

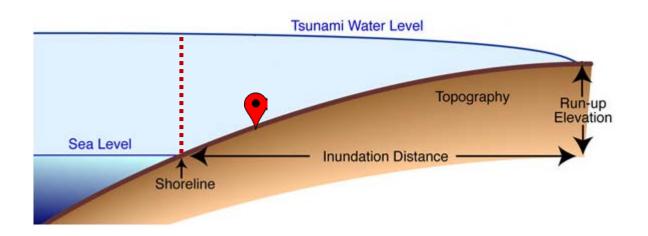
Bayesian tsunami fragility modeling considering input data uncertainty

Raffaele De Risi

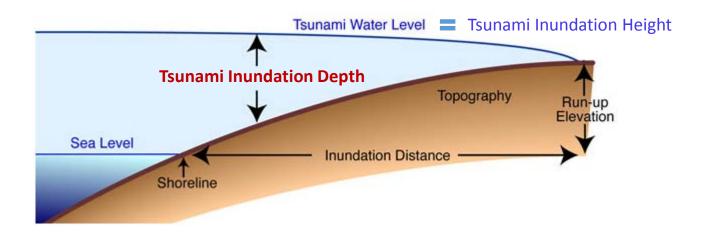
Research Associate
University of Bristol
United Kingdom

De Risi, R., Goda, K., Mori, N., & Yasuda, T. (2016). Bayesian tsunami fragility modeling considering input data uncertainty. *Stochastic Environmental Research and Risk Assessment*, doi:10.1007/s00477-016-1230-x

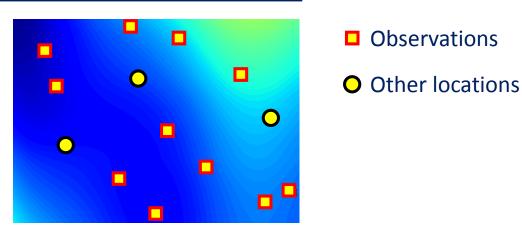
- <u>Empirical Tsunami Fragility</u> modelling requires numerous pairs of Tsunami Damage Observations and Explanatory Variable related to both <u>Hazard</u> and <u>Exposure</u>.
- Tsunami Inundation Depth is the typical intensity measure adopted in developing empirical fragility.



- <u>Empirical Tsunami Fragility</u> modelling requires numerous pairs of Tsunami Damage Observations and Explanatory Variable related to both <u>Hazard</u> and <u>Exposure</u>.
- Tsunami Inundation Depth is the typical intensity measure adopted in developing empirical fragility.



- <u>Empirical Tsunami Fragility</u> modelling requires numerous pairs of Tsunami Damage Observations and Explanatory Variable related to both <u>Hazard</u> and <u>Exposure</u>.
- Tsunami Inundation Depth is the typical intensity measure adopted in developing empirical fragility.
- Tsunami Inundation Depth are subject to errors due to: survey
 (i) techniques, (ii) equipment, and (iii) conditions.
- A further source of potential error is the operation of Interpolation when direct measurement are not available.



- <u>Empirical Tsunami Fragility</u> modelling requires numerous pairs of Tsunami Damage Observations and Explanatory Variable related to both <u>Hazard</u> and <u>Exposure</u>.
- Tsunami Inundation Depth is the typical intensity measure adopted in developing empirical fragility.
- Tsunami Inundation Depth are subject to errors due to: survey
 (i) techniques, (ii) equipment, and (iii) conditions.
- A further source of potential error is the operation of Interpolation when direct measurement are not available.

Uncertainty associated with input hazard data can result in potential **overestimation of model uncertainty** associated with developed Fragilities

 In Tsunami fragility modelling, incorporation of input data errors and uncertainty has not been explored rigorously.

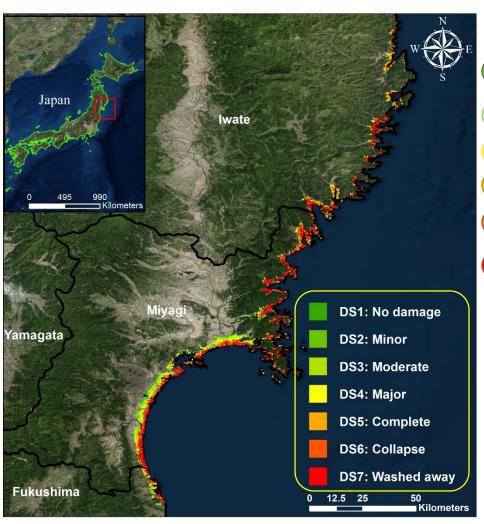
Scientific Questions

- (1) How to quantify the Uncertainty of input hazard parameters?
- (2) How to propagate such Uncertainty on tsunami fragility function?

To respond these questions, we studied the M_W 9 2011 TOHOKU event, for which a large amount of data is available

First Available Database: MLIT database

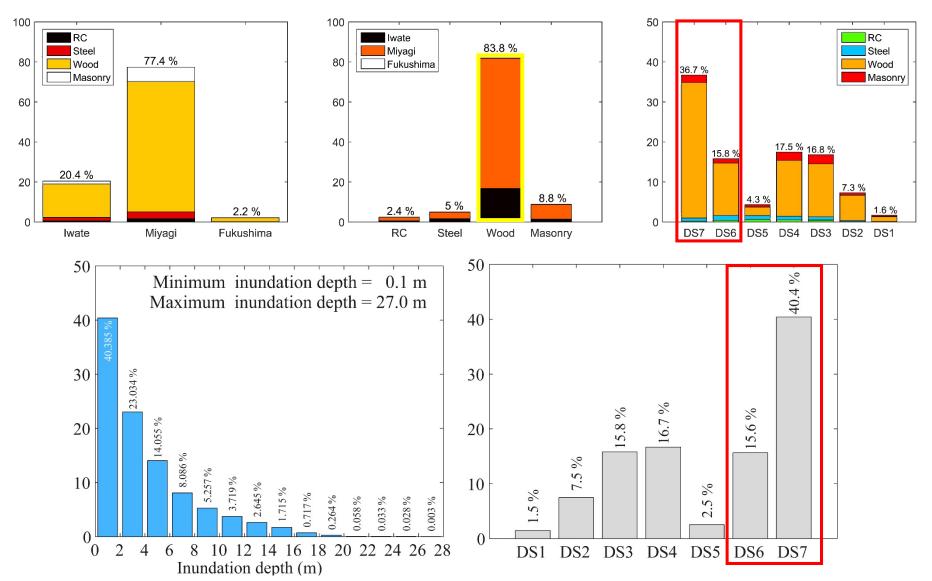
MLIT (Ministry of Land, Infrastructure, and Transportation of Japanese Government)



	Description	Condition
2	There is no significant structural or non- structural damage, possibly only minor flooding	Possible to be use immediately after minor floor and wall clean up
3	Slight damages to non-structural components	Possible to be use after moderate reparation
4	Heavy damages to some walls but no damages in columns	Possible to be use after major reparations
5	Heavy damages to several walls and some columns	Possible to be use after a complete reparation and retrofitting
6	Destructive damage to walls (more than half of wall density) and several columns (bend or destroyed)	Loss of functionality (system collapse). Non-repairable or great cost for retrofitting
7	Washed away, only foundation remained, total overturned	Non-repairable, requires total reconstruction

▼ Observation: Location, h, Material, Damage State, Number of stories, etc.

First Available Database: MLIT database



MLIT database Accuracy

Two sources of uncertainty associated to the Intensity Measures:

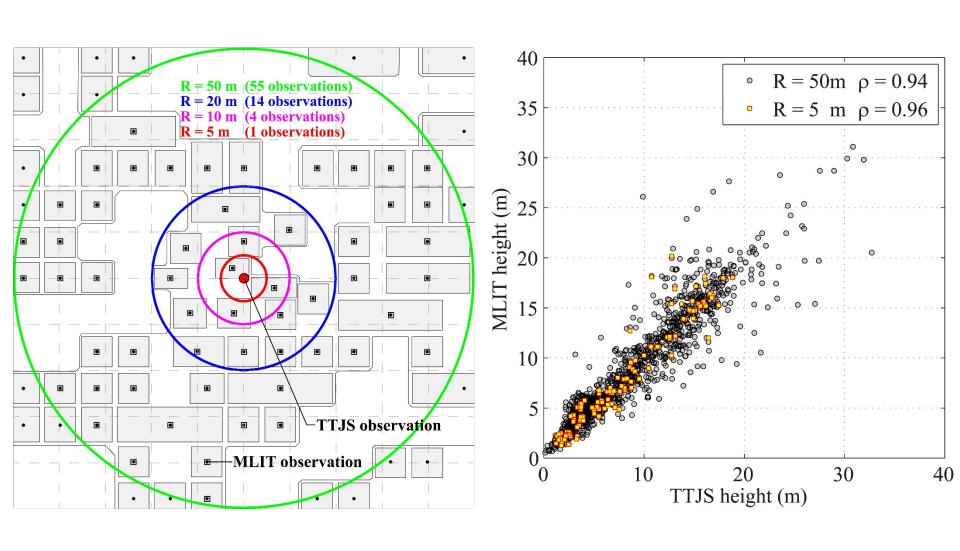
- 1. Error due to interpolation/smoothing: recordings are based on MLIT 100-m data;
- 2. Elevation data at each building sites are not available; therefore there is not a straightforward correlation between tsunami height and tsunami depth.

It is not straightforward to estimate the MLIT data accuracy

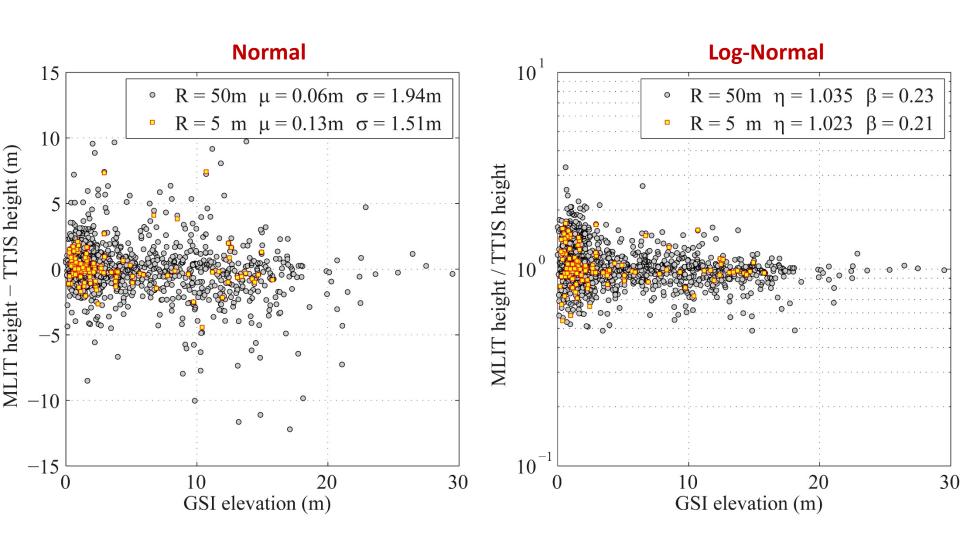
Second Available Database: TTJS database (Tohoku Tsunami Joint Survey)

- 1. More reliable than MLIT database (vertical accuracy within few centimeters, as DEM the GSI data are used) but less populated;
- Heights of watermarks on buildings, trees, and walls were measured using a laser range finder, a level survey, a real-time kinematic global positioning system (RTK-GPS) receiver with a cellular transmitter, and total stations.

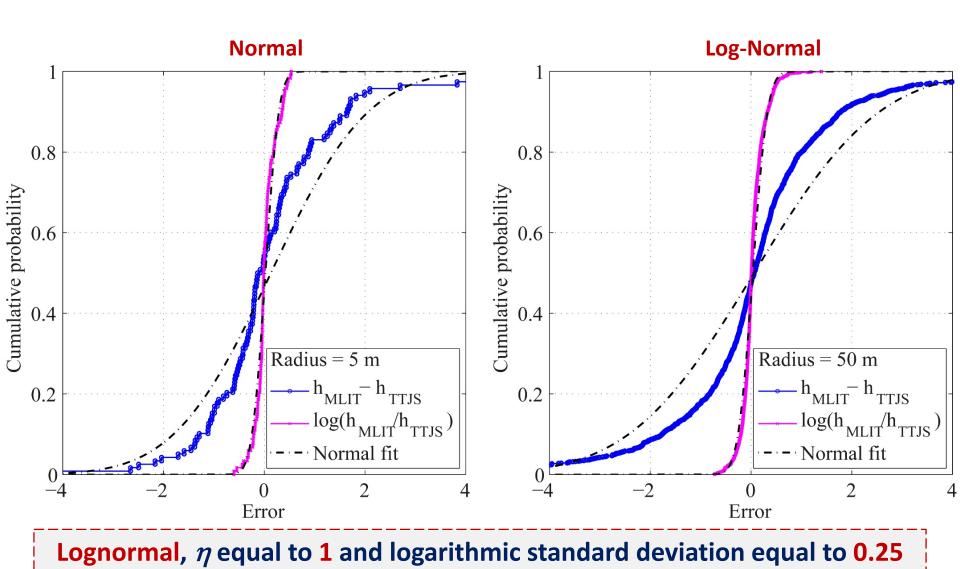
Procedure for Uncertainty Quantification



Procedure for Uncertainty Quantification

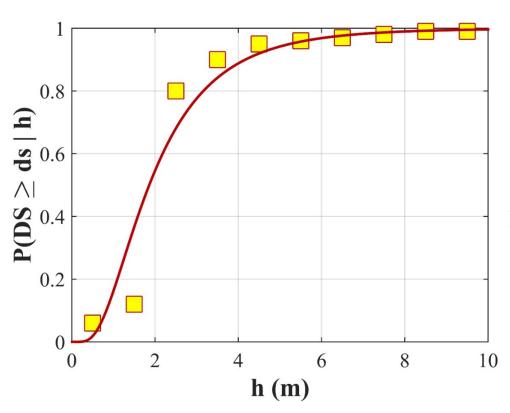


Procedure for Uncertainty Quantification



First Step: Typical Tsunami Empirical Fragility models

(1) Log-Normal Method



- Binning
- Change of variables
- Linear fitting

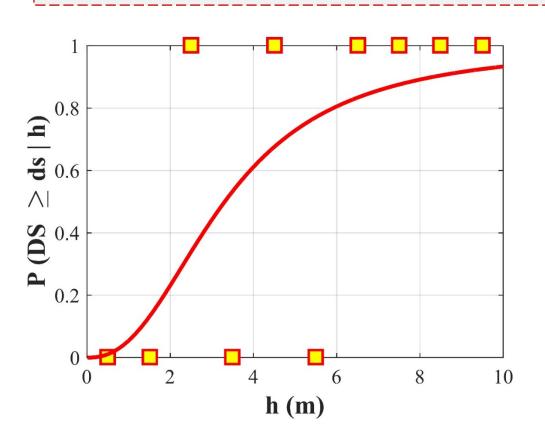
$$\ln h = \ln \eta + \beta \cdot \Phi^{-1} \left\lceil P(DS \ge ds \mid h) \right\rceil + \varepsilon_R$$

Change of variables

Two Parameters for each damage state: η and β

First Step: Typical Tsunami Empirical Fragility models

(2) Binomial Logistic Method



• Probability of occurrence

$$\prod_{i=1}^{n} \left(\frac{1}{y_i} \right) \cdot \pi_i^{y_i} \cdot \left(1 - \pi_i \right)^{1-y_i}$$

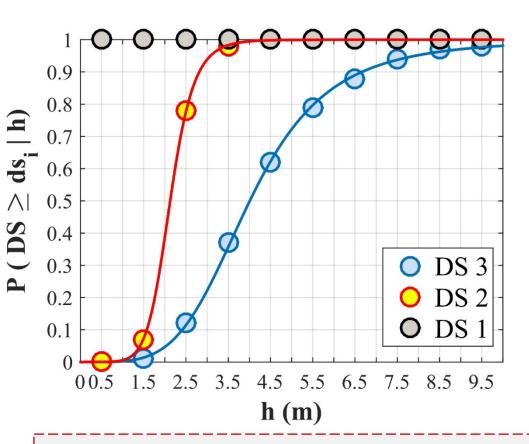
- π_i may assume different forms
- Logit

$$\pi_i = \frac{\exp(b_1 + b_2 \cdot \ln h_i)}{1 + \exp(b_1 + b_2 \cdot \ln h_i)}$$

Two Parameters for each damage state: b_1 and b_2

First Step: Typical Tsunami Empirical Fragility models

(3) Multinomial Logistic Method



- Binning
- Probability of occurrence

$$rac{m_i\,!}{\displaystyle\prod_{i=1}^k y_{ij}\,!} \displaystyle\prod_{j=1}^k \pi_{ij}^{y_{ij}}$$

• π_i may assume different forms

$$\pi_{ij} = \frac{\exp(b_{1,j} + b_{2,j} \cdot \ln h_i)}{1 + \exp(b_{1,j} + b_{2,j} \cdot \ln h_i)} \cdot \left(1 - \sum_{l=1}^{j-1} \pi_{il}\right)$$

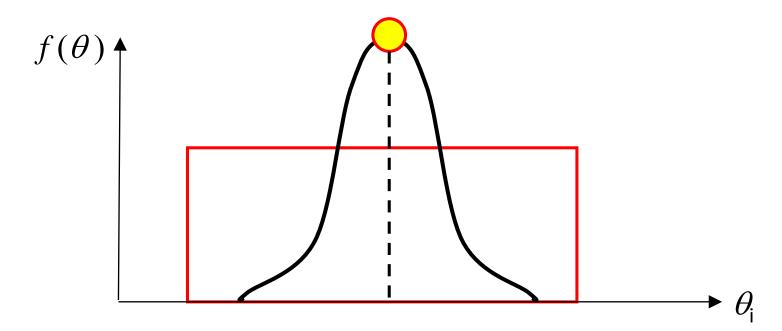
Two Parameters for each damage state: b_{1i} and b_{2i}

Second Step: Bayesian procedure

$$f(\boldsymbol{\theta} | \mathbf{D}) = c^{-1} \cdot L(\mathbf{D} | \boldsymbol{\theta}) \cdot f(\boldsymbol{\theta}) \qquad c = \int L(\mathbf{D} | \boldsymbol{\theta}) \cdot f(\boldsymbol{\theta}) \cdot d\boldsymbol{\theta} \qquad L(\mathbf{D} | \boldsymbol{\theta}) = \prod_{i=1}^{n} f(\mathbf{D}_{i} | \boldsymbol{\theta})$$

The likelihood function depend by the adopted typology of regression.

The parameters maximizing the posteriors represent the solution of the Bayesian regression (i.e. the Bayesian maximum likelihood).



Second Step: Bayesian procedure

$$f(\mathbf{\theta} | \mathbf{D}) = c^{-1} \cdot L(\mathbf{D} | \mathbf{\theta}) \cdot f(\mathbf{\theta}) \qquad c = \int L(\mathbf{D} | \mathbf{\theta}) \cdot f(\mathbf{\theta}) \cdot d\mathbf{\theta}$$

$$c = \int L(\mathbf{D} | \mathbf{\theta}) \cdot f(\mathbf{\theta}) \cdot d\mathbf{\theta}$$

$$L(\mathbf{D} | \mathbf{\theta}) = \prod_{i=1}^{n} f(\mathbf{D}_{i} | \mathbf{\theta})$$

The likelihood function depend by the adopted typology of regression.

The parameters maximizing the posteriors represent the solution of the Bayesian regression (i.e. the Bayesian maximum likelihood).

How to implement the uncertainty on the intensity measure?

$$f\left(\boldsymbol{D_{i}}\mid\boldsymbol{\Theta}\right) = \int_{-\infty}^{+\infty} f\left(\boldsymbol{D_{i}}\mid\boldsymbol{\varepsilon},\boldsymbol{\Theta}\right) \cdot f_{i}\left(\boldsymbol{\varepsilon}\right) \cdot d\boldsymbol{\varepsilon}$$

$$L(\mathbf{D} | \mathbf{\theta}) = \prod_{i=1}^{n} \int_{-\infty}^{+\infty} f(\mathbf{D}_{i} | \varepsilon, \mathbf{\theta}) \cdot f_{i}(\varepsilon) \cdot d\varepsilon$$

Second Step: Bayesian procedure

(1) Log-Normal Method

$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi} \cdot \sigma_{R}} \cdot \exp\left\{-\frac{1}{2 \cdot \sigma_{R}^{2}} \cdot \left[\ln h_{i} + \varepsilon_{\ln h}\right] - \ln \eta - \beta \cdot \Phi^{-1} \left(P\left(DS \ge ds \mid h_{i}\right)\right)\right]^{2}\right\} \cdot f\left(\varepsilon_{\ln h}\right) \cdot d\varepsilon_{\ln h}$$

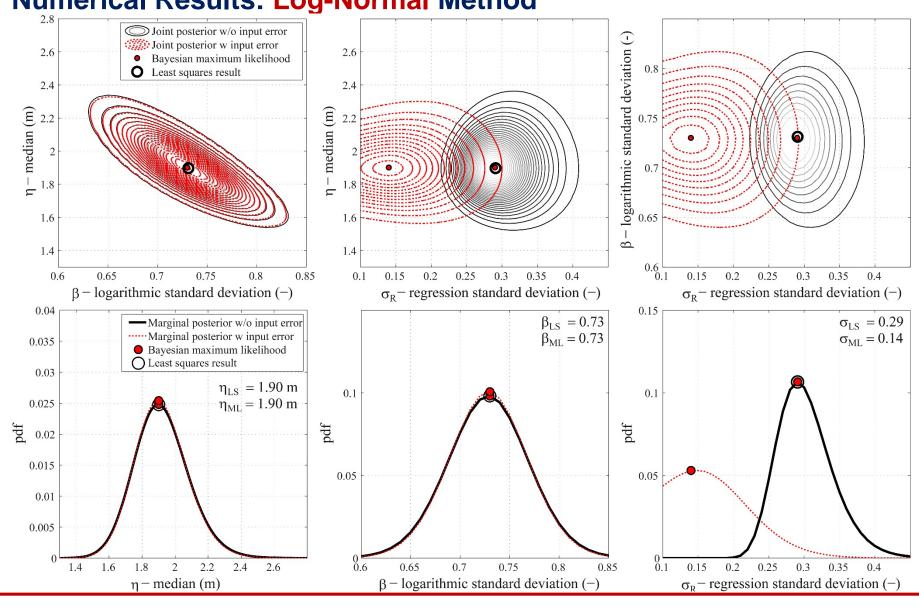
(2) Binomial Logistic Method

$$\int_{-\infty}^{+\infty} \left(\frac{1}{y_{i}}\right) \cdot \left[\frac{\exp\left(b_{1} + b_{2} \cdot \left(\ln h_{i} + \varepsilon_{\ln h}\right)\right)}{1 + \exp\left(b_{1} + b_{2} \cdot \left(\ln h_{i} + \varepsilon_{\ln h}\right)\right)}\right]^{y_{i}} \cdot \left[1 - \frac{\exp\left(b_{1} + b_{2} \cdot \left(\ln h_{i} + \varepsilon_{\ln h}\right)\right)}{1 + \exp\left(b_{1} + b_{2} \cdot \left(\ln h_{i} + \varepsilon_{\ln h}\right)\right)}\right]^{1 - y_{i}} \cdot f\left(\varepsilon_{\ln h}\right) \cdot d\varepsilon_{\ln h}$$

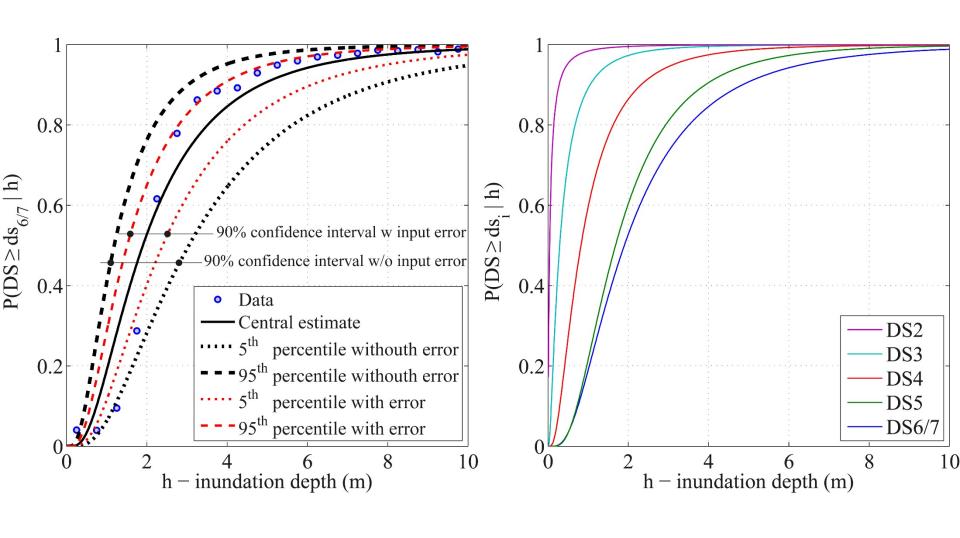
(3) Multinomial Logistic Method

$$\prod_{j=1}^{k} \int_{-\infty}^{+\infty} \frac{\exp\left(b_{1,j} + b_{2,j} \cdot \left(\ln h + \varepsilon_{\ln h}\right)\right)}{1 + \exp\left(b_{1,j} + b_{2,j} \cdot \left(\ln h + \varepsilon_{\ln h}\right)\right)} \cdot \left(1 - \sum_{l=1}^{j-1} \pi_{il}\right) \cdot f\left(\varepsilon_{\ln h}\right) \cdot d\varepsilon_{\ln h}$$

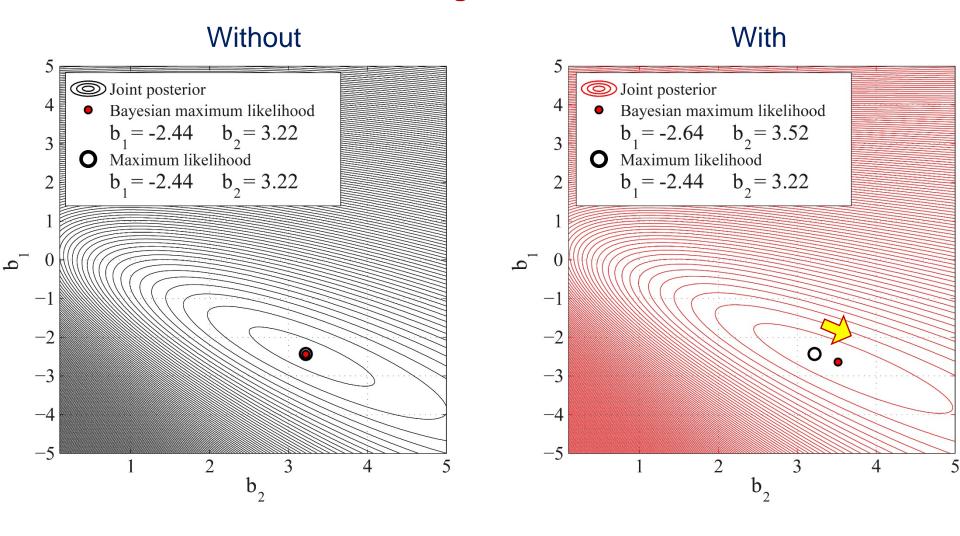
Numerical Results: Log-Normal Method



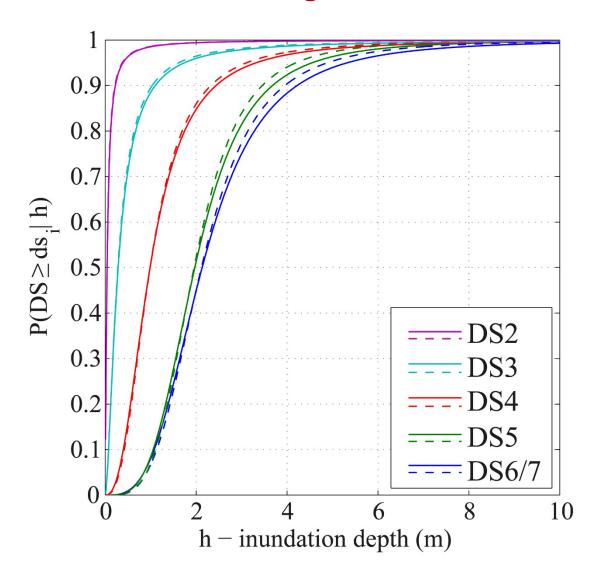
Numerical Results: Log-Normal Method



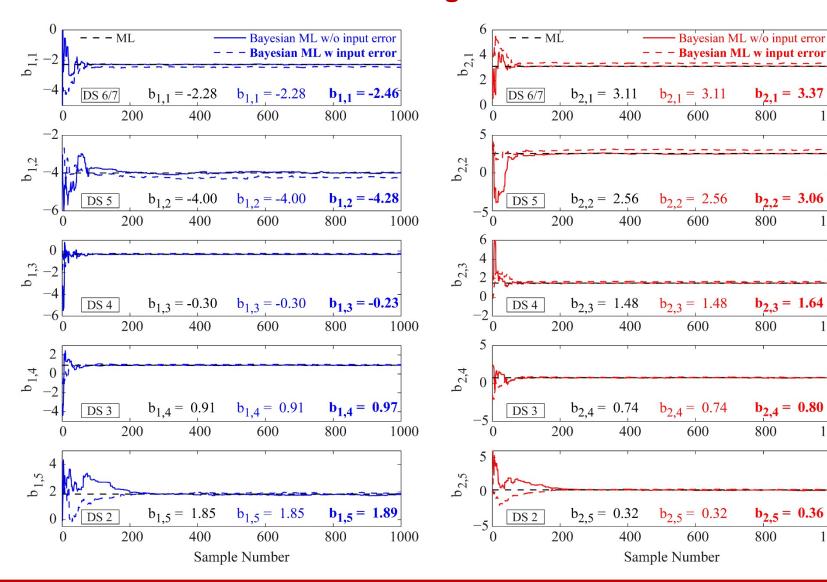
Numerical Results: Binomial Logistic Method



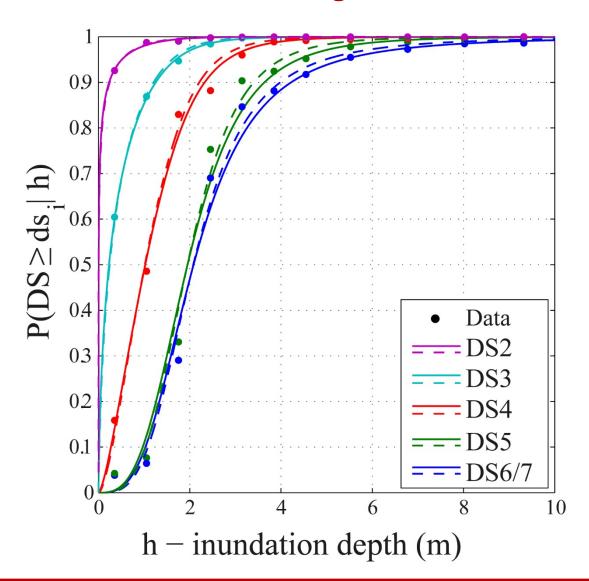
Numerical Results: Binomial Logistic Method



Numerical Results: Multinomial Logistic Method



Numerical Results: Multinomial Logistic Method

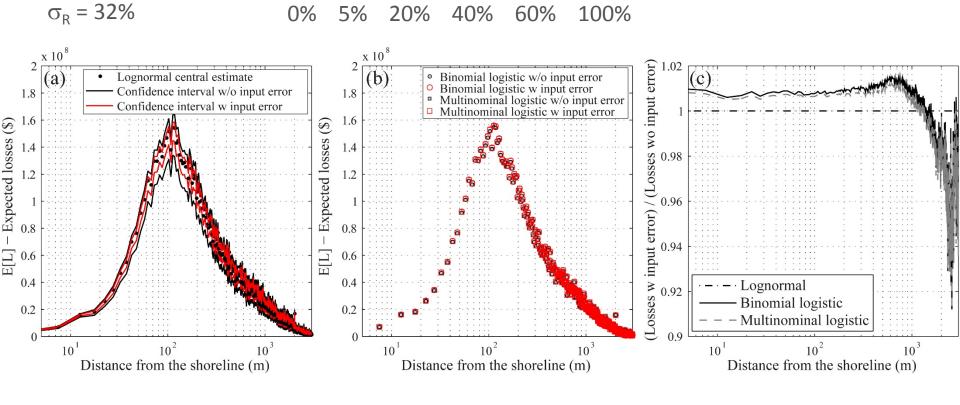


Effects on the Risk Assessment

$$E[L] = \sum_{j=1}^{k} R_{j} \cdot \left[P(DS \ge ds_{j}) - P(DS \ge ds_{j+1}) \right]$$

$$\mu_R = 1600 \text{ } \text{/m}^2$$

40% 60% 100% 1000 simulations



Future Developments

- Multivariate Empirical Tsunami Fragility, i.e. consider not only tsunami depth but also tsunami velocity.
- Identification of a methodology for the quantification of the input data uncertainty for the velocity.
- Propagate the entire distribution of the parameters for a robust regression.
- Potential extension to experimental database to remove from the capacity models the measurement error or other typologies of error that can be quantified.

Thank you for your attention!

Raffaele De Risi

Research Associate
University of Bristol
United Kingdom

raffaele.derisi@bristol.ac.uk