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Cloud Analysis revisited again: What should we do with the "collapse" cases?

The Road Map

• Setting the scene: Y variable, Risk Integral, Fragility
• Cloud method in one slide
• The Bayesian diversion
• Considering the collpase cases
• The logistic treatment
• Achieving the softening effect on the median and the percentiles
• The [inevitable] comparison with IDA …
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Cloud Analysis revisited again: What should we do with the "collapse" cases?

   1|ls ls
IM
P Y IM d IM   

Performance-baced Structural Risk Assessment: The main players

 ls is the mean annual rate of exceeding a prescribed limit state

Fragility

 (IM) is the mean annual rate of exceeding a given IM 

HazardRisk

 P(Yls> 1|IM) is the structural fragility
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Setting the scene: The structural perfromance variable

Jalayer, F., Franchin, P. and Pinto, P.E., 2007. A scalar damage measure for seismic reliability
analysis of RC frames. Earthquake Engineering & Structural Dynamics, 36(13), pp.2059-2079.
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• Nmech number of mechanisms
• Ii indexes of components in the i-th mechanism

• global mechanisms
• Ultimate rotation
• Shear capacity 
• Joint safety checking

Cloud Analysis revisited again: What should we do with the "collapse" cases?
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Cloud Method in One Slide
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The Bayesian Take: Robust Fragility

   ( ) ( )R D h p D d


    
Model Parameters

Fragility Joint PDFData
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Jalayer, F., De Risi, R. and Manfredi, G., 2015. Bayesian Cloud Analysis: efficient structural
fragility assessment using linear regression. Bulletin of Earthquake Engineering, 13(4), pp.1183-
1203.



Cloud Analysis revisited again: What should we do with the "collapse" cases?

 Where ploga,b |Y|IM,D is the conditional posterior distribution of loga,b given 
 Where pY|IM|D is the marginal posterior distribution of Y|IM

       | | || log , , | log , | , |Y IM Y IM Y IMp p a b p a b p     D D D D
Bi-variate Normal Distribution

Chi-Square Distribution

 [log a, b, Y|IM] is the vector of the parameters (regression coefficientsand standard deviation) for the prescribed Log-Normal fragility function.

The posterior distribution for 
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Taking into account the collapse cases
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Taking into account the collapse cases
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Taking into account the collapse cases: 
The logistic regression
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Taking into account the collapse cases: 
The logistic regression
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Taking into account the collapse cases: Another example
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Taking into account the collapse cases: Another example
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Taking into account the collapse cases: The percentiles
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The Structural Model: 
Van Nuys Hotel Transeversal Frame
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 The structutre has been re-modelled using OPENSEES and considering the axial-shear-flexural interaction

 The concrete 01 material hasbeen used for modelling the concerete behavior.
 The longitudinal bars are modeled using the Steel02  with  1% strain hardening.0 0.02 0.04 0.06 0.08 0.10

50
100
150
200
250
300
350

Flexural Displacement (m)

Lat
era

l lo
ads

 (kN
)

Central Columns 2nd Story

 

 

Flexural curve
Vp
Vy
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The Structural Model: 
Van Nuys Hotel Transversal Frame
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 The drift at axial failure is calculatedfrom  Elwood and Moehle 2003.

 The shear strength is modeled usingSezen and Moehle 2004.
 The shear drift at shear failure iscalculated from Gerin and Adebar2004.
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The Limit State of Near Collapse

Failure Type Component(s) Definition / Description
Ductile/Brittle column / beam θmax>θultimate

Soft-story mechanism all columns of one story θmax>θyielding-flexure

Partial mechanism for a number of adjacent stories: all beams + bottom and top columns θmax>θyielding-flexure

Global mechanism for the entire building: all beams + base columns θmax>θyielding-flexure
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Cloud Analysis revisited again: What should we do with the "collapse" cases?

The Limit State of Collapse
Collapse Type Component(s) Definition / Description
Ductile 50% +1 of the columns of one story θmax>θultimate

Brittle 50% +1 of the columns of one story θmax>θaxial
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Galanis, P.H. and Moehle, J.P., 2012. Development of
collapse indicators for older-type reinforced concrete
buildings. In Proceedings of the 15th World Conference on
Earthquake Engineering (WCEE).
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The static pushover curve
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Record Selection
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 A set of 35 records for the California sites.
 Stiff soil (Geo Matrix typesCand D)
 Moment magnitude and Joyner-Boor distance in the range:

5.0 < M < 7.5   0.1 < R < 115 km
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Comparison CLOUD - IDA
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The percentiles, comparison with IDA
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The fragilities, comparison with IDA
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The fragilities, comparison with IDA
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 The robust fragility can be calculated also in the case considering the collapses;
Cloud Analysis revisited again: What should we do with the "collapse" cases?

 The bayesian robust fragility estimate helps in defining a confidence interval takinginto account the uncertainty in the parameters of the fragility curve;

Some final thoughts
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 Using the cloud with performance-based variable defined based on cut-sets can overcome the need for identifying the collapse cases by setting rather arbitrarythresholds;

 Mixing a simple logarithmic regression model and a logistic regression model permits a systematic handling of the collapse cases;

 This also helps in achieving the famous softening effect in the percentiles of EDP given IM;

 The cloud method if coupled with careful record selection can lead to reasonableresults (in comparison with IDA);
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