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Lecture 33: Legendre Polynomials and Spherical Harmonics

1 Laplacian in Spherical Coordinates

The Laplacian in spherical coordinates is
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This can be separated by writing u = R(r)0(0)®(¢), so that,
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1.1 ¢ dependence

First, we separate out the ¢ dependence with a separation constant m,
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which is a Sturm-Liouville equation with 0 < ¢ < 27 boundary conditions ®(0) = ®(27) and

®’(0) = ®'(27) . The eigenfunctions and eigenvalues are

() = €™, m=...,—3,-2,-1,0,1,2,3,...

Now the ¢ dependence in the Laplacian has been replaced by m,
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1.2 0 dependence

Next we separate out the 6 dependence with a separation constant [(I + 1),
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This can be simplified by changing variables z = cos 6. In fact, we get a Sturm-Liouville equation,
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with boundary conditions y(1) =1 and y(—1) = £1.

Now all the angular 6 and ¢ dependence in the Laplacian has been replaced by [,
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2 Legendre Equation

When m = 0, the equation for 6 dependence, Eq. (7), becomes the Legendre equation,
[(1=a®)y) + 1+ 1)y =0, (9)

This equation has two series solutions (even and odd) with recursion relation

n(n+1) —1(1+1)]
(n+1)(n+2)

This series solution converges for —1 < x < 1, and diverges at * = £1.
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The eigenfunctions of the Legendre equation that are well behaved at = +1 exist for special
values of [ that truncate the series solution to a finite polynomial. From the recursion relation we
see that integer values of [ > 0 will truncate the expansion with a;19 = 0. Thus the eigenvalues
are [ =0,1,2,..., and the eigenfunctions are the Legendre polynomials, P;(x). By convention, the
Legendre polynomials are normalized so that Pj(1) = 1. Since Legendre polynomials are even or
odd, this implies P;(—1) = (—1).

2.1 Rodrigues’ formula

Although the recursion relation Eq. (10) can be used to find the Legendre polynomials, a more
useful expression is Rodrigues’ formula
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2.2 Normalization of Legendre Polynomials

From Sturm-Liouville theory, we know that Legendre polynomials are orthogonal. Using Rodrigues’
formula and the convention P;(1) = 1 we can determine that the orthogonality and normalization
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2.3 Generating function for Legendre Polynomials

Another representation of Legendre polynomials is to use a generating function G(z,h) such that
P, (z) are the coefficents for a power series expansion of G(z,h) in the dummy variable h. This

generating function is

G(z,h) = (13)
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This generating function representation is very useful in physmal applications when x is identified

as the cosine of the angle between two points, and h < 1 is the ratio of their distances. Then
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This expression can be used for writing the electrostatic potential of a point charge in polar coor-

dinates.

3 Associated Legendre Equtation

For m # 0, the associated Legendre equation, Eq. (7) has eigenvalues | = |m|,|m|+ 1, |m|+2,....

The associated Legendre polynomials are related to the Legendre polynomials by

Pi(a) = (1 — a2z gy, (15)
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Their orthogonality and normalization is
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which reduces to the normalization for Legendre polynomials when m = 0.

4 Spherical harmonics

The spherical harmonics for m > 0 are
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with [ = 0,1,2,... and integer m in the range —I < m < [. The coefficents have been chosen to
make the spherical harmonics orthonormal,
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