The 42nd Risk, Hazard & Uncertainty Workshop

Hydra Island, June 22-25, 2016

Design of structures for tolerable seismic risk using non-linear methods of analysis

Mirko Kosič, Žiga Šebenik and Matjaž Dolšek University of Ljubljana, Slovenia Faculty of Civil and Geodetic Engineering

Agency

www.smartengineering.s

Introduction and motivation

- 2
- Current building codes do not support design for a target seismic risk
- Basic research project: development of the methodology and tools for the design of structures for tolerable seismic risk using nonlinear methods of analysis

3

One possible realization of risk-based seismic design

(Lazar Sinković, Brozovič & Dolšek 2016)

- Risk-targeted force-based design (Žižmond & Dolšek, 2015)
- SMART Web Application for the selection of risk-targeted q-factors
- Guidelines for the structural adjustment of RC frames using pushover analysis
- B 3R Method (Dolšek & Brozovič, 2016)
- Risk-based decision making: NRHA for 7 GMs at a single intensity
- SMART CGM Web Application

4

Adjustment of the structure using PA:

- Adjustment guidelines (Lazar Sinković, Brozovič & Dolšek, 2016):
 - 0) Basic guideline: Apply the SCWB principle
 - 1) Improve deformation capacity of the system by increasing the longitudinal reinforcement in the columns (50% of maximum drift) and check if longitudinal reinforcement ratio do not exceed max value.
 - 2) Increase strength of the structure by increasing cross-section area of beams in all stories when it is required to increase the strength significantly. Check SCWB.
 - 3) Increase strength of the structure by increasing cross-section area of columns if the maximum utilization ratio is large.

5

Example application: 8-storey RC frame

- Target collapse risk: $P_t = 10^{-5}$
- Initial structure configuration: minimum requirements according to EC2 and EC8
- Material: Concrete class C30/37 and reinforcing steel S500

6

Seismic hazard and ground motion selection

- Hazard: Sa(T=1.2 s) for Ljubljana (Slovenia), soil type C
- Ground motion selection (according 3R method):
- 40 GMs selected according to conditional spectrum for the characteristic (16 th percentile) value of the target fragility curve: Sa,ct=2.5 g

 $P_t = 10^{-5}$

β=0.4

frag. LN

- Target scenario: ε=2.0, M=7.3, R=19.2 km

Adjustment of the structure and risk check using PA:

	Adjustn	nent by guid	elines	BS	ΔBS	D_{tNC}	ΔD_{LNC}	Sa.C.16	P_{C}	ΔP_C
Iteration	a) AsC	b) AcB	c) AcC	(kN)	(%)	(m)	(%)	(g)	(10-5)	(%)
Initial	/	1	1	2417	1	0.56	/	1.56	3.06	/
1	1-8 0.002	1	10%	2674	11	0.62	11	1.87	2.02	-34
2	1-5 0.004	1	1	2801	5	0.73	18	2.22	1.36	-33
3	1-8 0.004	5%	10%	3210	15	0.78	7	2.38	1.14	-16
4	1-6 0.004	1	1	3392	6	0.84	8	2.60	0.93	-18

AsC 1-x $\Delta \rho$: Increment of the longitudinal reinforcement ratio $\Delta \rho$ of the columns in the storeys from 1 to x

AcC ΔA_c : Increment of the cross-sectional size ΔA_c of the columns in all the storeys

AcB ΔA_c : Increment of the cross-sectional size ΔA_c of the beams in all the storeys

Design check – 3R method (Dolšek & Brozovič, 2016)

- Procedure:
 - 7 GMs are selected median is close to the 16th percentile of the proxy for the collapse fragility curve (SDOF approximation)
 - Dynamic analysis for 7 GMs, scaled to Sa,ct (target value)
 - 3 GMs out of 7 caused collapse: r=3/7<0.5 (actual risk based on IDA is $P_c=0.98\cdot10^{-5}$)

Key assumptions:

- β is assumed (e.g. Kosič, Dolšek & Fajfar, 2016)
- The pushover analysis provides a good approximation of the 16th percentile collapse fragility curve

Remarks and Conclusions:

- Advantages:
 - Includes an explicit check of risk-based performance objectives in the design (increased reliability of design solutions)
 - Engineer controls adjustment of structure (better insight into the behavior of the structure during earthquakes)
- Efficiency of the design:
 - Depends on guidelines for the adjustment of structure
 - Depends on engineer's knowledge and experience

Software development

enhance iterative risk-based design

desktop and web applications
 apps.smartengineering.si

web -> accessible, user friendly, manageable

Software development

Strong ground motion database

11

apps.smartengineering.si

CGM application

selection of so called Characteristic Ground Motions (3R method – Dolšek, Brozovič)

Qfactor application

- assessment of risk targeted design seismic intensity & behavior factor q
- Strong ground motion database application
 interface (access, search, download)

CGMapp introduction

□ 3R method (Dolšek & Brozovič, 2016)

- is collapse risk sufficient?
- trivial decision model
 characteristic ground motions
- □ Application

automate selection of CGMs

13

CGMapp 1.step: selection of hazard-consistent GMs

Conditional spectrum approach
 Original algorithm (Jayaram et al. – MATLAB)
 Translated into C programming language

14

Data for conditional spectrum-based ground motion selection Ground motion restrictions General: 1 1 i Number of GM Cond. period T* (s) Select ground motions based on: Magnitude * + A: Single arbitrary horizontal ground motion compon... 30 1 Min Max * Min Max Closest source-to-site distance Ground motion prediction model: Min (km) Max (km) Min * Max 1 i Z_{TOR} (km) i Select ground motion prediction model V_{5.30} (m/s) ÷ 0 * 400 Campbell & Bozorgnia 2008 Shear wave velocity Vs30 i λ(°) i Z_{VS} (km) [i] δ (°) Min (m/s) Max (m/s) * * -90 180 2 Min * Max Select earthquake origin Mean earthquake scenario: All selected i Earthquake scenario defined by Select database source M, R, Sa,ct PEER Characteristic value of target collapse intensity Sact is automatically calculated when all required fields are set: i Define hazard function as: Number of potencial records for selection nGM, Hazard & Fragility function parameters User-defined i i βt Target collapse risk 1 Hazard function: ÷ 0.4 • MAF ^ 0.00001 Acceleration (g) 0.0001 1.11 1 2 0.001 0.982 0.215 3 0.01 0.0833 4 0.02 5 0.0162 0.05 6 0.07 0.00787 7 0.1 0.00341 0.2 0.00054 8 Clear hazard function table Hazard Function Target collapse fragility function User-defined 1e+0 1e+0 1.0 -Extrapolation 0.90 1e+1 1e-1 0.80 1e-2 1e+2 1e+3 (Xears) 0.70 -Advanced options 1e-3 = 0.60 -P(C|Sa(T*)) rn period I ₩ ₩ 1e+4 0.50 Return period of Sa,ct = 60276 1 1 0.40 Scaling useVar nPerTgt 1e-5 1e+5 Ret * ☑ 4 20 compute 0.30 -1e-6 1e+6 0.20 P = 0.151e-7 1e+7 i i Seed nLoop penalty 0.10 Sact = 0.571 -+ 1e-8 1e+8 2 0 1 0.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 0.0 0.50 1.0 3.0 0.50 3.0 i weight mean weight sd Sa(T*) (g) Sa(T*) (g) + 1 2 Deaggregation 1 1 i Distance R (km) i Magnitude M Sact (g): Parameter ɛ

2.128

*

+

i

1

1

*

*

*

1

i

i

*

1

-

1

+

+

25.3

7.01

-

0.571

2. step: Incremental Dynamic Analysis

CGMapp

	Data for SD	•		IDA options	•		
Mass & Damping Mass (t) α_M β_K β 1000 • 0.63 • 0	i ³ Kinit βκcomm 0 ♀ 0 ♀	Material TakedaDAsym	1 v	nPoints 30 dPGAg (g) 0.05	i tInteg (s)		
Material envelo	n)	Envelope type Symmetrical Non-symmetrical Positive envelope points: F1p (kN) F2p (kN) F3p (kN) F4p (kN) 1600 1900 1900 0.1 D1p (m) D2p (m) D3p (m) D4p (m) 0.04 0.09 0.4 0.8 Period of SDOF model in positive direction 0.993 (s) Other envelope data: Beta 0.8 •		Trim ground moti	ons Sa toleranc PGATol PGA	i tolera↓	

Results

B: 762 m/s < Vs30 < 1524 m/s C: 366 m/s < Vs30 < 762 m/s D: 183 m/s < Vs30 < 366 m/s

Strong Ground Motion Database public API (example usage)

Soil Profile Image

– 🗆 🗙

4 m

3 m

15 m

Shake91 (Idriss & Sun)

>

	Mod	ify	M	love Up		Move Down			De	elete											
				Sublayer data			A	Acceleration Stress S				St	train RespS			spSpe	pec Fourie			ierSpe	ec
Select	Num	Material	Thickness	Damping	UnitWeight	ShearVeloc	ity C	0	Max	С	#	С	#	С	0	G	D	С	0	#V	#
	1	Mat_1	3	0.05	17.59	1115		•						✓	✓	981	0.05				
	2	Mat_1	4	0.05	20.89	1148			•												
	3	Mat_2	2	0.05	20.42	1197			✓												
	4	Mat_2	3	0.05	19.16	1362			✓												
	5	Mat_2	3	0.05	20.42	1476								◄		981	0.05				Γ
	6	Mat_3	3	0.05	16.64	1575			✓												
	7	Mat_3	3	0.05	19	1903	~		✓												Γ
	8	Mat_3	3	0.05	19.64	1804	•														
	9	Mat_3	3	0.05	19.64	1772	•		✓												Γ
	10	Mat_3	3	0.05	20.11	1919	•		✓												
	11	Mat_3	5	0.05	20.42	1936			•												Γ
	12	Mat_4	5	0.05	19.79	1936	•		•												
	13	Mat_4	5	0.05	20.26	2067	~		•												Γ
	14	Mat_4	5	0.05	20.26	2165	-		•												
	15	Mat 4	5	0.05	20.11	2215	~														
Amplific	ation S	pectrum																			
New			# First Outc. Second Layer				Outc. Frequency Delete					Define Aplification Spectra after definition of all sublayers in									
					.,					,											

Outcropp V Only max

Number of Saved Values

Number of Saved Values

Outcroop # Smoothed Values

Outcropp

Damping ratios: 0.05

Shake91-GUI v.0.0.2.0, IKPIR ©

Gravity: 981

Seed Values

19

File Material

Sublayer Input

Define sub

Mat 5

0.05

Shear \

2838

Unit Weight [kN/m3]

Add Lav

Loads Analyis

Help

Acceleration

Define what to compute for each sublaver

Shear Stress Time History

Shear Strain Time Histor

Response Spectrum

Fourier Spectrum

3

equivalent linear seismic response analysis of horizontally layered soil deposits

Thank you for your attention

- Publications:
 - Dolšek M, Brozovič M. Seismic response analysis using characteristic ground motion records for risk-based decision making. *Earthquake Engineering and Structural Dynamics* 2016; 45(3):401– 420.
 - Lazar Sinković N, Brozovič M, Dolšek M. Risk-based seismic design for collapse safety. Earthquake Engineering and Structural Dynamics 2016, 45: 1451–1471.
 - Kosič M, Dolšek M, Fajfar P. Dispersions for the pushover-based risk assessment of reinforced concrete frames and cantilever walls. *Earthquake Engineering and Structural Dynamics* 2016; doi: 10.1002/eqe.2753.
 - Žižmond J, Dolšek M. Risk-targeted force-based design and performance check by means of nonlinear analysis. In: Tenth Pacific Conference on Earthquake Engineering, 6-8 November 2015, Sydney, Australia. Building an Earthquake Resilient Pacific. Sydney: Australian

www.smartengineering.si

Slovenian Research Agency