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Introduction / Motivation

Northridge,CA, Jan. 17, 1994
(N-S; Sylmar; Magnitude= 6.8)

° 10 t(\gé’g) 25\639~7th second:

Typical earthquake
accelerograms exhibit a time-
evolving frequency
composition due to the
dispersion of the propagating
seismic waves, and a time-
decaying intensity after a
short initial period of

development.
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Transient signals encountered in earthquake engineering and structural
dynamics are inherently non-stationary:

Both their frequency content and amplitude vary with time,

AL
a N

Earthquake induced strong ground Response time histories of yielding
motion (accelerograms) GMs: structures under seismic excitation:
Exhibit a time-evolving frequency Their evolving frequency content carries

composition due to the dispersion of information about the possible level of

the propagating seismic waves, and a (global) structural damage (e.g. degradation
time-decaying intensity after a short of the effective natural frequencies).

initial period of development.

Such signals call for a joint time- frequency analysis; for it is clear that their
time- dependent frequency content cannot be adequately represented by the
ordinary Fourier analysis.
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Linear chirp
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The ordinary Fourier
Transform (FT)
provides only the
average spectral
decomposition of a
signal.
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Time-frequency analysis tools provide
meaningful non-stationary signal representations

s(t) = cos(2mw(10t + %ﬂ))
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Filtered harmonic
Wavelet Representation
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s(t) = cos(2m(75t — %tg))
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Introduction / Motivation

The Continuous Wavelet Transform (CWT)

The wavelet-based mean instantaneous period (MIP)

MIP of Recorded Seismic ground motions (GMs)

MIP of Hysteretic Response Signals

The “alpha” a angle of the average MIP

The a as a GM property for the evolving frequency content

Concluding remarks
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@ The continuous wavelet transform (CWT) given by the equation

(a,b)= fj (t abjdt

decomposes any finite energy signal f(t) onto a basis of functions
generated by scaling a single mother wavelet function y(t) by the
scale parameter a and by shifting it in time by the parameter b.

w : analyzing or mother wavelet A

rieo)- gl

Variable size windows are employed

Scale

Long duration windows capture lower frequencies
(large scales)

Short duration windows are used to capture
higher frequencies (small scales)

Time
Heisenberg’s uncertainty principle holds

Y
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Such an analysis results in a three-dimensional spectrum having the
wavelet coefficients plotted versus time and scale (scalogram). A
certain wavelet-dependent relationship between scale and frequency
should be established to yield a wavelet- based spectrogram.

° Uncer-tam-ty Prinmple Reciprocal relationship
(1)« EE S Y (o) between scale-frequency:

1 (t—bj< Fourier Pairs >£@(aw)exp(—iwab) Frequency= constant/scale

\/;l// o A

frequency
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Time
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Is CWT useful?
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Is CWT useful?

b Imperial Valley, 1979 Imperial Valley (El Centro), 1940
(b) El Centro array #6 S () N-S component
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But we need to know what we are aiming for: Time or Frequency
(resolution/ smoothness/bias)???

O 0.1 0.2 0.3 0.4 Tlme (S) 0.7 0.9 1 Power
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4 4 frequency

But we need to know what we are [
aiming for:
Time or Frequency 00,> Y,
(resolution/smoothness/bias)??? 1
s
Uncertainty principle =
time
Resolution trade-off "o f R h b T
Ref[w, (7]
Wavelet shape BN WS | |
TIRY, v ||J| |l|[ v
Smoothness
etc. . (0
ol e /1N al -
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Modified complex Morlet wavelets
@ At scale a and time position b the modified Morlet wavelet is given

by
w(t=D 1 O (t-b)’
= ~Z (t-b)-
’ ( a j anQ), eXp{l a( ) a’Q,

@ Its Fourier transform is a shifted Gaussian function,
that is:

A

@M (a0) =3 exp(—%(aw—QC)Z —iaa)bj
@ The central (pseudo-) frequency observed at scale a is

usually computed by

@ The constant Q, controls the bandwidth of the Gaussian
function in the frequency domain
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Generalized harmonic wavelets

@ A generalized harmonic wavelet of (m,n) scale and k position in time is
constructed as a box-like function in the frequency domain (Newland, 1994), that is:

m2z _ N2z :where T, is the effective

A T, exp(—la)kTo J LrZ | |
¥ i (@) =1 27 (n—m) (n—m) T, T,  duration of the signal to
be analyzed.

0 . otherwise

@ In the time domain it is a complex- valued function

ven b
[ AR

Vi (1) = E[Tt_n_kmj(n—m)

0

0

@ Central frequency at scale (m,n): (m+n)m/T,

@ Bandwidth in the frequency domain at scale (m,n): (n-m)2m/T,
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o Harmonic wavelets of different ¢ | | 7
scales can have arbitrarily chosen i P P reuensy aiseo) . @

bandWIdthS thrOUghOUt the . Central frequency: 15.71rad/sec Central frequency: 15.71rad/sec
frequency domain. This is because _ s 5 05

the scales are defined by two o £ o
parameters (m,n), as opposed to s Eos

one (a) in the case of common A5 w5 405 1 b s s

wavelets used in the context of the | centraifrequency: 25.76radisec

Central frequency: 25.76rad/sec

Imaginary Part
: o
o 13

=
33}

i
ey

CWT. .
iy =t
. & 0
Time-frequency plane 3
05
n;Aw . ‘ ‘ _ .
5’ msAw A5 4 05 0 05 1
- Time (sec)
g Central frequency: 35.81rad/sec
g nAw
0
—
mAw e
&
nAw 8
m,Aw )
time

0 05 1
Time (sec)

Central frequency: 35.81rad/sec

Imaginary Part

A5 4 o5 o0 o5 1
Time (sec)

0 05 1
Time (sec)



Amplitude Fourier spectrum

Normalized intensity

TP OO, oY The continuous wavelet transform (CWT)
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Can we make CWT more useful?
-> GM non-stationary frequency content characterization?

Mean Period (e.g. Rathje et al.1998) is defined starting from DFT as:

—1
X[k]—% nle Tm_”,;

n

E"

Il
o

: . _ Evolution in time
A wavelet based time-varying instantaneous period (MIP) of the Mean period

can be defined as (Margnelli/Giaralis 2015):

-
=

W(S,n):zx[n']!//[n_n N] ) MM =

E > (s.n)

8= ny|

Frequency range: [0.25 25]Hz for ﬂoor[ }.: < Ced[fﬁ )
' At At
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Morlet Wavelet Pow er Spectrum - Tm=0.89044 - TmGWS=0.81323 - TmIMP=1.3186 - TmIMP-Max=1.2145 - TmIMP-Min=0.53713 - Action = LOMA-PRIETA-HOLLISTER-19-HDA165

Tm=0.89s

Mean Instantaneous Period (MIP)

— 0.25Hz<f<25Hz in frequency

Global Wavelet Spectrum
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MIP is a generalization of T _,: Temporal averaging of MIP
“should” yield T

Morlet Wavelet Pow er Spectrum - Tm=0.36113 - TmMGWS=0.31005 - TmIMP=0.33259 - TmIMP-Max=0.55931 - TmIMP-Min=0.16803 - Action = IMPERIAL-VALLEY-PLASTER-18-H-PLS045 Global Wavelet Spectrum
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MIP is a generalization of T _,: Temporal averaging of MIP
“should” yield T

Harmonic Wavelet Pow er Spectrum - Tm=0.36113 - Tmw H-IMP=0.36684 - Tmw H-GWS=0.35973 - Tmw H-IMP-Max=0.46523 - Tmw H-IMP-Min=0.28481 - Action = IMPERIAL-VALLEY-PLASTER-18-H-PLS045 Global Wavelet Spectrum
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A S

. Table 1. Properties of the 20 ground maotions considered by Vamvatsikos and Carnell (2004)

MIP is a generalizatic

and averaged aver lime mean instanisseomeepomedsm. - - -

66 N Event Station i R FGA | Tm " MIF Morat " MIP harmonic'
$ T Prs— Agnews Sts P (e -
| e
1 [1988] Hospital {090} 6.8 282 D155 1 0957 1.079 0.978 1
- — 1
2 '“”T::'T';’]E'"“ Plaster City (135) 65 317 0087 || 0.are 0.369 0.406
B
Lorna Prieta Haolllater DIff. Array |
3 [1983) [255) B9 258 0278 I 0,798 1212 0,847
Lama Priela Anderson Dam
4 [1989] Downstrm (270) 6% 2.4 0244 | 0467 0485 0.476 I
Loma Priela Coyvobe Lake Dam s T e
S {1988) Dewnstrm (285) 6.2 223 0179 1 0.534 0ED1 0.5340 I
' | |
g mperalValley  oapanioss) 65 236 0309 0558 0708 oeaz |
[1578] x
Loma Prela Sunmywale Colton I.
7 {1988 A (2701 G4é  XRE 0207 502 1.430 1.532 I
Imperal Valley  El Centro Amray 713
a [1573) {140) 6.5 21.9 017 I 0,585 0725 D644 !
Imparial Valley  Wastmoreland Fira F
9 {1574) Stalion (090} 6.5 51 0.074 I 0849 1.308 1,162 .
Loma Prela Hollister South & ) ] . . |
10 {1980) Pine (000 (] ZBE 38 0.371 I 0.835 143589 LRl i
Lawria Friela Sumirryeale Calton .
1 [1985) _Ava (360) 6.8 ZE8 0209 I 380 1.397 1,485
- Suparstition Hills  ‘Wildlife Lipeefacton .
12 {19E7] Agray (080) 6T X4 0180 1 0.854 1.015 1.024 I
|
13 Imuer‘:angganw Chihuahua (282) 65 287 0254 0701 0699 oroe |
Imperial Valley, El Centro Amay #13 | ]
14 1679 {2301 65 2.8 0138 . 0470 0.7B5 0.57% I
Imperial Walley., ‘Westmoreland Fire . |
15 1579 Stalion (180) 6.5 51 0,110 0,985 1.059 1,058 !
16 '-“"r“:"’g;]'*"* WAHO (000) g 169 0370l oz 0.232 0,269 '
Suparstition Hillz  WWildlite Liguefacton P L]
17 {15E7] Array (360 6.7 X4 0200 I A37 1.251 1.235 .
18 ""'F‘E[;‘g'?gf'"e? Plasler City (045) 65 317 0042 | 0.351 0333 03e7
Lama Pricta Haollister Diff. Array
19 {1888) {165) 6% X584 0.26% | 0,830 1.088 0.988 I
Lama Prieta . . b
20 {1989) WAHD (090) 6O E.9 0,638 1 0,27 0257 0,278 I

T pdesmient BMagnitede; = Closest distance to Tal ruplure; ™ Fourier-bRsed maean period delimed by Eq. (2)

iRathje et al. 1998); ™ Temporal averaged MIP derived using Morlet wisssic ik’ T o cmer Wi o

Lging hammanic wavelels,
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MIP may not correspond to any actual frequency component
In multi-chromatic signals... it only coincides with the
wavelet ridge for mono-chromatic signals
s(t)= cos(2n10t)+2tcos(2n75t)
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How useful MIP is?
It does capture what we expect to see
AND it is only a time-history rather than a matrix (CWT)
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Wavelet analysis of hysteretic response signals

How useful CWT is for hysteretic structural response?
Moving average # period elongation

w= 50 rad/s or

T:O- 1258 Frequency law - Sw=0.0029411

ok(t) [rad/s]

50+
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25

20"
0
t=0s t [s]

10

15

w= 15 rad/s or
T=0.42s

t=15s
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How useful CWT is for studying the hysteretic structural response?
Moving average # period elongation

Elasto-plastic SDOF oscillator with fundamental pre-yielding period: T=0.5s

f,=0.7
- T=0.125s
— 1=0.42s
T=0.5s
0
t=0s Time [s] 1=15s
'03? Yield Ny=6 Ay=0.16sec ly=0.96 nsec
5 2
L .
] B EE—
g
T -2
o 0 5 10 15
>

Time [s]
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How useful CWT is for studying the hysteretic structural response?
Moving average # period elongation

Elasto-plastic SDOF oscillator with fundamental pre-yielding period: T=0.5s
fy:O.S

T=0.5s

0
t=0s Time [s]

Yield Ny=13 Ay=0.38sec ly=4.94 nsec

B

e |

Yield(red) - SAWP (blue)
)

10
Time [s]

15
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How useful CWT is for studying the hysteretic structural response?
Moving average # period elongation

Elasto-plastic SDOF oscillator with fundamental pre-yielding period: T=0.5s

f,=0.2
- T=0.125s
— 1=0.42s
T=0.5s
0 5 10 15
t=0s Time [s] t=15s
113? Yield Ny=41 Ay=1.62sec ly=66.42 nsec
3 2
S BN I S N N N | W A AT
. 1111 NIRRT
g'zo 5 10 15

Time [s]
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Wavelet analysis of hysteretic response signals

How useful CWT is for hysteretic structural response?
Moving resonance does not always occur

Frequency law - Sw=0.0029411

" w= 81T rad/s or

T=0.25s

w= 41T rad/s or

T=0.5s

t=0s

t [s]

10

15
t=15s
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29 " w= 8t rad/s or
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1 CITY UNIVERSITY \w/avelet analysis of hysteretic response signals

How useful CWT is for hysteretic structural response?
Moving resonance does not always occur

Freq

uency law - Sw=0.0029411
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How useful CWT is for hysteretic structural response?
Moving resonance does not always occur

Elasto-plastic SDOF oscillator with fundamental pre-yielding period: T=0.5s

0.03125
0.0625
0.125

=2

— Time [s] _
B t=0s Yield Ny=9 Ay=0.24sec ly=2.16 nsec t=15s
8
S ~ S~ —_—
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& (T 1T
9 [ L
T -2
g ° ° 10 15
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How useful CWT is for hysteretic structural response?
Moving resonance does not always occur

Elasto-plastic SDOF oscillator with fundamental pre-yielding period: T=0.5s

0.0625

0.125

d

t=0s Time (5] t=15s
v Yield Ny=17 Ay=0.52sec ly=8.84 nsec

5 2
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How useful CWT is for hysteretic structural response?
Moving resonance does not always occur

Elasto-plastic SDOF oscillator with fundamental pre-yielding period: T=0.5s

0.03125
0.0625
0.125

U5

15
t=0s Time [s] t=15s
’aj? Yield Ny=28 Ay=1.59sec Ily=44.52 nsec
3 2
o
e [0 N 1 [
. HNEEEEENER I I
<
o 0 5 10 15
>

Time [s]



Wavelet analysis of hysteretic response signals

T ] | SDOF Deformation (m) Base Shear (IaN) Stiffness (12¥/m)
Oscillator Yield Collapse Yield  Collapse Pre-yield Post-yield
| 12RFDCH_ _ _ 0356 _ _ _ 1801 _ 650562 _6615.62 1825949 _ _ 76.17 _
| '" 112REDCL_ _ _ _0357_ _ _ 1.881 _ _ 5501.93 _ 561226 _15422.24 _ _ 7242 1
8SWDCH 0.282 1.202 8333.64 865399 29564.88 348.10
8SWDCL 0.248 0.822 6489.67 690092 26156.20 716.52
8IFDCH 0.287 1.276 4578.75  4712.67 15978.69 135.32
| Backbone Curve - T=1 £=0.05 H=36m Fpr=0.4 APinch=0.6
- | 8000 T T T T T T T T T
= |
6000 - .
| I 4000 - .
| | 2000 - -
| | = o -
P LT LT r s >
. 20.00 4 -2000 - iy
Codified name: 12RFDCH/12RFDCL T1: 0.966s
Number of stores 12 ~4000 - |
Frame 5000
Fecular m elevation )
Story height: 3.0m
"'_ . —1 . . _8000 L L L L L L L L L
Ductility Class: High/'Low o 25 2 15 -1 05 0 05 1 15 2 25
Natural period; 0.7158/0.752s Displacement [m]
Katsanos/Sextos/Elnashai (2014) Ibarra/Medina/Krawinkler

(2005) model with
strength+stiffness degradation
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IDA (1 GM is considered)
MIPs of input and of output for various IMs

(a) D ™ T T T T : T T T
: GM (input) : Sa(Tl) =0.62q
|
0O5F | | Sa(Tl) =0.2q9 _
— I : f - :
2 ' 2
8 1F | f et T
.: I |
¥ | | 1
o | Sa(T1)=1.249 Sa(T1 = 1.34¢g | 3
l | U™
15F | (Near collapse) | a .
' ___Strong Motion Duration !
f[:]g fos
2 | | | | | | | |
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Period (s) o
- o I
M hn — hn 3

A
n

IDA (1 GM is considered)
MIPs of input and of output for various IMs

|
| Sa(T1) = 0.49¢g
| i

I
I
| Sary=0.779
I
|
I

i GM (iﬂpllf) v Sa(T1) =1.04g : tﬂiﬁ"t F ‘1
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The angle “alpha” a of the average MIP

MIP is useful... but still itis a
time-history, while all GM
properties and intensity

measures (IMs) are scalars...

We would ideally like to have a
wavelet-based scalar quantity
to capture the evolving
frequency content of GMs

Angle “alpha” a is a scalar!!!

RSN122: Friuli, Italy (1976), Codroipo component
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RSN726: Superstition Hills, CA (1987) Salton sea component
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L Relation of a with other GM properties:
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684 far-field GMs
-No pulses; 6.5<M<8.0; 20km<R,,,<120km
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Average value of a increases with PGV (but not so much with PGA)
(High PGV values == rich frequency content (presumably towards the end of
the GM) == mean frequency content shifts faster from high to low

frequencies...)
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684 far-field GMs
-No pulses; 6.5<M<8.0; 20km<R,,,<120km
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Average value of a increases with T,, and decreases with V s,

(Rich frequency content (presumably towards the end of the GM) == mean
frequency content shifts faster from high to low frequencies...)
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684 far-field GMs
-No pulses; 6.5<M<8.0; 20km<Rrup<120km
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Higher intensity in terms of PGA has a profound impact on the
average a trends with T,, and Vg 54

(for example, higher intensity == soft soils yield == Richer frequency content
presumably towards the end of the GM) == mean frequency content shifts
faster from high to low frequencies...)
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684 far-field GMs
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e | PGV residual

Relation of a with other GM properties:
CITY UNIVERSITY .
AT/, LONDON trends and statistics

IDA for the previous SDOF system and for the previous 684 far-field GMs
using PGA and PGV as IMs

Residual analysis for sufficiency of PGA and PGV with respect to a

10
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alpha o [°]

p-value: 0.0096 p-value: 0.0186
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« The CWT is useful and meaningful in studying GMs... but care must be
exercised in appreciating its limitations (e.g., uncertainty principle) and the

fact that there is not a single “best” wavelet family to use.

 The MIP seems to be a useful “reduction” of the CWT in studying the
evolution of the mean frequency content of GMs and in capturing the non-
linear behaviour of yielding structures (e.g., moving resonance, period

elongation...).

« The “alpha” a angle of the MIP appears to be a meaningful scalar to quantify
the evolution of the frequency content of GMs and could be used for record

selection in PBEE especially to study flexible structures near collapse.
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