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introduc-on	

we	perform	a	systema-c	
inves-ga-on	of	the	seismic	
response	of	rigid	blocks	subjected	
to	near-source	records	of	different	
magnitudes	

consider	several	rigid	block	
structures	of	different	geometry	

parametric	invesDgaDon	that	
improves	our	understanding	on	
the	effect	of	base	moDon	
characterisDcs	on	the	overturning	
rigid	block	structures	

generate	synthe-c	pulse-like	
ground-moDons	consisDng	of	a	low	
and	high	frequency	component	for	
a	dip-slip	fault	
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•  assume	a	verDcal	fault	and	a	grid	of	56	receiver	staDons	
•  consider	events	with	Mw	=5.5,	6.0,	6.5,	7.0	and	7.5	-	the	fault	size	varies	

accordingly	
•  simulate	100	fault	ruptures	recorded	at	the	56	receiver	staDons	

synthe-c	ground	mo-ons	

hypocenter	



synthe-c	ground	mo-ons	

The	low	frequency	component	is	defined	by	means	of	a	wavelet	of	the	form:	
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Combined synthetic strong ground motions 

Synthetic ground motion records were constructed for magnitudes Mw in the range 5.5 to 
7.5 with a step of 0.5 (five values of Mw) and distances from the fault R in the range 5 to 20 
km with a step of 2.5 km (seven values of R). In total, 35 pairs of Mw–R were considered. For 
each Mw–R scenario, 100 Monte Carlo Simulations (MCS) were performed for a random 
sample of Vp, fp, vp, γp using Latin Hypercube Sampling to produce the low-frequency pulse, 
while the high-frequency component was produced using the stochastic method, producing 
thus 100 random ground motions compatible with the Mw–R scenario considered.  

The procedure we used to combine the low and high frequency components is shown 
schematically in Figure 5. The steps are as follows: 

1. Apply the stochastic method to generate an acceleration time history to use as the 
high-frequency component for a given moment magnitude Mw and distance R 
scenario. 

2. For the Mw–R scenario considered, sample Vp, fp, vp, γp and obtain the low-frequency 
directivity pulse using Eq.(5). Shift the pulse so that its maximum velocity coincides 
in time with the maximum of the velocity time history of the high-frequency record of 
Step 1. 

3. Calculate the Fourier transform of both high- and low-frequency components. 
Calculate also the phase angle of the high-frequency component. 

4. Subtract the Fourier amplitude of the pulse from that of the high-frequency 
component of the ground motion. 

5. Construct a synthetic acceleration time history so that its Fourier amplitude is that of 
Step 4 and its phase angle is that of the high-frequency record calculated in Step 3. 

6. The final synthetic record is obtained by adding the pulse time history and the time 
history of Step 5. 

 
Figure 5. Generation of synthetic ground motion records. Upper row shows acceleration and the 
bottom row the velocity time histories and response spectra. 
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this	is	a	four-parameter	wavelet	whose	parameters	are	
randomly	sampled:	

§  Ap:	amplitude	of	the	velocity	pulse	Ap=0.9	PGV:	

§  fp:	pulse	frequency:	

	

§  νp:	the	phase	angle,	normally	distributed		
											 	 	 										

§  γp:	the	number	of	cycles,	normally	distributed	
	 	 										



Following	the	work	of	Housner	(1963),	the	equaDon		
of	moDon	of	a	rocking	rigid	block	is:	

the	geometry	of	the	block	is	fully	described	by		
the	slenderness	angle	α:		

and	the	frequency	parameter	p:	

	

rigid	block	structures	
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the center of gravity is located at height h, the block will start rocking only if the incipient 
ground acceleration exceeds the value of (b/h)�g or g�tan(α), where α = atan(b/h) is the block 

slenderness. Note that α together with the block size parameter R = 2 2h b�  fully define the 
geometry of the block. The equation of motion of the block (Housner 1963) thus becomes: 

 � � � � � � � � � � � �sin sgn cos sgno gI t mgR α t t mgu t R α t tT T T T T� �  � �ª º ª º¬ ¼ ¬ ¼   (1) 

where the angle of rotation θ is the only degree of freedom. The sign function is used to de-
fine the pivot point (A or A’), which depends on the sign of θ. Therefore, when A’ is the pivot 
point, θ receives a negative value as implied by the sign function. For rectangular blocks, the 
moment of inertia becomes I0 = (4/3)mR2, while for small rotations θ, Equation (1) can be lin-
earized: 

 � � � �� � � � � �2 sgn /gt p -α t t u t gT T Tª º � �¬ ¼   (2) 

where p denotes the characteristic frequency of the rocking block and is defined as: 
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Dimitrakopoulos and DeJong (2012) have shown that the frequency parameter p is equal to 
the oscillating frequency of the block if it is viewed as a pendulum with the rocking rotation 
point (A or A’) being the pivot point. Damping is event-based, meaning that energy is lost 
only when the angle of rotation reverses and impact with the base occurs. The conservation of 
angular momentum just before and right after impact gives the coefficient of restitution η. 
This coefficient typically receives values between 0.6-0.9 and its theoretical value (Housner 
1963) is: 
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The equation of motion is solved numerically, while closed-form expressions for harmonic 
ground motions have been proposed by Dimitrakopoulos and DeJong (2012). 

3 GENERATION OF BROADBAND SYNTHETIC GROUND MOTIONS 
The hybrid method proposed by Mavroeidis and Papageorgiou (2003) is used to simulate 
broadband near-fault pulse-like ground motions. The incoherent (high-frequency) seismic ra-
diation is synthesized using the specific barrier model (SBM) (Papageorgiou and Aki 1983). 
In the context of the SBM, the fault is visualized as an ensemble of non-overlapping circular 
subevents of equal diameter 2𝜌0 that cover a rectangular fault with length L and width W. As 
the rupture front sweeps the fault plane with a rupture velocity V, a local stress drop ∆𝜎L oc-
curs on each subevent. The subevent rupture starts from its center and spreads radially out-
ward with a constant spreading velocity until it is arrested by the barriers. The SBM has been 
calibrated to shallow crustal earthquakes of various tectonic regions (Halldorsson and Pa-
pageorgiou 2005). Given an earthquake magnitude and the tectonic region, the interdepend-
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we	examine	rigid	block	structures	with	aspect	raDo	λ	=	h/b	=	2,	3,	5,	10	and	
frequencies	p	=	1.5,	2.5,	5.0	–	12	block	configura-ons	
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peak	ground	accelera-on	

DistribuDon	of	the	mean	peak	ground	accelera-ons	(PGA):	
•  larger	PGAs	close	to	the	epicenter	(as	expected)	
•  events	of	smaller	magnitude	Mw	produce	larger	PGAs	

Mw=6	 Mw=7	
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no	rocking	ini-a-on	

rocking	is	iniDated	only	if	PGA/g	tanα	≥	1,	thus:	
•  for	Mw=5.5	all	ground	moDons	set	the	blocks	to	moDon,	but	this	is	not	the	case	

for	the	Mw=7.5	events	
•  at	large	distances,	most	probably,	the	block	will	remain	at	rest	

Mw=5.5	 Mw=7.5	

P(
no

	ro
ck
in
g)
	

P(
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	ro
ck
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g)
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Overturning	probabili-es	do	not	follow	the	trend	of	PGAs,	i.e.	small	values	
for	Mw=5.5,	maximum	for	Mw=6.5	and	decrease	again	for	Mw	>	7.0	

Mw=5.5	 Mw=6.5	

Mw=7	
Mw=7.5	
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overturning	probability	
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overturning	spectra	

PGA/(g	tanα)	is	preferable	over	Ap/(g	tanα):		
•  easier	to	calculate	
•  respects	the	condiDon	that	rocking	will	immense	only	if	PGA/(g	tanα)	≥	1.		

closed-form		
solu-on	

we	present	results	in	the	form	of	overturning	spectra:	i.e.	graphs	of	frequency	ωp/p	
versus	amplitude	PGA/gtanα	or	Ap/gtanα	

UNSAFE 

SAFE SAFE 

UNSAFE 
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overturning	spectra	

•  many	blocks	on	the	“unsafe”	region	do	not	overturn	
•  For	large	ωp/p	values	overturning	is	rather	improbable,	especially	for		

ωp/p	≥	8	(regardless	of	the	PGA)	
•  sinusoidal	pulses	are	overall	more	conserva-ve,	especially	for	ωp/p	≥	6.		

UNSAFE 

SAFE 

closed-form		
solu-on	
(Dimitrakopoulos	&	
DeJong	2012)	

large	blocks	OR		
high	frequency	pulse	

small	blocks	OR	
low	frequency	pulse	
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•  Very	high	overturning	probabili-es	close	to	the	fault	and	very	small	as	we	
move	away	

•  Magnitude	6.5	is	the	most	cri-cal	(compare	to	Mw=5.5	and	Mw=7.5)	

effect	of	distance	
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effect	of	distance	

•  the	number	of	blocks	that	overturn	decrease	with	distance	
•  distance	seems	important	only	when	ωp/p		≥	4	

UNSAFE 

SAFE 

large	blocks	OR		
high	frequency	pulse	

small	blocks	OR	
low	frequency	pulse	
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effect	of	magnitude	

•  disDnct	differences	looking	at	different	Mw	events	(threshold	curves)	

•  for	a	given	block,	p	value	->	only	small	values	of	ωp/p	can	be	acained	for	large	
Mw	,	hence	the	threshold	curves	move	to	the	led	as	Mw	increases	

•  for	large	Mw	the	blocks	overturn	for	a	small	PGA/g	tanα,	thus	for	large	Mw	if	
rocking	ini-ates,	the	block	will	most	probably	overturn	



•  closed-form	soluDons	from	sine	pulses	à	η	is	of	some	minor	importance	when	
overturning	with	rocking	occurs	

•  when	syntheDc	records	are	considered,	small	effect	on	the	overturning	
probability	for	η	=	0.8	and	η	=	0.9,	some	sensi-vity	for	η	=	0.7.	

•  In	all,	we	don’t	need	to	“exactly”	know	the	value	of	η	 14 

coefficient	of	reins-tu-on	

close-form	solu-on		
(sine	pulses)	

η=0.9	

η	=0.8	
η	=0.7	

synthe-c		
ground	mo-ons	

η=0.9	

η	=0.8	
η	=0.7	overturning	without		

impact	
overturning		
with	rocking	
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•  λ	=	h/b	values	considered:	2,	3,	5	and	10	(α	=	26.5,	18.4,	11.3,	5.7)	

•  slender	blocks	are	suscepDble	to	overturning	since	small	PGAs	can	set	them	
to	rocking	

•  slender	blocks	topple	for	significantly	smaller	α,	therefore,	they	are	more	
vulnerable	to	small-period	ground	moDons	(the	threshold	curves	move	towards	
larger	ωp/p	as	λ	increases).		

effect	of	the	block	slenderness	λ	=	h/b	:	

block	slenderness	

slender	

stocky	

slender	
blocks	

stocky	
blocks	
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•  p	values	considered:	1.5,	2.5	and	5	(R	=	3.3,	1.18,	0.30)	
•  Scale	effect	–	large	blocks	are	more	suscepDble	
•  Small	blocks	overturn	even	for	high-frequency	records	for	which	the	large	

blocks	are	safe	

effect	of	the	frequency	parameter	p		=	(3g/4R)0.5	:	

frequency	parameter	

small		
blocks		

large		
blocks		

small	
blocks	

large	
blocks	
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