Parametric investigation of rigid blocks subjected to synthetic near-source ground motions

Michalis **Fragiadakis** Ioannis **Psycharis**

School of Civil Engineering

National Technical University of Athens

Yenan **Cao** George **Mavroeidis**

Department of Civil and Environmental Engineering and Earth Sciences

University of Notre Dame

introduction

we perform a systematic investigation of the seismic response of rigid blocks subjected to near-source records of different magnitudes

and high frequency component for a dip-slip fault

generate synthetic pulse-like

ground-motions consisting of a **low**

consider several rigid block structures of **different geometry**

parametric investigation that improves our understanding on the effect of base motion characteristics on the overturning rigid block structures

synthetic ground motions

- assume a vertical fault and a grid of 56 receiver stations
- consider events with M_w =5.5, 6.0, 6.5, 7.0 and 7.5 the fault size varies accordingly
- simulate 100 fault ruptures recorded at the 56 receiver stations

synthetic ground motions

The low frequency component is defined by means of a wavelet of the form:

$$V(t) = 0.5 A_{p} \left[+ \cos \left(\frac{2\pi f_{p}}{\gamma_{p}} (t - t_{0}) \right) \right] \cos \left[2\pi f_{p} (t - t_{0}) + v_{p} \right]$$

this is a **four-parameter** wavelet whose parameters are randomly sampled:

• A_p : amplitude of the velocity pulse A_p =0.9 PGV:

$$\log PGV = 2.040 - 0.032r_{rup}$$

• f_p : pulse frequency:

$$\log T_{\rm p} = -2.9 + 0.5 M_{\rm W}$$

- v_p : the phase angle, normally distributed
 - y_p : the number of cycles, normally distributed

rigid block structures

Following the work of Housner (1963), the equation of motion of a rocking rigid block is:

$$\ddot{\theta}(t) = p^{2} \left[-\alpha \operatorname{sgn}(\theta(t)) + \theta(t) - \ddot{u}_{g}(t) / g \right]$$

the geometry of the block is fully described by the slenderness angle α :

$$\alpha = \operatorname{atan}(b/h)$$

and the frequency parameter p:

$$p = \sqrt{\frac{WR}{I_0}} = \sqrt{\frac{3g}{4R}}$$

peak ground acceleration

Distribution of the mean peak ground accelerations (PGA):

- larger PGAs close to the epicenter (as expected)
- events of smaller magnitude M_w produce larger PGAs

no rocking initiation

rocking is initiated only if **PGA/g** tan $\alpha \ge 1$, thus:

- for M_w =5.5 all ground motions set the blocks to motion, but this is not the case for the M_w =7.5 events
- at large distances, most probably, the block will remain at rest

overturning probability

Overturning probabilities do not follow the trend of PGAs, i.e. small values for $M_{\rm w}$ =5.5, maximum for $M_{\rm w}$ =6.5 and decrease again for $M_{\rm w}$ > 7.0

overturning spectra

we present results in the form of overturning spectra: i.e. graphs of frequency ω_p/p versus amplitude PGA/gtan α or $A_p/gtan\alpha$

PGA/(g tan α) is preferable over A_p /(g tan α):

- easier to calculate
- respects the condition that rocking will immense only if PGA/(g tan α) ≥ 1 .

overturning spectra

many blocks on the "unsafe" region do not overturn

small blocks OR

- For large ω_p /p values overturning is rather improbable, especially for $\underline{\omega}_p/p \ge 8$ (regardless of the PGA)
- sinusoidal pulses are overall more conservative, especially for $\omega_p/p \ge 6$.

effect of distance

- Very high overturning probabilities close to the fault and very small as we move away
- Magnitude 6.5 is the most critical (compare to M_w =5.5 and M_w =7.5)

effect of distance

- the number of blocks that overturn decrease with distance
- distance seems important only when $\omega_p/p \ge 4$

effect of magnitude

- distinct differences looking at different M_w events (threshold curves)
- for a given block, p value -> only small values of ω_p/p can be attained for large M_w , hence the threshold curves move to the left as M_w increases
- for large M_w the blocks overturn for a small PGA/g tan α , thus for large M_w if rocking initiates, the block will most probably overturn

coefficient of reinstitution

- closed-form solutions from sine pulses $\rightarrow \eta$ is of some minor importance when overturning with rocking occurs
- when synthetic records are considered, small effect on the overturning probability for $\eta = 0.8$ and $\eta = 0.9$, some sensitivity for $\eta = 0.7$.
- In all, we don't need to "exactly" know the value of η

block slenderness

effect of the block slenderness $\lambda = h/b$:

- $\lambda = h/b$ values considered: 2, 3, 5 and 10 ($\alpha = 26.5, 18.4, 11.3, 5.7$)
- slender blocks are susceptible to overturning since small PGAs can set them to rocking
- slender blocks topple for significantly smaller α , therefore, they are more vulnerable to small-period ground motions (the threshold curves move towards larger $\omega_{\text{D}}/\text{p}$ as λ increases).

frequency parameter

effect of the frequency parameter $p = (3g/4R)^{0.5}$:

- p values considered: 1.5, 2.5 and 5 (R = 3.3, 1.18, 0.30)
- Scale effect large blocks are more susceptible
- Small blocks overturn even for high-frequency records for which the large blocks are safe

Thank you for your attention