Caltech

On seismic waves and convex features: Topography effects and their nonlinear dependence on soil layering

Domniki Asimaki & Kami Mohammadi

Mechanical and Civil Engineering California Institute of Technology

Vamvatsikos & Friends, Hydra, June 2016

Earthquake simulations in the 21st century

For engineers & seismologists...

...the world is (usually) flat

Which is not always a bad idea

Source depth: 20-50km

Ayadan & Ulusay (2015)

Meet the infinite wedge

Continental margins, mountain roots, crustal discontinuities...

Focusing effects literature

Nucleation <u>Interior</u>: Elastodynamics

Exterior: Acoustics, Electromag.

Propagation Rayleigh waves

Body Waves: Scalar (SH)

→ Vector (P and SV)

Material Homogeneous

Layered

• Solution (Semi) analytical: Simple Geometry

Experimental: Rayleigh Wave

Numerical: FDM, FEM, BEM

Geometric Solution of Infinite Wedge

Closed form solution of 90° wedge

Closed form solution of 90° wedge

F. Sanchez-Sesma (1990)

Poisson's ratio v=1/4

Internal angle 90°

"Infinite" wedge numerical simulations

Geometric Solution of Infinite Wedge

Critical angle: a special case

Numerical simulation of θ_{crit} wedge

Infinite wedge vs. Poisson's ratio

2D topography effects

Geometry parameterization

Slope angle: α [°]

Dimensionless height: $\eta = H/\lambda$

Dimensionless width: $\zeta = D/\lambda$

Excitation: Vertical SV (horizontal motion) Ricker, fo

Dam: $\alpha = 30^{\circ}$; $\eta = 1.0$

Homogeneous feature

Unified representation of convex features

3D site effects: soil + geometry

Soil or topography effects?

Top: $V_s = 700 \,\text{m/s}$

Top: $V_s = 165 \,\text{m/s}$ Middle: $V_s = 700 \,\text{m/s}$

Homogeneous, V_S = 1400 m/s

Horizontal motion $(a_{x,2D})$

Horizontal motion $(a_{x,2D})$

Horizontal motion $(a_{x,2D})$

Vertical motion $(a_{z,2D})$

Topography on layered soil

More complex (real) configurations

Strong motion stations in California

BK-KCC stratigraphy and properties

BK-KCC: Polarization scenarios

Frequency analysis

Homogeneous BK-KCC: X-polarization

Layered BK-KCC: X-polarization

Homogeneous BK-KCC: Y-polarization

Layered BK-KCC: Y-polarization

Layered BK-KCC: x-polarization

Los Alamos cemetery (CI-LCP)

CI-LCP: Polarization scenarios

CI-LCP: Homogeneous vs. Layered

Frequency analysis

Transfer function amplitude @ f = 1Hz

Transfer function amplitude @ f = 3.5Hz

Transfer function amplitude @ f = 7Hz

Transfer function amplitude @ f = 10Hz

Transfer function amplitude @ f = 15Hz

Layered CI-LCP: Ricker train

What about uncertainty & risk?

Topography in physics-based simulations

http://scec.usc.edu/scecpedia/M8

Harp et al (2014) BSSA

Are GMPEs biased?

Extreme ground motions & physical limits

Physics-based multi-hazard assessment

To summarize, we're just getting started...

'facts'

- The world isn't flat
- Topo-effects are not "topography" effects
- Topo-effects are frequency-dependent & nonlinear

open questions

- Integration in regional models of simulated GMs?
- Parameterization in GMPEs?
- Prediction of extreme ground motions?
- Seismology-geology-hydrology coupled hazards
- Design of dams / embankments / retaining walls ?

