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introduction

we perform a systematic
investigation of the seismic
response of rigid blocks subjected
to near-source records of different

magnitudes

consider several rigid block
structures of different geometry

generate synthetic pulse-like
ground-motions consisting of a low
and high frequency component for
a dip-slip fault

parametric investigation that
improves our understanding on
the effect of base motion
characteristics on the overturning
rigid block structures



synthetic ground motions
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e assume a vertical fault and a grid of 56 receiver stations

* consider events with M, =5.5, 6.0, 6.5, 7.0 and 7.5 - the fault size varies
accordingly

e simulate 100 fault ruptures recorded at the 56 receiver stations



synthetic ground motions

The low frequency component is defined by means of a wavelet of the form:

V(t)=0.5€p:)+cos£t—to)]]cos[znfp (t_to)

this is a four-parameter wavelet whose parameters are
randomly sampled:

= A,:amplitude of the velocity pulse A,=0.9 PGV:
logPGV =2.040— 0'032rrup

= f,: pulse frequency:
logT) =-2.9+0.5M,,

" v,:the phase angle, normally distributed

" y,: the number of cycles, normally distributed

time (sec)



rigid block structures

Following the work of Housner (1963), the equation
of motion of a rocking rigid block is:

6(r)= p* [-asen(6(0))+6(1)-ii, (1) ]

the geometry of the block is fully described by
the slenderness angle a:

a = atan(b/h)

and the frequency parameter p:
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we examine rigid block structures with aspect ratioA=h/b =2, 3,5, 10 and

frequencies p = 1.5, 2.5, 5.0 — 12 block configurations




peak ground acceleration
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Distribution of the mean peak ground accelerations (PGA):
* larger PGAs close to the epicenter (as expected)

e events of smaller magnitude M, produce larger PGAs



no rocking initiation
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rocking is initiated only if PGA/g tana 2 1, thus:

e for M,,=5.5 all ground motions set the blocks to motion, but this is not the case
for the M,=7.5 events

e atlarge distances, most probably, the block will remain at rest



overturning probability
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Overturning probabilities do not follow the trend of PGAs, i.e. small values
for M,=5.5, maximum for M =6.5 and decrease again for M, > 7.0



PGA /g tan(o)

overturning spectra
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overturning spectra

small blocks OR
low frequency pulse

s T T+

CUNSAFE. | (osed-form

. solution
. / (Dimitrakopoulos &
‘ Delong 2012)

large blocks OR
high frequency pulse

* many blocks on the “unsafe” region do not overturn

* Forlarge wp/p values overturning is rather improbable, especially for
w,/p 2 8 (regardless of the PGA)

* sinusoidal pulses are overall more conservative, especially for w /p 2 6.
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effect of distance
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* Very high overturning probabilities close to the fault and very small as we
move away

* Magnitude 6.5 is the most critical (compare to M,,=5.5 and M,=7.5)
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effect of distance

small blocks OR large blocks OR
low frequency pulse high frequency pulse
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the number of blocks that overturn decrease with distance

distance seems important only when wp/p >4
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effect of magnitude
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* distinct differences looking at different M, events (threshold curves)

* for a given block, p value -> only small values of wp/p can be attained for large
M, , hence the threshold curves move to the left as M, increases

» forlarge M, the blocks overturn for a small PGA/g tana, thus for large M, if

rocking initiates, the block will most probably overturn 13



coefficient of reinstitution
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» closed-form solutions from sine pulses = n is of some minor importance when
overturning with rocking occurs

* when synthetic records are considered, small effect on the overturning
probability for n = 0.8 and n = 0.9, some sensitivity for n = 0.7.

* Inall, we don’t need to “exactly” know the value of n 14



block slenderness
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effect of the block slenderness A = h/b :
* A=h/bvalues considered: 2, 3, 5 and 10 (a=26.5, 18.4, 11.3, 5.7)

slender blocks are susceptible to overturning since small PGAs can set them

to rocking

slender blocks topple for significantly smaller a, therefore, they are more
vulnerable to small-period ground motions (the threshold curves move towards
15

larger wp/p as A increases).



frequency parameter
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effect of the frequency parameter p = (3g/4R)%>:

e pvalues considered: 1.5, 2.5 and 5 (R=3.3, 1.18, 0.30)
e Scale effect — large blocks are more susceptible

* Small blocks overturn even for high-frequency records for which the large

blocks are safe
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