

Cloud Analysis revisited again: What should we do with the "collapse" cases?

Fatemeh Jalayer, University of Naples Federico II The 42nd Risk, Hazard & Uncertainty Workshop, Hydra, 22-25 June 2016

The Road Map

- Setting the scene: Y variable, Risk Integral, Fragility
- Cloud method in one slide
- The Bayesian diversion
- Considering the collpase cases
- The logistic treatment
- Achieving the softening effect on the median and the percentiles
- The [inevitable] comparison with IDA ...

W reluis

Performance-baced Structural Risk Assessment: The main players

$$\lambda_{ls} = \int_{IM} P(Y_{ls} > 1 | IM) \cdot | d\lambda(IM) |$$

Risk Fragility Hazard

- \checkmark λ (*IM*) is the mean annual rate of exceeding a given IM
- ✓ $P(Y_{ls} > 1 | IM)$ is the structural fragility
- \checkmark λ_{ls} is the mean annual rate of exceeding a prescribed limit state

Setting the scene: The structural perfromance variable

- global mechanisms
- Ultimate rotation
- Shear capacity
- Joint safety checking

- *N_{mech}* number of mechanisms
- I_i indexes of components in the i-th mechanism

Cloud Method in One Slide

Cloud Method in One Slide

- reluis

The Bayesian Take: Robust Fragility

fragility assessment using linear regression. *Bulletin of Earthquake Engineering*, 13(4), pp.1183-1203.

Bi-variate Normal Distribution

$$p(\boldsymbol{\chi} | \boldsymbol{D}) = p(\log a, b, \beta_{Y|IM} | \boldsymbol{D}) = p(\log a, b | \beta_{Y|IM}, \boldsymbol{D}) \cdot p(\beta_{Y|IM} | \boldsymbol{D})$$

Chi-Square Distribution

- ✓ χ =[log *a*, *b*, $\beta_{Y|IM}$] is the vector of the parameters (regression coefficients and standard deviation) for the prescribed Log-Normal fragility function.
- ✓ Where $p(\beta_{Y/IM} | D)$ is the marginal posterior distribution of $\beta_{Y/IM}$
- ✓ Where $p(\log(a), b | \beta_{Y/IM}, D)$ is the conditional posterior distribution of $\log(a), b$ given β

Taking into account the collapse cases

 $P(Y_{LS} > 1 | S_a) = P(Y_{LS} > 1 | S_a, NC)P(NC | S_a) + P(Y_{LS} > 1 | S_a, C)P(C | S_a)$

Taking into account the collapse cases

 $P(Y_{LS} > 1 | S_a) = P(Y_{LS} > 1 | S_a, NC)P(NC | S_a) + P(Y_{LS} > 1 | S_a, C)P(C | S_a)$

Taking into account the collapse cases:

The logistic regression

 $P(Y_{LS} > 1 | S_a) = P(Y_{LS} > 1 | S_a, NC)P(NC | S_a) + (1 - P(NC | S_a))$

Taking into account the collapse cases:

The logistic regression

 $P(Y_{LS} > 1 | S_a) = P(Y_{LS} > 1 | S_a, NC)P(NC | S_a) + (1 - P(NC | S_a))$

Taking into account the collapse cases: Another example

Taking into account the collapse cases: Another example

The Structural Model:

Van Nuys Hotel Transeversal Frame

✓ The structutre has been re-modelled using OPENSEES and considering the axial-shear-flexural interaction

- ✓ The concrete 01 material has been used for modelling the concerete behavior.
- ✓ The longitudinal bars are modeled using the Steel02 with 1% strain hardening.

The Structural Model:

Van Nuys Hotel Transversal Frame

- ✓ The shear strength is modeled using Sezen and Moehle 2004.
- ✓ The shear drift at shear failure is calculated from Gerin and Adebar 2004.
- ✓ The drift at axial failure is calculated from Elwood and Moehle 2003.

The Limit State of Near Collapse

·	Xz		Central Columns 2nd Story
			350 300 Combined curve * Near collapse limit state Collapse limit state
Failure Type	Component(s)	Definition / Description	\$ 250 \$ 200 150 \$ 200 \$ 20
Ductile/Brittle	column / beam	$\theta_{max} > \theta_{ultimate}$	
Soft-story mechanism	all columns of one story	$\theta_{max} > \theta_{yielding-flexure}$	Central Columns 2nd Story
Partial mechanism	for a number of adjacent stories: all beams + bottom and top columns	$\theta_{max} > \theta_{yielding-flexure}$	350 300 § 250 8 200
Global mechanism	for the entire building: all beams + base columns	$\theta_{max} > \theta_{yielding-flexure}$	PO I 150 I 150 I 100 Flexural curve
			50 • V _p • V _v

0

0.02

0.04

0.1

0.08

0.06 Flexural Displacement (m)

The Limit State of Collapse

Collapse Type	Component(s)	Definition / Description
Ductile	50% +1 of the columns of one story	$\theta_{max} > \theta_{ultimate}$
Brittle	50% +1 of the columns of one story	$\theta_{max} > \theta_{axial}$

Galanis, P.H. and Moehle, J.P., 2012. Development of collapse indicators for older-type reinforced concrete buildings. In Proceedings of the 15th World Conference on Earthquake Engineering (WCEE).

The static pushover curve

Record Selection

- ✓ A set of 35 records for the California sites.
- ✓ Stiff soil (Geo Matrix types Cand D)
- ✓ Moment magnitude and Joyner-Boor distance in the range:

5.0 < M < 7.5 0.1 < R < 115 km

The percentiles, comparison with IDA

The fragilities, comparison with IDA Fragility Curve - Flexural Model 0.9 0.8 0.7 Probability 0.6 0.5 0.4 0.3 Robust Fragility 0.2 $\pm 2\sigma$ Confidence Interval 0.1 ---IDA 0⊾ 0 0.5 1 1.5 $Sa(T_1)[g]$

The fragilities, comparison with IDA

- Mixing a simple logarithmic regression model and a logistic regression model permits a systematic handling of the collapse cases;
- ✓ Using the cloud with performance-based variable defined based on cut-sets can overcome the need for identifying the collapse cases by setting rather arbitrary thresholds;
- ✓ The cloud method if coupled with careful record selection can lead to reasonable results (in comparison with IDA);
- ✓ This also helps in achieving the famous softening effect in the percentiles of EDP given IM;
- ✓ The bayesian robust fragility estimate helps in defining a confidence interval taking into account the uncertainty in the parameters of the fragility curve;
- ✓ The robust fragility can be calculated also in the case considering the collapses;

Thank You

Special Thanks to:

Dr. Hossein Ebrahimian Post-doctoral Researcher University of Naples Federico II

and

Andrea Miano Ph.D. Candidate University of Naples Federico II