Probabilistic Fracture Mechanics Based Design of Seismic Column Splices

Amit Kanvinde Kimberly Stillmaker (UC Davis)

Carmine Galasso (University College London)

24th June, 2016 Hydra, Greece

Acknowledgments

- Dimitrios!!
- Sean Shaw (former PhD student)
- American Institute of Steel Construction
- Jim Malley (Degenkolb)
- Mark Saunders (Rutherford and Chekene)
- AISC Committee on Seismic Effects
- Herrick Corporation

Earthquake induced fracture in steel structures (Northridge)

Earthquake induced fracture in steel structures (Northridge)

Sharp crack like flaw – resulting in fracture

Pre-Northridge column splices

Partial Joint Penetration (PJP) welds

Risk of fracture

Elimination of notch (use only CJP)

Use of notch tough weld filler material and base metal

2010 AISC Seismic Provisions

For Intermediate Moment Frames and Special Moment Frames

"Where welds are used to make the splice, they shall be complete-joint-penetration groove welds."

Currently required

Excellent performance of tough, PJP welded base plates and other details

Can we use PJPs in splices?
If so, under what conditions?

The aim – a safe and reliable PJP welded splice

Understanding of seismic stress demands and uncertainty

The aim – a safe and reliable PJP welded splice

Understanding of seismic stress demands and uncertainty

The aim – a safe and reliable PJP welded splice

Understanding of seismic stress demands and uncertainty

Understanding of fracture stress capacity and uncertainty

To understand capacity, fracture mechanics is necessary

Conceptually

 $\sigma_{fracture} = f(K_{IC}, a, t_{upper}, t_{lower})$

Material Toughness (CVN – K_{IC})

Conceptually

 $\sigma_{fracture} = f(K_{IC, a}, t_{upper}, t_{lower})$

Material Toughness (CVN – K_{IC})

Crack Length

Conceptually

 $\sigma_{fracture} = f(K_{IC}, a, t_{upper}, t_{lower})$

Material Toughness (CVN – K_{IC})

Crack Length Geometry

How to determine $\sigma_{fracture}$ in a general manner?

1. Experiments

- Expensive
- Limited data set in terms of geometry, material properties
- 5 full scale experiments= 1 PhD + \$200K

How to determine $\sigma_{fracture}$ in a general

manner?

2. Finite Element Simulations

 Allow investigation of many parameter sets
 But,

- Not tests!
- Still a bit expensive
 25 simulations = 30-40
 weeks

How to determine $\sigma_{fracture}$ in a general manner?

2. Finite Element Simulations

- Allow investigation of many parameter sets
 But,
- Not tests!
- Still a bit expensive
 25 simulations = 30-40
 weeks

How to determine $\sigma_{fracture}$ in a general manner?

3. Semi-analytical regressed expressions

$$S_{capacity, estimate}^{flange} = \frac{K_{IC}}{\sqrt{p \ (h/2x) \ t_{upper}}} \ \frac{1}{x\sqrt{a} \ f_1(h) \ f_2(x) \ g_1(h) \ g_2(x)}$$

- Can characterize any configuration
- Introduces additional error

Sources of uncertainty (simulated as RVs):

$$S_{\textit{capacity, estimate}}^{\textit{flange}} = \frac{\textit{K}_{\textit{IC}}}{\sqrt{\textit{p ´}(\textit{h}/2\textit{x}) \acute{t}_{\textit{upper}}}} \, \, \frac{1}{\textit{x}\sqrt{\textit{a} \acute{f}_{1}(\textit{h}) \acute{f}_{2}(\textit{x}) \acute{g}_{1}(\textit{h}) \acute{g}_{2}(\textit{x})}$$

Sources of uncertainty (simulated as RVs):

$$S_{\text{capacity extirate}}^{\text{flange}} = \frac{K_{IC}}{\sqrt{p \ '(h/2x) \ 't_{upper}}} \ ' \frac{1}{x\sqrt{a} \ 'f_1(h) \ 'f_2(x) \ 'g_1(h) \ 'g_2(x)}$$

Material toughness

Sources of uncertainty (simulated as RVs):

Sources of uncertainty (simulated as RVs):

Sources of uncertainty (simulated as RVs):

$$\sigma_{capacity,true}^{flange} = \left(\frac{\sigma_{capacity,true}^{flange}}{\sigma_{capacity,FEM}^{flange}}\right) \times \left(\frac{\sigma_{capacity,FEM}^{flange}}{\sigma_{capacity,estimate}^{flange}}\right) \times \sigma_{capacity,estimate}^{flange}$$

$$Erro$$

$$sem$$

Errors in FE and semi-analytical relationship

Sources of uncertainty (simulated as RVs):

$$\sigma_{\textit{capacity,true}}^{\textit{flange}} = \left(\frac{\sigma_{\textit{capacity,true}}^{\textit{flange}}}{\sigma_{\textit{capacity,FEM}}^{\textit{flange}}}\right) \times \left(\frac{\sigma_{\textit{capacity,FEM}}^{\textit{flange}}}{\sigma_{\textit{capacity,estimate}}^{\textit{flange}}}\right) \times \sigma_{\textit{capacity,estimate}}^{\textit{flange}}$$

Errors in FE and semi-analytical relationship

Application

Toughness

$$S_{capacity, estimate}^{flange} = \frac{K_{IC}}{\sqrt{p \ '(h/2x) \ 't_{upper}}} \ '\frac{1}{x\sqrt{a} \ 'f_1(h) \ 'f_2(x) \ 'g_1(h) \ 'g_2(x)}$$

Application

Toughness

$$S_{capacity, estimate}^{flange} = \frac{K_{IC}}{\sqrt{p \ '(h/2x) \ 't_{upper}}} \ '\frac{1}{x\sqrt{a} \ 'f_1(h) \ 'f_2(x) \ 'g_1(h) \ 'g_2(x)}$$

Assessment of splice safety

P_f is acceptable if

- 85% Penetration is maintained
- Thicker flange is 15% thicker than thinner flange
- Some other detailing considerations

Summary

- NLTHA to determine demands
- Full scale experiments
- Fracture mechanics simulations
- Reliability analysis
- Determination of acceptable geometries
- For the first time since 1994, cracks are explicitly allowed in demand critical welds in seismic steel structures in the USA

6g. Column Splices

Column splices shall comply with the requirements of Section D2.5. Where welds are used to make the flange splices, they shall be complete-joint-penetration groove welds.

Exception: For Grade 50 and Grade 60 columns with minimum vield stress not exceeding 60 ksi, partial-penetration groove welds are permitted under the following conditions:

- (a) The thicker flange is at least 15% thicker than the thinner flange.
- (b) The partial-penetration welds have a minimum size effective throat of 85% of the thickness of the smaller column flange.

Thank you for your attention!

