State	Repair-Cost Ratio
No damage	0.00
Slight damage	0.03
Moderate damage	0.25
Major damage	0.75
Complete damage	1.00

Structural Cost for critical component i :

 $D_{i} = \sum_{1}^{M} (RCR_{1}^{i*}P_{DS1}^{i} + RCR_{2}^{i*}P_{DS2}^{i} + RCR_{3}^{i*}P_{DS3}^{i} + RCR_{4}^{i*}P_{DS4}^{i}) * TCC_{i}$

M : total number of the identified earthquake sources

TCC_i: total construction cost of component i

Total (for the entire network) Structural Cost :

$$TSC_k = \sum_{i=1}^N D_{i,k}$$

Objectives

N: total number of critical network components

9. Consequence analysis

•assessment of losses that are not easily quantified in monetary units•values ranging from 0 to 1 (lower indicator values imply higher losses)

10. Decision making

Concept

10. Decision making

SHM and (nearly) Real-time Seismic Risk Assessment

Minimize implications on disaster response (immediate after) and recovery (in the long term)

Update with actual IM

Update with actual Sa(T)

Update with actual Sa(T): Satellite link

Conclusions

 A novel, modular methodology for the assessment of Seismic Risk in Intercity Highway Networks was developed
 Methodology and web-based software are parametrically structured and are open to be used in different European Areas
 Modular structure permits incorporation of natural or man-made hazards as well as additional network components

Acknowledgements: Yiannis Kilanitis, Ph.D. student, Aristotle University

Objectives

Concept

Methodology

Pilot Study

Conclusions

