Analytical uniform hazard floor response spectra for the design of nonstructural components

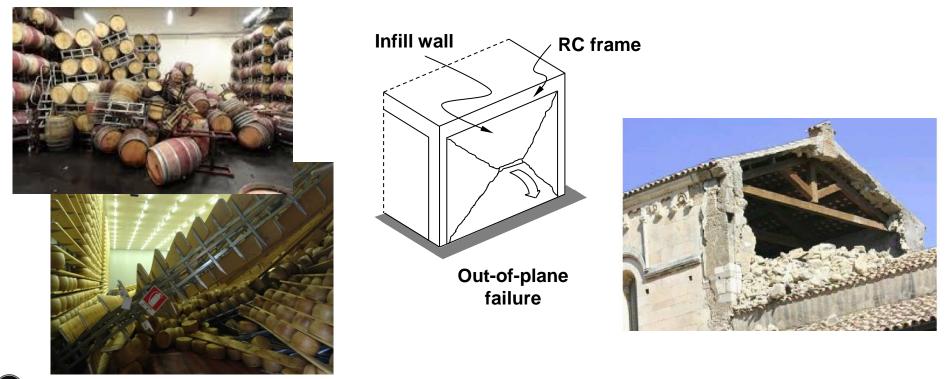
42nd Risk, Uncertainty and Hazard workshop – Hydra – June 2016

Dipartimento di Ingegneria Strutturale e Geotecnica

Paolo Franchin, Andrea Lucchini, Fabrizio Mollaioli

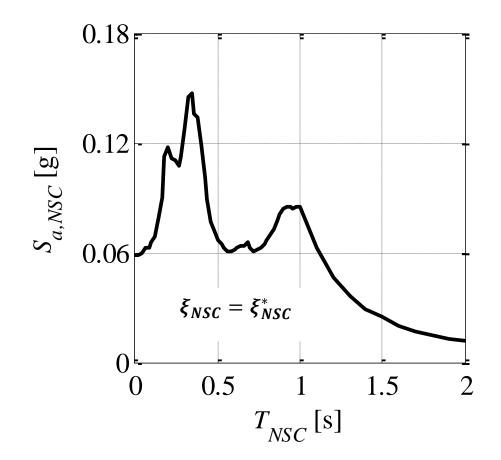
What are floor spectra used for?

- Estimating seismic demand on acceleration sensitive nonstructural components
- Estimating acceleration on structural components of unreinforced masonry buildings "local mechanisms"



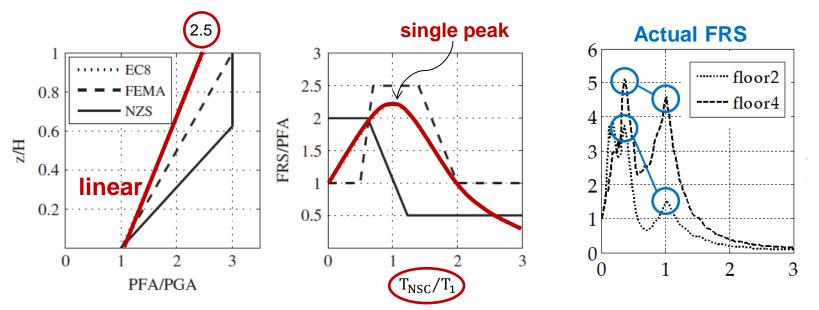
What floor spectra look like?

• Multi-peaked, with amplification around structural periods



How do codes describe them?

- e.g. EC8 assumes
 - for PFA/PGA
 - a linear distribution in elevation
 - a maximum value of 2.5 at the roof
 - for FRS/PFA
 - variation with T_{NSC}/T_1 only (a single peak at $T_{NSC}/T_1 = 1$)
 - slight variation with the floor level (max amplify. 2.5)
 - no dependence on component damping
 - no dependence on ground motion spectral shape (just PGA)
 - no dependence on non-linearity of response



42nd RU&H workshop - Hydra - June 2016 - Franchin - Uniform Hazard Floor Response Spectra

A better way to compute them?

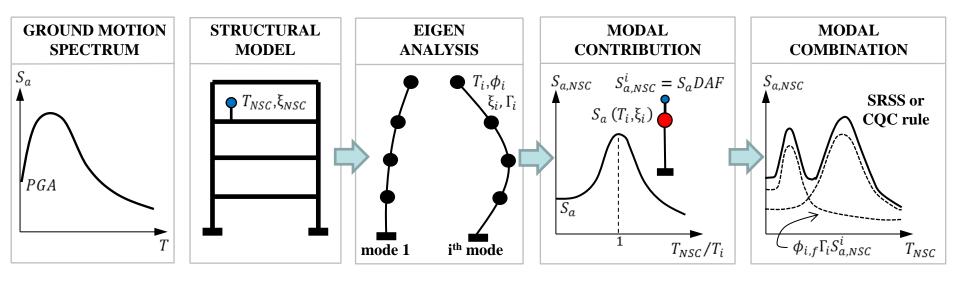
- Methods in the literature can be lumped into:
 - Random-vibration-based
 - Provide closed-form expressions, but only for white noise input
 - Empirically derived closed-form equations
 - Account for nonlinearity
 - Based on «envelopes» or «means» of a response-history analyses
 - Often disregard spectral shape of the input, like code equations (i.e. try to improve only on FRS/PFA)
 - Direct spectra-to-spectra methods
 - Account for spectral shape of the input ground motion
 - Deterministic floor spectra shape
 - Disregard record-to-record variability
 - Response-history analysis
 - Complete, accurate, as long as done correctly (record selection, etc)
 - Applies to linear and non linear structures
 - Too demanding for practical application by professional engineers
 - All methods disregard epistemic uncertainty on structure

What would be desirable?

- Nowadays in most cases design of the structure involves modal analysis and a uniform hazard response spectrum
- Design of non-structural components should be carried out with the same accuracy/effort, within the same analysis framework
- If the NSC is such as to modify the response of the structure (heavy), then it should be modelled
- For all other acceleration sensitive NSCs, a uniform hazard floor response spectrum should be derived, within or beside the main structural analysis, to be used for the design of the component (its connection, usually)

Spectra-to-spectra: a good compromise?

- They miss something, but they:
 - Account for all modes (dynamic properties of the structure)
 - Account for site spectral shape
 - integrate very well within the usual structural design workflow (where multimodal response spectrum analysis is the norm)



- How can they be improved upon?
 - Replacing the deterministic model for the dynamic amplification function (DAF), e.g. Calvi & Sullivan 2014:
 - $S_{a,NSC} = S_a DAF \qquad DAF = 1/\sqrt{(1 T_{NSC}/T_i)^2 + \xi_{NSC}}$
 - Introducing epistemic uncertainty & nonlinearity

Spectra-to-spectra: the proposal

 A UHFRS can be easily obtained from demand hazard curves in terms of floor spectral acceleration (EDP)

$$\lambda_{S_{a,NSC}^{i}}(x) = \int_{0}^{\infty} G_{S_{a,NSC}^{i}}(x|y) |d\lambda_{IM}(y)| \to S_{a,NSC} = \sqrt{\sum_{i} \sum_{j} \rho_{ij} (\phi_{i,f} \Gamma_{i} S_{a,NSC}^{i}) (\phi_{j,f} \Gamma_{j} S_{a,NSC}^{j})}$$

This can be done in closed form, for instance with the solution provided by our gracious Host, provided an IM-EDP relationship is available

("Divamva", 2013)

$$S_{a,NSC}^{i}(\lambda^{*}) = exp\left[a + \frac{1}{2k_{2}}\left(-k_{1} + \sqrt{\frac{k_{1}^{2}}{q} - \frac{4k_{2}}{q}} ln \frac{\lambda^{*}}{k_{0}\sqrt{q}}\right)\right] \quad q = \frac{1}{1 + 2k_{2}\sigma^{2}}$$

 It turns out that such a relationship can be derived «once and for all» for a NSC standing on a SDOF (modal contribution) and applied at different geographical locations with good approximation

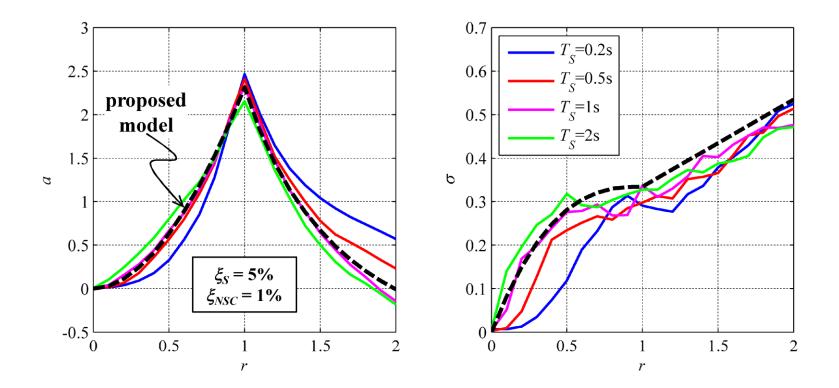
$$lns_{NSC} = a + blns + \sigma\varepsilon \rightarrow lns_{NSC} = a + lns + \sigma\varepsilon \rightarrow ln(s_{NSC}/s) \neq a + \sigma\varepsilon$$

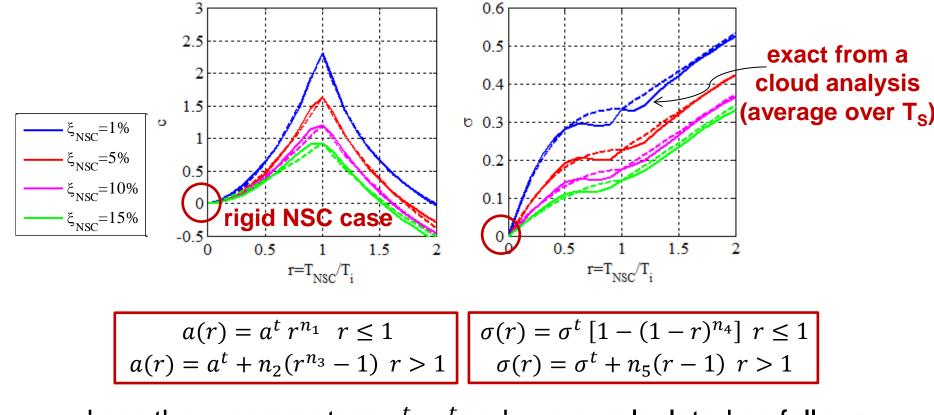
mean stdv

$$a, \sigma = f(r = T_{NSC}/T_i, \xi_{NSC})$$

- A cloud analysis was carried out on 20x20x2x10=8000 cases:
 - $T_S = 0.1s: 0.1s: 2s$
 - $T_{NSC} = 0: 0.1T_S: 2T_S$
 - $-\xi_S = 2\%, 5\%$
 - Ten values of $\xi_{NSC} = 1\%$ to 15%
- Ground motions:
 - Campbell and Bozorgnia, without Mw<5, and records with recognizable velocity pulses: 715 records (Set 1)
 - Set 2: California-only, 408 records
 - Set 3: non-California records, 307 records
 - Set 4: Set 2 with Vs30 < 360m/s, 230 records
 - Set 5: Set 2 with Vs30 > 360m/s, 178 records

• Use of $r = TNSC/T_S$ in place of T_S and T_{NSC}

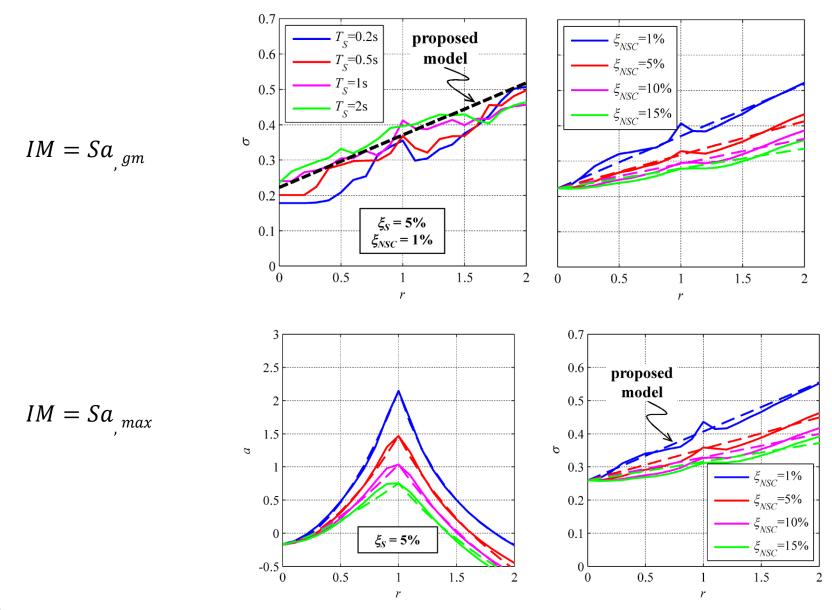




where the p parameters a^t , σ^t and n_i are calculated as follows

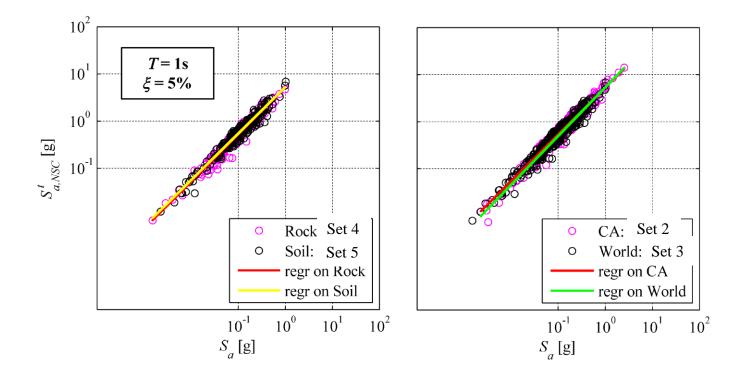
$$p = m_0 + m_1 z + m_2 z^2 + m_3 z^3$$

 $z = ln(100\xi_{NSC})$

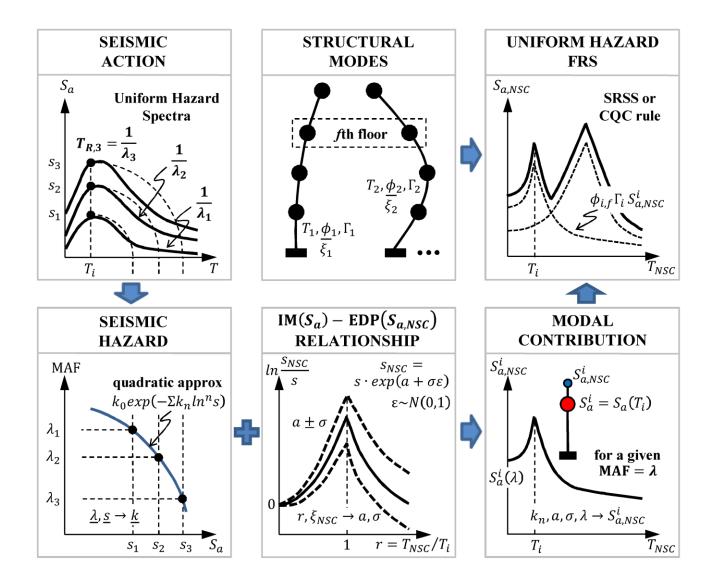


42nd RU&H workshop - Hydra – June 2016 – Franchin – Uniform Hazard Floor Response Spectra

 Dependence on structural damping, geographical location and site soil conditions is negligible (here shown only on Sa,tuning, but true for all ordinates)

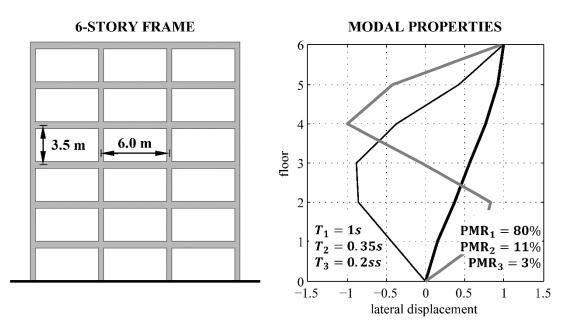


Uniform hazard floor response spectra



MDOF validation

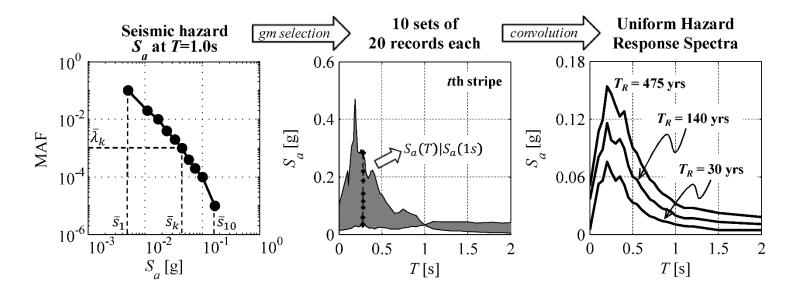
• 6 storey RC frame in Milan, Italy



MDOF validation

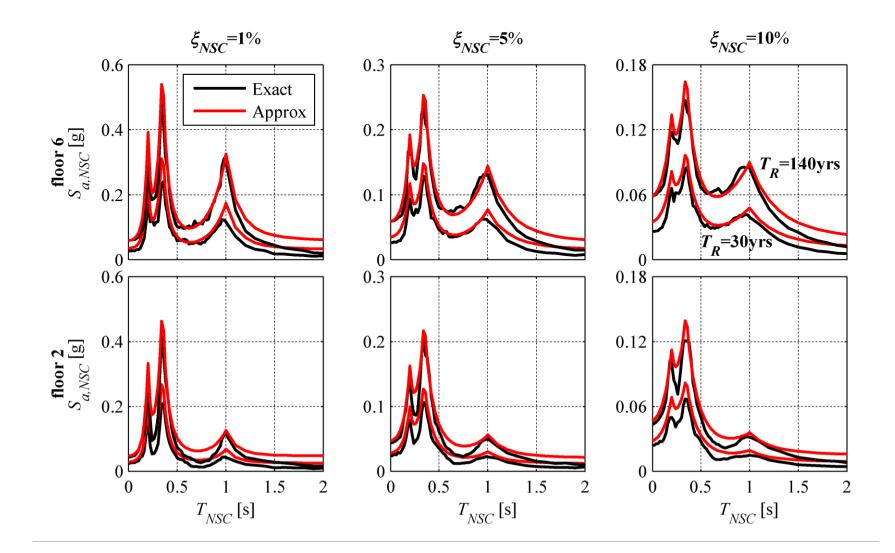
• Hazard for $S_{a \max}(TS = 1s)$ + CS-selected records from RINTC project

$$\lambda_{\mathbf{S}_a^*}(\mathbf{s}^*) = \int G_{\mathbf{S}_a^*|\mathbf{S}_a}(\mathbf{s}^*|\mathbf{s}) |d\lambda_{\mathbf{S}a}(\mathbf{s})| \cong \sum_{t=1}^{N_s} \widehat{G}_{\mathbf{S}_a^*|\mathbf{S}_a}(\mathbf{s}^*|\mathbf{s}_t) |\Delta\lambda_{\mathbf{S}a}(\mathbf{s}_t)|$$



 $\lambda_{\mathbf{S}_{a,NSC}}(\mathbf{s}_{NSC}) = \int G_{\mathbf{S}_{a,NSC}|\mathbf{S}_{a}}(\mathbf{s}_{NSC}|s) |d\lambda_{Sa}(s)| \cong \sum_{t=1}^{N_{S}} \widehat{G}_{\mathbf{S}_{a,NSC}|\mathbf{S}_{a}}(\mathbf{s}_{NSC}|s_{t}) |\Delta\lambda_{Sa}(s_{t})|$

MDOF validation



Epistemic uncertainty

