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Motivation

• Empirical Tsunami Fragility modelling requires numerous pairs of
Tsunami Damage Observations and Explanatory Variable related to
both Hazard and Exposure.

• Tsunami Inundation Depth is the typical intensity measure adopted
in developing empirical fragility.
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• Empirical Tsunami Fragility modelling requires numerous pairs of
Tsunami Damage Observations and Explanatory Variable related to
both Hazard and Exposure.

• Tsunami Inundation Depth is the typical intensity measure adopted
in developing empirical fragility.

• Tsunami Inundation Depth are subject to errors due to: survey
(i) techniques, (ii) equipment, and (iii) conditions.

• A further source of potential error is the operation of Interpolation
when direct measurement are not available.

• In Tsunami fragility modelling, incorporation of input data errors and
uncertainty has not been explored rigorously.

Uncertainty associated with input hazard data can result in potential 
overestimation of model uncertainty associated with developed Fragilities



Scientific Questions

• (2) How to propagate such Uncertainty on tsunami fragility function?

• (1) How to quantify the Uncertainty of input hazard parameters ?

To respond these questions, we studied the MW9 2011 TOHOKU event, for 
which a large amount of data is available  



Uncertainty Quantification

First Available Database: MLIT database
MLIT (Ministry of Land, Infrastructure, and Transportation of Japanese Government)
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Description Condition 

1 2 3 4 5 6 7

Non Structural Structural 

∀ Observation: Location, h, Material,
Damage State, Number of stories, etc.



Uncertainty Quantification

First Available Database: MLIT database

Timber Structures



Uncertainty Quantification
MLIT database Accuracy
Two sources of uncertainty associated to the Intensity Measures:

1. Error due to interpolation/smoothing: recordings are based on
MLIT 100-m data;

2. Elevation data at each building sites are not available; therefore
there is not a straightforward correlation between tsunami height
and tsunami depth.

It is not straightforward to estimate the MLIT data accuracy

Second Available Database: TTJS database (Tohoku Tsunami Joint Survey)

1. More reliable than MLIT database (vertical accuracy within few
centimeters, as DEM the GSI data are used) but less populated;

2. Heights of watermarks on buildings, trees, and walls were
measured using a laser range finder, a level survey, a real-time
kinematic global positioning system (RTK-GPS) receiver with a
cellular transmitter, and total stations.

Relatore
Note di presentazione
The TTJS inundation height data can be adopted as a benchmark in assessing the errors/uncertainty associated with the MLIT inundation data as they may be considered to be more accurate (or controlled);

Based on the TTJS height data, the corresponding depth data can be obtained by using the GSI-DEM data.




Uncertainty Quantification
Procedure for Uncertainty Quantification

Relatore
Note di presentazione
TTJS and MLIT have different spatial distribution and coverage.

4 distances between 5 m and 50 m are considered

At the increasing of radius the pairs of TTJS and MLIT point that can be associated each other increases



Uncertainty Quantification
Procedure for Uncertainty Quantification

Normal Log-Normal



Uncertainty Quantification
Procedure for Uncertainty Quantification

Normal Log-Normal

Lognormal, η equal to 1 and logarithmic standard deviation equal to 0.25



Uncertainty Propagation

First Step: Typical Tsunami Empirical Fragility models
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(1) Log-Normal Method

• Binning

• Change of variables

• Linear fitting

• Change of variables

Two Parameters for each damage state: η and β

Relatore
Note di presentazione
Least square method



Uncertainty Propagation

First Step: Typical Tsunami Empirical Fragility models

(2) Binomial Logistic Method
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• πi may assume different forms

• Logit

Two Parameters for each damage state: b1 and b2

Relatore
Note di presentazione
Maximum likelihood method



Uncertainty Propagation

First Step: Typical Tsunami Empirical Fragility models

(3) Multinomial Logistic Method

• Binning
• Probability of occurrence
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• πi may assume different forms
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Two Parameters for each damage state: b1i and b2i

Relatore
Note di presentazione
Maximum likelihood method
This is a generalization of binomial logistic method that allows considering more than two outcomes at same time. Can be used with binned and un-binned data. Then the probability that all the structures corresponding to the ith observation (1 or many) fall in the respective damage state class is give by the multinominal probability distribution:




Uncertainty Propagation

Second Step: Bayesian procedure
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The likelihood function depend by the adopted typology of regression.

The parameters maximizing the posteriors represent the solution of the
Bayesian regression (i.e. the Bayesian maximum likelihood).
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Uncertainty Propagation

Second Step: Bayesian procedure
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The likelihood function depend by the adopted typology of regression.

The parameters maximizing the posteriors represent the solution of the
Bayesian regression (i.e. the Bayesian maximum likelihood).

How to implement the uncertainty on the intensity measure?
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Uncertainty Propagation

Second Step: Bayesian procedure

(1) Log-Normal Method
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(2) Binomial Logistic Method
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(3) Multinomial Logistic Method
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Uncertainty Propagation

Numerical Results: Log-Normal Method
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Numerical Results: Log-Normal Method



Uncertainty Propagation

Numerical Results: Binomial Logistic Method

Without With



Uncertainty Propagation

Numerical Results: Binomial Logistic Method



Uncertainty Propagation

Numerical Results: Multinomial Logistic Method



Uncertainty Propagation

Numerical Results: Multinomial Logistic Method



Uncertainty Propagation

Effects on the Risk Assessment
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Future Developments

• Multivariate Empirical Tsunami Fragility, i.e. consider not only
tsunami depth but also tsunami velocity.

• Identification of a methodology for the quantification of the input
data uncertainty for the velocity.

• Propagate the entire distribution of the parameters for a robust
regression.

• Potential extension to experimental database to remove from the
capacity models the measurement error or other typologies of error
that can be quantified.
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