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Assessment of bridges for high-speed trains 

Static bridge assessment not sufficient 

Resonance effects 

Exceedance of acceleration limits 
ü  Instability of ballast 

ü  Train derailment 
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Resonance of the bridge 

Bridge resonance at critical speeds 
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     Critical speeds of first order 
ü     Rhythmic repetition of moving forces with constant distance d 
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fn ….. n-th natural bridge frequency 

L
z

dd

x

     Critical speeds of third order 
ü     Sway forces of the train induced by track irregularities and wheel hunting moments 
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ü  Modeling of bridge-train interaction 

ü  Identification and modeling of uncertainties 

ü  Limit state based on maximum acceleration response 

ü  Case study object 

Outline 
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Mechanical modeling - substructure technique  
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Modal decomposition 

Equations of motion in nodal coordinates 

Bridge subsystem: 3D finite element model 
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vehicle index: j

wheel index: i

Passanger stage: P

Bogie stage: T

Wheel stage / axles: W
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Primary suspension system
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ü  Train composed of independent vehicles 

ü  Vehicle composed of rigid bodies,  

linear springs and dashpots 

ü  Passenger stage: 5 DOF 

ü  Bogie stage: 5 DOF 

ü  Wheel axle: 3 DOF 

ü  Longitudinal movement neglected 

Mechanical modeling - substructure technique  

Train subsystem 
composed of Nv vehicles 
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Vertical interaction: Corresponding assumption 
ü  Displacements of wheels and rails are equal 

ü  Contact forces are equal 

 

Horizontal interaction: Kalker creep theory 
ü  No flange contact 
ü  Cylindrical wheels and rails 
ü  No moment due to yawing movement 
ü  Forces in the center of gravity 
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Mechanical modeling - substructure technique  
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ü  Modeling of bridge-train interaction 

ü  Identification and modeling of uncertainties 

ü  Limit state based on maximum acceleration response 

ü  Case study object 

Outline 
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Load model Structural model 

ü  Operating trains 
ü  Vehicle parameters 
ü  Speed 
ü  Rail irregularities 

ü  Damping 
ü  Material parameters 
ü  Construction 
ü  Ballast (model, stiffness) 

Environmental impact 

ü  Temperature 
ü  Humidity 
ü  Sediments 
ü  Deterioration 

Uncertainties in the model  
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Power spectral density functions 
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Rail irregularities 

Three modes of random rail irregularities 

Vertical direction 
ü  Vertical settlement of rails and sleepers (z1) 

ü  Tilting of rails and sleepers (z2) 

Horizontal direction 
ü  Misalignment of rails and sleepers (y) 

Profile functions: stochastic superposition of J harmonic functions (Claus & Schiehlen 1998) 

Random variables (uniformly distributed) 
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ü  High influence on maximum response in resonance state 
ü  Various sources of energy dissipation 
ü  Modally added viscous damping: 

ü  Modeling as random truncated log-normally distributed variable 
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Environmental impact 
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Gonzales et al. (2013) 

Environmental temperature and natural frequencies of a ballasted railway bridge 
(Sweden) 
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Frequency shift not directly  
related to surrounding  
temperature but to the  
frost depth of ballast and subsoil 
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Temperature data

Normal dist.
Extrem value dist.
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Model to capture environmental impact 

Temperature data: Munich airport Jan. 1992 – Jan 2012 

Histogram and fit of distribution  Cumulative frequency 

Daily average 
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     Histogram T|Tg < -1°C

Unfrozen state (variable T0) 
ü  Unmodified ballast stiffness 

ü  Temperature above ground  
 
Tg ≥ −1°C  
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 Histogram T|Tg < -10°C     

1 Fully frozen state (variable T1) 
ü  Ballast has stiffness of ice 

ü  Temperature above ground  
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Model to capture environmental impact 

Stochastic model for freezing behavior of ballast and soil 
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Model to capture environmental impact 

Stochastic model for freezing behavior of ballast and soil 
based on temperature data from Munich airport Jan. 1992 – Jan 2012 
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ü  Modeling of bridge-train interaction 

ü  Identification and modeling of uncertainties 

ü  Limit state based on maximum acceleration response 

ü  Case study object 

Outline 
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Assumption: Limit state related to bridge acceleration (ballast instability, derailment)  

       Limit state function: 

 
 

Ballast instability: 
 

Derailment: 

Failure definition 

   
g(X) = az,bt/ct

(rel) −max( w(X,v < v0 ))

 
az,bt

(rel) = 0.7g
 
az,bt

(code) = 0.35g
include safety factor of 2 
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az,ct

(rel) = 1.0g
 
az,ct

(code) = 0.50g

Probabilities of failure according to Eurocode 0 

ü  Serviceability limit state (SLS):  pf = 10-3 

ü  Fatigue limit state (FLS):           pf = 10-4 

ü  Ultimate limit state (ULS):         pf = 10-6  

Probability of failure 

 pf = P(failure) = P(Z < 0)  Z = g(X1,X2,...,Xn)
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ü  Modeling of bridge-train interaction 

ü  Identification and modeling of uncertainties 

ü  Limit state based on maximum acceleration response 

ü  Case study object 

Outline 
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Case study problem 
Reliability analysis of a single-span ballasted steel bridge crossed by Railjet train 
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Case study problem 
Uncertainties of structural model 
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Case study problem 
Excitation uncertainties (train and rail irregularities) 
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Case study problem 
Environmental impact on natural frequencies 
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Case study problem 
Response scatter due to uncertainties: Rail irregularities 

good quality rails low quality rails 
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Case study problem 
Reliability assessment: Eurocode 1 based approach 
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(code) = 58.6m / s, vmax,ct
(code) = 64.1m / s

  Single force load model 
  Conservative damping 

ü  Additional damping admitted for BVI 
  Min. & max. bridge mass 
  Lower & upper stiffness estimate 

  Max. travel speed + 20% 
  Acceleration limits with safety factor 2 

ü  Instability of ballast az
(b) = 0.7g/2 = 0.35g 

ü  Derailment              az
(b) = 1.0g/2 = 0.50g 



26.06.16 

13 

Reliability assessment of high-speed railway bridges 
Christoph Adam©  

0

2

4

6

8

10

12

14

1 2000 4000 6000 8000 1 104

simulation ID

m
ax

 |
 u

z 
| 

[m
/s

2 ]
..

1 2000 4000 6000 8000 1 104

v0=58.6m/s (10.0≤v≤58.6m/s)
v0=75.0m/s (10≤v≤75.0m/s)
v0=100.0m/s (10≤v≤100.0m/s)

simulation IDcum. prob.

    
Page 25 

Case study problem 
Reliability assessment: Stochastic approach 
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Case study problem 
Reliability assessment: Stochastic approach 
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Case study problem 
Reliability assessment: Code based vs. stochastic approach 
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Summary 

 

ü  Reliability assessment of bridges for high-speed trains with probabilistic approach 

ü  Limit state based on maximum acceleration response 

ü  Challenges 

§  Sufficiently sophisticated and computational efficient mechanical model 

§  Computational efficient simulation methods 

§  Identification of random variables and their distributions 

ü  In the considered example Eurocode based assessment (over-)conservative 
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Thank you very much  
for your attention! 
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