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Abstract 

This paper reviews recent advances and presents new findings towards an attempt to integrate FEA 

with solid modeling. The objective is to handle any sufficiently smooth mechanical component by 

control lines of its boundary only, for both purposes: geometry description and structural/multi-physics 

analysis. First, it is shown that bivariate Coons interpolation is capable of developing two-dimensional 

large finite macroelements without any internal nodes, as well as patches of large three-dimensional 

boundary elements. Second, it is reminded that trivariate Coons interpolation is capable of generating 

three-dimensional finite element meshes within boxlike regions, for which a new smoothening 

procedure is here proposed for the first time. Finally, it is shown that trivariate Coons interpolation is 

also capable of developing large three-dimensional finite macroelements with the nodal points over the 

boundary only and –in many cases– along the twelve edges of the solid region (considered as a 

curvilinear paralleloidal), which can properly adapted to each mechanical component. Aspects of 

scientific visualization and differences from NURBS representation are also discussed.  

 

1. Introduction 

Integration between different communities seems to be a strategic aim nowadays. As 

an example, geometric modeling (CAD) and computer-aided analysis (CAE) are 

usually individually powerful, but they do not always work well together. In addition 

to that, integration between geometric design and scientific visualization or between 

CAE and visualization is not a trivial procedure. Within the last years, some solutions 

have been proposed by using trivariate NURBS as a unifying representation. Also, the 
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topic of different resolution requirements between the geometrical and visualization 

model in order to achieve large savings in storage and execution time, have been 

discussed [1,2].  

A vehicle to achieve CAD/CAE integration is to apply a common basis function 

for geometric modeling and representation of the multi-physics field (temperature, 

displacement, etc.). Casale [3] and coworkers [4,5] proposed trimmed surface patches 

as boundary elements. At the same time, Kanarachos and Deriziotis [6] were 

influenced by the ideas of Gordon and Hall [57] and developed a Coons-based 

boundary-type method that used cubic B-splines interpolation and was applied to 

solve 2-D boundary-value potential problems. In that primary work, it was found that 

the proposed method leads to better results than FEM and BEM for both static and 

dynamic analysis. Previously, a Coons-patch method including boundary derivatives 

had been proposed to differential equations with predominant lower-order derivatives 

[7]. Similar ideas were also applied to plate bending problems [8-10]. Also, the author 

of this paper has later contributed to the promotion and further extension of these 

ideas [20-33].  

Moreover, Kagan and Fisher [11] developed a B-spline based finite element 

scheme. Renken and Subbarayan [12] used NURBS to represent the shape of droplets 

by integrating surface energy coefficients over appropriate surfaces. Henshaw [13] 

introduced an alternative method for addressing the problem of CAD and FEM 

integration. The method deals with the problem of generating structured meshes over 

CAD models defined by a large set of trimmed NURBS patches. It is addressed by a 

newly developed technique for fast projection of points onto a patched CAD model.   

Upon finishing the writing of this paper, it was discovered that even the latest 

issues of CAD/CAE journals include several contributions towards the above-
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mentioned integration. Clark and Anderson [14,15] propose a penalty boundary 

method for performing finite element analysis using a regular overlapping mesh that 

does not have to coincide with the geometric boundaries. Previously, Charlesworth et 

al. [16] have proposed a ‘domain decomposition’ technique aiming to relax or remove 

the restriction on the mesh to conform globally to the domain geometry. In addition, 

Natekar et al. [17] proposed an NURBS-based analysis methodology that is 

procedurally analogous to the Constructive Solid Geometry (CSG) integrating design 

and analysis, and thereby enabling efficient optimal design. This method was applied 

to two-dimensional problems only.  

According to Natekar et al. [17], bivariate NURBS representation is applied to 

derive shape functions   ,IN  that are based on the set of I-th control points 

defining the system geometry. The same shape functions are also used to approximate 

the dispacement field within the domain. It is remarkable that at any point within the 

domain the sum of these shape functions equals to the unity but the value of   ,IN  

at the I-th control point is not unity to that node. Therefore, “even if the control point 

were to be coincident with the location of the boundary condition, direct application 

of the boundary condition is not possible since the specified field value will be 

distributed to control points influencing the point under consideration” [17].  

On the contrary, since 1982 the CAD/CAE group at NTUA has adopted a 

different philosophy using the Coons-interpolation [6,43] instead of NURBS. Of 

course, there is no doubt that NURBS is superior to Coons’ interpolation formula [18] 

as the first is capable of representing sculptured surfaces and offers local control 

while the second is a rather global interpolation, probably excepting the case of using 

bubble functions [19]. Nevertheless, Coons-interpolation can easily deal with nodes 

along the boundary of the domain and the obtained global shape functions equal to 
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unity at them [6,27-29], a fact that makes an essential difference with similar 

NURBS-based techniques such as that in the above paragraph mentioned within 

quotation marks [17]. As a result, the proposed Coons-patch methodology is directly 

applicable using all standard finite element procedures in both static and dynamics 

regimes, without being necessary to use penalty methods [14,15] and related 

Lagrange-multipliers techniques [17]. Clearly, in the proposed methodology no 

internal nodes are required, even in the sense of meshless [58] and mesh-free [59] 

techniques.  

In more details, it has been recently shown that the bivariate Coons interpolation 

offers the possibility to develop 2-D large finite elements, called “Coons-patch 

macroelements” that are characterized by degrees of freedom appearing along the 

boundary of the component only, and not within its area. Concretely, bivariate 

formula has been used to develop finite macroelements for plane problems [20-29], 

both static [20,21,24,27-29] and dynamic [20,22-27]. A careful study of this literature 

reveals that these macroelements are very accurate and in many cases of higher 

quality than conventional finite elements and boundary elements. Also, bivariate 

interpolation has been used to develop large boundary elements occupying extended 

curvilinear patches in order to solve three-dimensional elastic structures [30,31], 

acoustic enclosures [32] and sound radiation problems [33].  

It is remarkable that prior to that, bivariate Coons interpolation had been used to 

generate two-dimensional finite element meshes for plane-stress, plane-strain and 

plate bending problems [34-37]. The interested reader may also consult Reference 

[38], where details are provided for mesh generation in both finite elements (FEM) 

and boundary element (BEM) applications.  
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Moreover, trivariate Coons interpolation is capable of describing any boxlike 

solid component on the basis of its boundary [18, p.41]. Thirty years ago, this formula 

was used by Cook [39] to develop a generator for three-dimensional computational 

mesh, useful for further FEM analysis.  

Apart from the above review aspects, there are two novel features of this paper. 

Briefly, it is shown that the abovementioned trivariate Coons-interpolation offers the 

two following alternative possibilities in the integration between CAE and FEM:  

 It achieves to generate smooth meshes within boxlike structures.  

 It achieves to avoid the mesh generation and, instead of that, it can work in 

conjunction with only the twelve edges of the boxlike structure. As it was 

earlier mentioned, the latter has been achieved for the case of large three-

dimensional boundary elements [30-33], but here, it will be extended also 

to three-dimensional large finite macroelements. As it was previously 

mentioned, this methodology appears two major advantages. First, it 

operates directly on the geometric modeling representation and, second, it 

preserves the FEM formulation in both static and dynamic analyses. 

Especially, in dynamic analysis the BEM has several shortcomings [40-42] 

and therefore an alternative solution is needed.  

Following to the above introduction, a summary of the overall applicability of 

Coons’ interpolation is schematically shown in Figure 1.  

Concerning boxlike structures, we can assume that they consist of a curvilinear 

paralleloidal made of six surfaces, eight corners and twelve edges. Therefore, the 

above trivariate Coons approach offers to designers a powerful tool in order to reduce 

data preparation and shape optimization costs, as they will have to handle with only a 
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limited number of parameters, that is the control points along the twelve sides of the 

mechanical component. Obviously, for complicated components it will be necessary 

to use control points above the whole surface or to divide the model into a small 

number of large-size boxlike regions.  

Since the term “Coons-patch” clearly describes curvilinear surfaces, in the 

sequence, the term “superbrick” will be introduced to describe boxlike volumes. 

Again, superbrick generally refers to a curvilinear paralleloidal made of six surfaces, 

eight corners and twelve edges. Following to above, within this article the term 

“superbrick” will refer to either CAD (geometry representation) or CAE (trivariate 

attribute model) activities.  

This paper is structured as follows. In section 2, bivariate and trivariate Coons-

formulas are presented in terms of lofting projections. In section 3, three alternative 

formulations of trivariate Coons interpolation are presented for the first time. In 

section 4, a smoothening procedure is proposed for both two- and three-dimensional 

regions and its applications field is discussed. In section 5, details are given for the 

univariate interpolation of geometry and variable along each edge when cubic B-

splines are used. In section 6, the development of a Coons-patch macroelement is 

described. In section 7, the development of large 3-D boundary elements is given for 

an elastic structure. In section 8, the basic idea of developing trivariate Coons 

macroelements is given for the first time. In section 9, the proposed methodologies 

are compared with conventional ones on the basis of number of nodes used. In section 

10, a numerical example is given for the dynamic (acoustic) analysis of a paralleloidal 

cavity, where the proposed methods are numerically compared with conventional 

ones. In section 11, a critical comparison between the proposed trivariate Coons 

interpolation from one side and trivariate NURBS representation as well as other 
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methodologies from the other side is attempted. Finally, section 12 summarizes the 

conclusions of this paper.  

 

2. Coons’ interpolation formula 

2.1 Bivariate formula: 2-D patch 

Generally, two cases of two-dimensional patches can be distinguished: 

 Quadrilateral patches 

 Triangular patches 

2.1.1 Quadrilateral patch 

A four-sided region ABCD, as shown in Figure 2(a), can easily be mapped to a unit 

square in the rs parametric domain shown in Figure 2(b) by the method of Coons’ 

patch [18]. Following [43], for purposes of generalization the relevant theory is given 

below using suitable projections.  

First, the concept of the lofting projector ‘P’ is introduced. This projector is 

any idempotent linear operator, which maps a true surface to an approximate surface, 

subject to certain interpolatory constraints.  

Let us assume that the Cartesian co-ordinates    Tzyxsr ,,, x  in A, with r 

and s denoting normalised co-ordinates, are known at the boundaries (r=0,1; s=0,1) of 

a curvilinear patch of area A. Let us also define the well known cardinal blending 

functions: 

        ssEssErrErrE  1010 ,1;,1    (1) 
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Now, the following unidirectional, or lofting, operators  xrP  and  xsP  may be 

constructed (summation over repeated indices is understood): 

     
     .,

,,

sEsrP

rEsrP

ijs

iir




xx

xx
     (2) 

The above lofting operators form the basis for the definition of more complex 

operators with blending interpolation properties in more than one direction. So, the 

two-dimensional lofting operator  

         sErEsrPPP jijisrrs  ,xxx    (3) 

can be constructed with the aid of the unidirectional operators  xrP  and  xsP .  

Finally, the co-ordinates of any point in the interior of the curvilinear patch is 

approximated as:  

    xx rssr PPPsr ,     (4) 

or, using conventional notation, as 

             
              1,11,010,110,011

1,0,1,1,01,

xxxx

xxxxx

srsrsrsr

rsrssrsrsr




  (5) 

2.1.2 Triangular patch 

A three-sided region can be similarly divided into a mesh of triangular elements by 

the use of a trilinearly blended interpolant, as described by Barnhill and coworkers 

[44-46]. A simple formulation may be also found in recent CAD textbooks such as 

[47,p.244]. The three-sided region shown in Figure 3(a) can be mapped to the 

parametric domain shown in Figure 3(b) by 
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             

     000

1

1

11

1

11

1

12

1
,,

vhugwf

u

ugv

u

ufw

w

wfu

w

whv

v

vhw

v

vgu
wvuP



























  (6) 

The parametric domain for Equation (6) is expressed as 

10,10,101  wvuwvu   (7) 

The parametric domain in this case can be sliced by incrementing u,v values between 

0 and 1 and evaluating the corresponding w values from each set of u and v.  

 

2.2 Trivariate formula: 3-D boxlike volume (superbrick) 

A boxlike region ABCDEFGH, shown in Figure 4(a), can easily be mapped to a unit 

cube in the rts parametric domain (0  r,s,t  1) shown in Figure 4(b). The relevant 

formula may be found in [18,p.41] and, as previously mentioned, is has been applied 

by Cook [39] for mesh generation purposes. For more details the interested reader 

may also consult standard textbooks [38,48]. The only difference with a quadrilateral 

patch is that here six equations associated to the boundary surfaces are blended, 

instead of four equations associated to the boundary edges of the patch. Below, the 

same formula is written below in terms of projections.  

Now, besides the above-mentioned  xrP ,  xsP  and  xrsP  operators, one-, 

two- and three-dimensional operators are further introduced as follows:  

     
         
         
           tEsErEtsrPPPP

tErEtsrPPP

tEsEtsrPPP

tEtsrP

kjikjitsrrst

kikitrrt

kjkjtsst

kkt







,,

,,

,,

,,

xxx

xxx

xxx

xx

   (8) 

Again, summation over repeated indices is understood.  
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Having introduced the one-, two- and three-dimensional operators, then the 

following formula describes the interpolation of the co-ordinate vector  tsr ,,x : 

      
    
   .1

1

1,,

3

2

1

x

x

xx

rst

ststrs

tsr

P

PPP

PPPtsr







    (9) 

3. Equivalent expressions of trivariate Coons’ formula 

3.1 General remarks 

Equation (9) is generally applicable but it can be further simplified and be written in 

more manageable expressions. So, in the case of a generalised curvilinear paralleloid 

(boxlike region), the geometry includes:  

(a) six surfaces, S 

(b) twelve edges, E, and 

(c) eight corners, C 

Obviously, equation (9) includes all three quantities: Surfaces (S), edges (E) and 

corners (C). For convenience, the projections related to the S, E and C are denoted as 

follows: 

    
    
   .xx

xx

xx

rst

trstrs

tsr

PC

PPPE

PPPS





    (10) 

However, in the case of adequately smooth and regular surfaces, the edges E can 

sufficiently describe S. In fact, by applying eq.(4) on the six surfaces of the 

superbrick, one can easily derive the following relationship:  

     xxx ECS 23       (11) 
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Then, by substituting equations (10,11) into equation (9), one can finally derive three 

equivalent expressions of the three-dimensional Coons’ interpolation formula, as 

follows: 

       xxxx CEStsr ,,     (12.a) 

     xxx CStsr 2121,,      (12.b) 

     xxx CEtsr 2,,       (12.c) 

3.2 Comments on equivalent expressions [equations (12)] 

Obviously, equation 12(a) is the most and general expression because it includes any 

type of the surrounding surfaces S. Moreover, Equation 12(b) is obtained by 

eliminating the edges (E) and it is based on the surface S, the last being corrected by 

the co-ordinates of the corners C.  Finally, equation 12(c) includes only the twelve 

edges E and eight corners C, or in other words, the absolutely necessary data for the 

construction of a Coons’ block made of Coons’ surfaces.  

In conclusion, in cases where the superbrick is sufficiently regular, equation 

12(c) is the most advantageous and will be therefore applied thoroughly in this paper. 

Using conventional notation, equation 12(c) becomes: 

          
        
     

     
        
     

          
         
        
       1,1,10,1,111

1,0,110,0,111

1,1,010,1,011

1,0,0110,0,01112

1,,10,,11

1,,010,,011

,1,011,1,

,1,10,1,1

,0,0111,0,1

,0,110,0,11,,

xx

xx

xx

xx

xx

xx

xx

xx

xx

xxx

tsrtsr

tsrtsr

tsrtsr

tsrtsr

strstr

strstr

tsrrts

tsrrts

tsrrts

tsrrtstsr















 (13) 
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4. Mesh generation 

Although both bivariate and trivariate Coons interpolation formulas (equations (5) and 

(13)) have been used in the past for mesh generation purposes [38], the quality of the 

produced meshes is usually very poor and requires a smoothening. This paper 

presents a simple a-posteriori technique to smoothen the initial mesh for both two- 

and three-dimensional cases.  

4.1 Two-dimensional curvilinear surface patch 

The necessary steps are as follows: 

(1) A logical square ABCD of dimensions 11, called reference square, is considered 

(Figure 2b). Each of its four sides corresponds to a part of the real boundary of 

the curvilinear patch. Normalised boundary co-ordinates (r,s) are calculated.  

(2) The co-ordinates of internal points are determined by applying equation (5).  

(3) Node numbers and element connectivity are generated.  

(4) The co-ordinates of internal points are updated applying the following equation: 

 

8

8

1

 j

jold

new

x

x      (14) 

for a few times. In equation (14), the co-ordinates of each internal point are updated 

on the basis of the eight surrounding nodes (north, south, east, west and corners). It is 

also possible to change the denominator in eq.(14) from 8 to 4 by excluding the 

corners. Alternatively, different weighting factors might be used in both cases. The 

latter resembles to a technique well-known in the common praxis of the finite-

difference method during the solution of Laplace equation. In this sense, the so-

produced mesh resembles to the result obtained using an elliptic mesh generation.  
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 As an example, for the component shown in Figure 5, the direct application of 

eq.(5) leads to the mesh shown in Figure 6(a) while after only three iterations using 

eq.(14) the mesh improves to that shown in Figure 6(b).  

 

4.2 Three-dimensional superbrick 

For three-dimensional meshes where a logical cube ABCDEFGH of dimensions 

111 is considered (Figure 4b), instead of a logical square, we proceed as follows: 

(1) For each surface of the cube the generated mesh nodes are determined as 

explained previously. 

(2) Mesh nodes inside the cube are determined by the three-dimensional version of 

the Coons’ formula (eq.13) 

(3) Co-ordinates of internal points are updated using the following equation:  

 

26

8

1

 j

jold

new

x

x     (15) 

for a few times. In equation (15), the co-ordinates of each internal point are updated 

on the basis of the twenty-six closest nodes (front, back, up, down and corners). 

As previously, the finally produced mesh is regular and lines (with r,s,t=const) 

tend to become perpendicular each other. Here, it is also possible to exclude the 

corner nodes and reduce the denominator from 26 to 6. In this case, the proposed 

procedure resembles to a relaxation method for the solution of Laplace equation 

within the solid patch, under Dirichlet boundary conditions. The latter conditions are 

merely the prescribed co-ordinates. This fact classifies the proposed mesh generator in 

the category of elliptic mesh generators.  
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 As a test case, we choose the superbrick shown in Figure 7; this is more 

complicated than a usual curved paralleloid. Clearly, it can be noticed that the edges 

DA and HE are not simple but each of them consists of three line segments. The 

rough and smoothened meshes using eq.(15) are shown in Figures 8(a) and 8(b), 

respectively.   

 

4.3 Field of applications 

The proposed smoothening algorithms are useful for the following cases: 

I) The combination of equations (5,14) is useful for mesh generation of (a) plates 

and shells as well as (b) plane-stress or plane-strain structures, when the FEM 

is applied. This is also useful for meshing the boundaries of the solid structure 

for BEM analysis using conventional elements.  

II) The combination of equations (13,15) is useful for the FEM as well as the 

FDM (finite difference) or FVM (finite volume) analysis within boxlike 

regions.  

5. Univariate interpolation 

In all following cases, either two- or three-dimensional, the key-point is to properly 

interpolate the unknown quantity (potential or displacement) along the lines (sides or 

edges: AB, BC, etc.) of the boundary. This can be achieved using any reasonable set 

of interpolation functions such as Lagrange polynomials, piecewise linear [28,29], 

piecewise quadratic, cubic B-splines [6,29], et cetera.  

In general, having prescribed q  (different) nodes along a side (or edge), for 

example  iu  , i=1,2,…, q , an appropriate interpolating formula for the function u(ξ) 
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is sought. Considering that q may be allowed to be a large number, a Lagrangian 

interpolation polynomial would tend to produce undesirable oscillations between two 

arbitrary abscissae i  and 1i , as it may possess as many as  1q  maxima and 

minima over its entire interval of variation. For this reason, the use of splines is 

envisaged. So, given q  degrees of freedom on the boundary of the patch at 

q ,...,, 21 , a spline function  B  of degree m is a function having the two 

following properties [49]: 

(1) In each interval  1, ii  , 1,...,2,1  qi ,  B  is given by a polynomial of degree 

m or less. 

(2)  B  and its derivatives of order 1, 2, …, m-1 are continuous everywhere.  

 A commonly used spline function is the truncated power function 
m

i  , for 

any variable i   and for any positive integer m. This function is defined by: 

0,0

;0,)(





i

m

i

i
m

i

m

i

for

for




             (16) 

It is easily seen that the function  B  has a unique representation of the form 

[56]: 











 

1

1

1

1

1
1

2
210 )()(

q

i

m

ii

q

i

m

ii
m

m aPabbbbB  
(17) 

with  P  denoting a polynomial of degree (m-1) and ia  properly chosen constants. 

The most common case is that the spline of degree m = 3 (order m+1=4), that is of 

cubic B-splines. If now  iB  denote cardinal splines of degree m, then the function 

 u  could be written in the following form: 
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     j

q

j
j uBu  




1

     (18) 

6. Development of two-dimensional Coons-patch macroelements 

So far, relevant macroelements have been developed for potential [6,22-24,27,28] and 

elasticity problems [20,21,25,26,29], both static [20,21,24,27-29] and dynamics 

[20,22-27]. The general procedure is as follows:   

Each macro-element is considered to occupy the entire four-sided curvilinear 

patch ABCD shown in Figure 2(a).  The variable, u, along each of the four boundary 

sides AB, BC, CD and DA can now be expressed using interpolations similar to that 

of equation (18).  It should be here clarified that it is not necessary that Bj is a cubic 

B-spline but it could be any other typical basis functions such as piecewise 

polynomial and similar.  

By arranging 1q , 2q , 3q  and 4q  nodal points along the sides AB, BC, CD and DA, 

respectively, the total number of the nodal points becomes: 

44321  qqqqqe      (19) 

After the co-ordinates of the boundary nodes have been normalized, then a mapping 

between the real patch ABCD and a unit square DCBA   (Figure 2(b)) can be 

established. In virtue of equation (5), for a given couple (r,s) in the interior of 

DCBA  , the cartesian co-ordinates x(r,s)={x(r,s), y(r,s)}Τ of the corresponding 

point along the real patch ABCD, as well as the unknown variable u(r,s), can be 

approximated on the basis of its four given geometrical boundaries. 

The next step is to assume that, equation (5) does not only interpolate the 

geometry, but also the unknown the variable, u. In other words, we extend the idea of 

isoparametric elements [50] from small to large size. Then, we have to interpolate the 



17 

univariate boundary displacements  0,ru ,  su ,1 ,  1,ru  and  su ,0  in equation (5) 

using a suitable set of trial functions, as in equation (18).  

By applying equation (18) on the four sides of the patch ABCD, one obtains: 

               

               


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
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By substituting eqs.(20) into eq.(5), applicable for the variable u, it is easily found that 

the unknown variable  sru ,  inside the reference macro-element is approximated as 

follows :  

   



eq

j
jj usrNsru

1

,, ,    (21) 

Using the global shape functions jN  appearing in equation (21), which is applicable 

to degrees of freedom along the boundary only, we can write the well-known finite 

element expression for the general case of dynamic analysis [50]: 

            ttt fuKuM      (22) 

In equation (22), [M] denotes the mass matrix, [K] the stiffness matrix, {f} the 

imposed external forces (or “fluxes”) and {u} the resulting displacements (or 

potentials). Both [M] and [K] are symmetric and fully occupied. In dynamic problems 

both [M] and [K] matrices participate (plus damping) while in static problems only 

[K]. For more details, the interested reader may consult a recent publication [29]. 

Typical illustrations of cardinal global shape functions may also found in [27,30]. 

Finally, it is clarified that in eq.(22), the variable t denotes the time and this symbol is 

irrelevant to the third normalized coordinate met in equations (8)-(13).  
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7. Generation of large three-dimensional boundary elements 

This methodology is closely related to the work of Casale [3-5] but it was 

independently developed in early 1990s. However, there are some differences. Casale 

[3-5] uses virtual nodes and combines his method with Lagrange interpolation 

functions. On the contrary, we use nodal variables distributed along the boundaries of 

the patches; no unknown degree of freedom is considered within each patch. 

Moreover, instead of Lagrange polynomials [3-5], that are prone to numerical 

oscillations in case of many nodes, we use cubic B-splines that lead to a smooth 

interpolation of the boundary data (displacements/potentials and tractions/fluxes).   

In both methods, the boundary of the domain is divided into a small number of 

large trimmed patches. For boxlike regions (superbricks), the number of patches may 

be for example equal to six but there is no restriction for that. In virtue of equation 

(21), the unknown variable, u, along each patch can be expressed in terms of global 

shape functions and degrees of freedom arranged along the four (or three) sides of the 

relevant patch. Besides, the same interpolation holds for the primary variable 

(potential or displacement, u) as well as its derivative (flux or traction, p).   

In the case of elasticity problems, the co-ordinate vector within the l-th patch, 

possessing ql nodes, is interpolated on the basis of the boundaries of the patch as 

follows: 

    xNxx 


j
i

q

j
j

l

srNsr
1

,,      (23) 

Since each patch is considered as an isoparametric element it holds that: 
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By substituting Eq. (24) in the usual integral equation (see for example [51]) and 

summarizing over the Np patches in which the boundary is divided, one obtains: 

 
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In Equation (25) the infinitesimal area dΓ is given by: 

  srsrGd dd,         (26) 

where the Jacobian is calculated as: 
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Now, for the purposes of the numerical integration only, the patch is divided into 

sr NN   cells where a second set of normalized co-ordinates  1,1  sr  is 

introduced [30]. Therefore, the term   dsdrsrG ,  in Eq. (26) is replaced by 

    sdrdsrGsrG  ,, , which requires a trivial (e.g., 22 , 33 , 44 ) Gaussian 

quadrature. A selective integration scheme has been recently developed.   

Therefore, the final algebraic system obtains the form: 

 
 


Np

ip

Np

ip

ipipipip

1 1

ˆ PGUHUC                     (28) 
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where U  is the displacement vector of all nodes on the boundary of the structure 

(along the patch edges), ipU  and ipP  are displacement and traction vectors referring 

to the ip-th patch as well as ipH  and ipG  are the nonsymmetric influence matrices.  

By properly assembling the submatrices in eq.(28) we obtain: 

PGUH        (29) 

If q is the total number of nodes along all edges of the patches on the boundary of the 

structure, the dimensions of the vectors and matrices in eq.(29) are as follows: 

U  : displacement vector ( 13 q ) 

P  : traction vector ( 13 q ) 

H  : total displacement –influence matrix ( qq 33  ) 

G  : total traction-influence matrix ( qq 33  ) 

The above symbol q  is larger than q ( qqq  ) with Δq depending on the number 

of sharp corners and their multiplicity in traction discontinuity [51].  

 The above static analysis described by eq.(29) can be also extended to the 

solution of dynamic problems too. Briefly, using a set of radial basis functions a mass 

matrix is constructed for the entire structure and it is combined with the static 

matrices H and G shown in eq.(29) [61,62].  

8. Development of trivariate Coons macroelements (large 3-D finite elements) 

Let us consider a three-dimensional boxlike region (superbrick) V, which is entirely 

occupied by the 3D- macroelement. Two co-ordinate systems shown in Figure 4, a 

Cartesian (x, y, z) and a body-oriented (r, s, t) with 0r,s,t1 are distinguished. Thus, 

s=0 and t=0 along the boundary edge designated 1 in Figure 4. Similarly, r=1 and s=0 
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along the boundary edge designated 2; and in this manner all twelve edges may be 

defined.  

Define         Trzryrxr 0,0,,0,0,,0,0,0,0, x  as the boundary edge functions that 

specify x, y and z along the boundary edge designated 1. In a similar manner, other 

boundary functions can be defined to specify x, y and z along the rest eleven boundary 

edges, as summarized below: 

Boundary edge 

1=AB  0,0  ts            TAB rzryrxr 0,0,,0,0,,0,0,0,0,  xx   (30a) 

2=BC  0,1  sr            TBC tztytxt ,0,1,,0,1,,0,1,0,1  xx   (30b) 

3=CD  1,0  ts            TCD rzryrxr 1,0,,1,0,,1,0,1,0,  xx   (30c) 

4=DA  0,0  sr            TDA tztytxt ,0,0,,0,0,,0,0,0,0  xx   (30d) 

5=BF  0,1  tr            TBF szsysxs 0,,1,0,,1,0,,10,,1  xx   (30e) 

6=CG  1,1  tr            TCG szsysxs 1,,1,1,,1,1,,11,,1  xx   (30f) 

7=DH  1,0  tr            TDH szsysxs 1,,0,1,,0,1,,01,,0  xx   (30g) 

8=AE  0,0  tr            TAE szsysxs 0,,0,0,,0,0,,00,,0  xx   (30h) 

9=EF  0,1  ts            TEF rzryrxr 0,1,,0,1,,0,1,0,1,  xx   (30i) 

10=FG  1,1  sr            TFG tztytxt ,1,1,,1,1,,1,1,1,1  xx   (30j) 

11=GH  1,1  ts            TGH rzryrxr 1,1,,1,1,,1,1,1,1,  xx  (30k) 

12=HE  1,0  sr            THE tztytxt ,1,0,,1,0,,1,0,1,0  xx   (30l) 
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Again, the keypoint is to assume that eq.(13) holds for both the geometry 

representation, x, and the unknown variable, u, within the volume V. In other words, 

the superbrick is here considered as a large isoparametric element.  

By properly approximating the variable u along the twelve edges (using, for 

example, splines, piecewise linear interpolation, Lagrange polynomials, etc), in virtue 

of equation (18) the following set is derived: 
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   (31) 

In eq.(31), qr, qs and qt denote the number of nodes along the twelve edges being 

parallel to the r, s and t local axes, respectively. Obviously, it is not necessary to have 

the same number of nodes even along parallel edges to either of r, s and t.  

Then, by substituting equations (31) into equation (13) one can obtain the global 

functions: 

         k

q

k
k utsrztsrytsrxNzyxu  

1

,,,,,,,,,,      (32)  

In equations (32),  zyxNk ,,  denotes the global three-dimensional cardinal shape 

functions and ku  the nodal degrees of freedom appearing only at the twelve boundary 

edges of the 3D-macroelement. Obviously, by taking into consideration that every 

number of the set (q1, q2,…, q12) includes both of this ends, the total number of nodal 

points of the macroelement is given by 
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16
12

1


i

iqq      (33) 

Using the global shape functions appearing in equation (32), one can derive a similar 

matrix equation of motion with that of equation (22). As previously, mass and 

stiffness matrices are symmetric and fully occupied. 

9. Comparison between several methods 

9.1 Two-dimensional problem 

Let us assume that the patch is divided into n1 and n2 segments per direction. 

Therefore, by reserving the same boundary nodes, the total number of them are as 

follows: 

FEM solution  :   11 21  nn  

BEM solution  :  212 nn   

Bivariate-Coons-patch:  212 nn   

Obviously, the proposed two-dimensional Coons-patch macroelement has the same 

number of nodes with the conventional BEM solution. However, its advantage is that 

(i) it has symmetric mass and stiffness matrices, and (ii) in dynamic problems it 

behaves much well than BEM as it has been clearly shown in [6,27], among others. 

Moreover, as it essentially reserves the FEM formulation, it can be easily linked into 

any FEM code and couple with conventional finite elements.  

9.2 Three-dimensional problem 

Let us assume that the superbrick is divided into n1, n2 and n3 segments per direction. 

Therefore, the corresponding total number of nodes is as follows: 

FEM solution   :    111 321  nnn  
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BEM solution   :  12 133221  nnnnnn  

BEM trimmed-patch  :  14 321  nnn  

Trivariate-Coons-superbrick :  12 133221  nnnnnn  

Again, the proposed trivariate-Coons-superbrick macroelement has the same number 

with the BEM trimmed-patch but it has all the advantages mentioned previously for 

the 2-D case.  

10. Numerical example 

A three-dimensional problem will be studied using all conventional methods as well 

as BEM-trimmed-patch and trivariate-Coons macroelements. The problem concerns a 

boxlike acoustical cavity of dimensions 2.51.11.0m and sound velocity 

c=340m/sec. The acoustical cavity is defined in three ways. In all of them a uniform 

discretization is chosen using ten and five subdivisions towards the directions of long 

and short size, respectively. First, conventional FEM solution is performed using the 

mesh shown in Figure 9. Second, the inner nodes are ignored and a conventional 

BEM solution is derived. Third, only the twelve edges are discretized and the relevant 

discretization is shown in Figure 10. A comparison between the number of nodes 

used in the several models is given in Table 1. Finally, as shown in Table 2, the 

accuracy of the proposed three-dimensional Coons macroelement (superbrick) is 

superior to BEM macroelements (using conical radial basis [61]), to conventional 

boundary elements as well as to conventional finite elements. It is also noted that both 

BEM formulations were sensitive to the selection of the constant C included into the 

conical radial basis,   rCzyxf j ,,  [61]. The BEM-results in Table 2 were 

obtained using C2.91 (equals to the diagonal of the rectangular cavity) as it is 
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suggested by Banerjee et al. [61]. In this case, the equivalent “mass” deviated from 

the real one by only 0.12%. However, when the constant C was chosen equal to zero, 

the deviation in mass increased to –2.30% (lack of mass!) and the error in the first 

nonzero calculated eigenfrequency changed from –0.90% to +2.92%. Moreover, it 

was found that there are critical values of the C-constant where the BEM formulation 

degenerates so that the first nonzero eigenvalue is lost.  

11. Discussion 

In this section we will try to comment on the several methods presented here. The 

general idea of this paper was to deal with the same quantities in both CAD and CAE. 

Concerning static analysis, it would be generally sufficient to remain on the trimmed-

patch BEM solution [3-5] (perhaps updated using cubic B-splines [30-33]) but the 

boundary element techniques have shortcomings in dynamic problems [40-42]. 

Another shortcoming of the BEM is that it has some special difficulties at sharp 

corners and also it requires different numbering for geometry and traction nodes [51]. 

All these shortcomings as well as the need to be able of coupling with other 

conventional elements and preserving the FEM formulation was the motivation to 

develop the trivariate Coons-macroelements, which were presented here for the first 

time. In the future, the proposed method should be probably compared with other 

promising techniques such as finite element methods with uniform B-splines [60].  

 To close this section, it should be noted that there is a significant difference 

between the proposed trivariate Coons-macroelements and the NURBS techniques 

applied by other authors [14,15,17]. As it is reminded in the Appendix A, the 

univariate and bivariate B-spline functions do not equal to the unity at intermediate 

nodes along a segment. The same holds for interior points. For example, the reader 

could consult typical illustrations cited in the classical textbooks of Faux and Pratt 
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[55,p.179] and that of Piegl and Tiller [52, Ch.4]. As a result, the specified boundary 

conditions will be distributed to control points influencing the point under 

consideration [17]. As it was also mentioned in the introduction, this shortcoming led 

to the application of penalty [14,15] and Lagrange-multiplier [17] techniques. 

Moreover, the previous techniques [14,15,17] deal with internal points in a mesh-free 

approach. On the contrary, the proposed trivariate-Coons macroelements deal with 

nodal points directly arranged along the characteristic edges of a superbrick only and, 

therefore, it can apply the boundary conditions in the usual direct way. Nevertheless, a 

shortcoming of the proposed method might be its incapability to adapt with local 

control of the surfaces (excepting the case of using bubble functions [19]). However, 

even in case of using conventional finite elements the computational mesh usually 

violates in some degree the geometric model.  

 

12. Conclusions 

It was reminded that bivariate and trivariate Coons interpolation offer the 

mathematical background for automatic mesh generation useful for BEM and FEM 

analyses. In addition to that, simple smoothening procedures were here proposed. 

Then, it was shown that Coons interpolation offers the basis to develop large 

macroelements for both two- and three-dimensional problems. The advantage of the 

proposed trivariate Coons macroelements is that they operate directly on the solid 

modeling representation. In this way, data transfer and similar compatibility problems 

are minimized and data preparation costs are drastically reduced. On the other hand, 

shape optimization through manual or automatic procedures becomes easier because 

the analyzer has to deal with a smaller number of parameters. In this sense, on several 
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levels applied, the Coons interpolation achieves to integrate CAD and CAE 

techniques in a unique software environment useful for the engineering design.  
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APPENDIX A 

Trivariate NURBS interpolation 

Let us consider a three-dimensional rectangular space in the form of a deformed 

paralleloid (here called superbrick). A non-uniform rational B-spline (NURBS) 

volume of order 1n  in the u direction, 2n  in the v direction and 3n  in the w direction, 

is a three-dimensional trivariate vector-valued piecewise rational function of the form 

[53,54]:  
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The   3,,  ijkijkijkijk zyxB  denote the tridirectional control points net, the  ijkw  

are the weights, and the   rN n
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3  are the normalized B-spline 

basis functions defined on the knot vectors.  

Similarly, equation (A-1) can be applied to the attribute model concerning the 

field variable (potential, acoustic pressure, displacement, etc.) as follows: 
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In the most general case described by equation (A-2), the variable can be written 

as: 

   



eq

I
II tsrNtsr

1

,,,, UU     (A-3) 

where  tsrNI ,,  denote the corresponding global shape functions which are 

given by: 
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It is trivial to show that for each point (r,s,t) inside the trivariate superbrick it holds: 

 



eq

I
I tsrN

1

1,,     (A-5) 

In other words, equation (A-3) seems to be similar to equation (32) and also equation 

(A-5) holds for both of them. However, there is an essential difference between them. 

For a better understanding, we assume that the weighting values have unit values, as 

well as we assume cardinal univariate functions, i.e.: 
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Under these circumstances, the rational form of the attribute model is reduced to the 

simpler non-rational form [1]:  
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whence the inherent global shape function is given by: 

       tNsNrNtsrN n
k

n
j
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In other words, NURBS formulation leads to global shape functions being tensor 

products in the form of equation (A-8). However, since the univariate functions 

involved in equation (A-8) do not equal to unity when applied to the corresponding 

nodes (Faux and Pratt [55,p.179], Piegl and Tiller [52, Ch.4]) the same holds for the 

global shape function IN .  
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Reference triangle.  
Figure 4: Coons-boxlike macroelement (superbrick): (a) Real element, (b) Reference 
cube.  
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Figure 6: Mesh generation for a two-dimensional component: (a) initial mesh, (b) 
after smoothening. 
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Figure 8: Mesh generation for a three-dimensional component: (a) initial mesh, (b) 
after smoothening. 
Figure 9: Finite element mesh for the analysis of a three-dimensional acoustical 

cavity of dimensions 2.51.11.0m and sound velocity c=340m/sec.  
Figure 10: Trivariate-Coons-macroelement and trimmed-patch-BEM mesh for the 
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Table 1: Number of nodes used in several formulations of analysis. 
Table 2: Calculated eigenfrequencies for the acoustical cavity shown in Figures 9 and 

10, using the proposed global Coons interpolation (trivariate macroelements, 
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Table 1 
 

 

Formulation: 

 

Trivariate Coons 
macroelement 

Conventional 
FEM 

Trimmed-patch 
BEM 

Conventional 
BEM 

Number of nodes 76 396 

 

76 252 

 
 
 
 
 
 
Table 2 
 

 
 

Mode 

Exact  
Eigen- 

frequencies 
[Hz] 

Errors of calculated eigenfrequencies in % 

Trivariate Coons 
macroelement 

 

FEM 
Conventional 

BEM 
Trimmed-

patch 

BEM 
Conventional 

 
1 0.0 0.00 0.00 0.00 0.00 
2 68.0 +0.02 +0.41 -0.02 -0.90 
3 136.0 +0.08 +1.65 +4.48 -1.27 
4 154.5 +0.16 +1.65 +6.40 -2.70 
5 168.8 +0.28 +1.45 +4.32 -5.88 
6 170.0 +0.16 +1.65 +6.91 -2.72 
7 183.1 +0.28 +1.48 +5.08 -5.99 
8 204.0 +0.15 +2.59 +8.23 -1.29 
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Bivariate Coons interpolation 

 2-D mesh generation 
 2-D finite macroelements 
 3-D boundary macroelements 

Trivariate Coons interpolation 

 3-D FEM mesh generation 
 3-D finite macroelements 

Figure 1 
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From: John Woodwark [jrw@johnwoodwark.com]
Sent: Τρίτη, 9 Σεπτεμβρίου 2003 2:45 μμ
To: C. G. Provatidis
Subject: Your CAD submission

Prof Provatidis, 
 
Thank you for your manuscript "On the integration between CAD and CAE in engineering 
design".  I have looked through the paper, and I have to say that I don't really think 
it's suitable for CAD journal. 
 
Firstly, I find the title undescriptive.  The "integration of CAD and CAE" might involve 
machining, DfA, STEP, customization... and 1001 other 
things: certainly not just FE.  A more accurate title might be something like "A finite 
element based on Coons interpolation", and I think it then starts to become obvious why 
this is not really a CAD journal 
paper: certainly we carry *some* stuff about FE and meshing but, as you know, there is a 
large specialist literature.  It's not an area in which we are looking to get more deeply 
involved -- and, I would say, especially not in new types of element. 
 
Secondly, there seem to be some aspects of a review paper in this manuscript (not least 
its length), including a summary of your own work.  I think your letter and the ms. are 
admirably straightforward about this, but it's not very clear that there remains enough 
new material to merit a journal publication.  You do itemize the new contributions on p. 
5, but I have to say that I consider these to be too specific to support the 
superstructure you have erected around them. 
 
Thirdly, while the results in Tables 1 and 2 look impressive, I'm not entirely convinced -
- even as a non-expert on FE -- by the comparisons. 
For instance I would certainly have liked to see computation times in the tables.  And the 
components you are meshing certainly don't look particulaly challenging.  When you are up 
against a very well established technology like 'conventional FE', I think you have to 
present a very thorough argument.  But in any case I fear that CAD journal isn't the right 
place to do it. 
 
I'm sorry to disappoint you. 
 
--  
 
Regards 
 
John Woodwark 
  47 Stockers Avenue, Winchester SO22 5LB, U K 
  +44-(0)1962-867328 
  jrw@johnwoodwark.com   www.johnwoodwark.com 
  Editor, CAD journal (www.elsevier.nl/locate/cad) 
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GR-157 73 Athens, Greece 
T: +30-210-772.1520   F: +30-210-772.2347 
E-mail:  cprovat@central.ntua.gr , Website: http://users.ntua.gr/cprovat 

 
 
Athens, 12th September 2003 
 
Professor Mark S. Shephard, 
Director Scientific Computation Research Center CII 7017, 
Rensselaer Polytechnic Institute, 
Troy, New York 12180-3590, USA 
Tel. (518) 276-6795, Fax: (518)276-4886 
Email: shephard@scorec.rpi.edu 
 
 
Re: CAD-FEA integration using Coons interpolation,  

by C.G.Provatidis (paper submitted to Engineering with Computers) 
 
 
Dear Professor Shephard, 
 
Attached please you find a paper submitted to Engineering with Computers. It proposes Coons 
interpolation as the “connecting tissue” between CAD (solid modeling) and analysis (FEA).  
 
Perhaps this paper is long but it was extremely difficult for me to make it shorter.  

1) First, the paper summarizes 15 papers of mine, where “Coons interpolation formula” was 
applied to build large 3-D boundary elements and 2-D macroelements (similar to BEM) in many 
field such as elastodynamics, acoustics and potential problems. Unfortunately, most papers have 
been published in Conference Proceedings (difficult to be retrieved) so that I felt the need to 
communicate them through the first part of this paper.  

2) Second, the paper includes three novel features. The first feature concerns the use of 
Coons interpolation for smooth 2-D meshes. The second feature concerns the use of Coons 
interpolation for smooth 3-D meshes. The third feature concerns the development of large 3-D 
macroelements. Finally, large BEM and 3-D macroelements are compared with conventional 
BEM and conventional FEM solutions. 

Finally, I think that Section 7 and Section 8 could be two independent papers, but I feel that 
the character of “Engineering with Computers” is not to deeply describe new elements but 
overall methodologies.  
 
I confirm that this paper is original and it has not been submitted or published elsewhere. 
 
Hoping that you will find the paper interesting for consideration in your Journal. 
 
Sincerely 
 
 
 
C. Provatidis    Encl: Paper in dublicate.  
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To: Christopher Provatidis
Subject: EWC Submission #03-019

Dear Prof. Provatidis: 
 
This will acknowledge receipt of your submission entitled: 
 
"CAD-FEA integration using Coons interpolation" 
 
for consideration for publication in Engineering with Computers. 
 
Your manuscript has been assigned log number EWC03-019.  Please use this number in any 
correspondence relating to the paper. 
 
The review process has begun, and we will notify you of the results when they are 
finalized. 
 
Thank you for your interest in Engineering with Computers. 
 
Sincerely, 
 
Mark S. Shephard 
Editor 
 
******************** 
Sent by: 
 
Marge Verville 
Administrative Assistant 
Scientific Computation Research Center (SCOREC) CII 7013 Rensselaer Polytechnic Institute 
Troy, NY 12180-3590 
518-276-6795 (voice); 518-276-4886 (fax) office@scorec.rpi.edu or vervim@rpi.edu 
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Subject: [Fwd: [Fwd: Log number EWC03-19: Reviewing Status]]
Attachments: EWC03-019 review.pdf; EWC03-019 reject.pdf; signature.asc

Dear Professor Provatidis: 
 
Thank you for your inquiry.  However, based on the results of the review process, your 
paper was rejected for publication in Engineering with Computers and the notice was sent 
to you by mail in October, 2004.  
Electronic copies of the letter and the review are attached to this email. 
 
Sincerely, 
 
Marge Verville 
 
-------- Original Message -------- 
Subject: Log number EWC03-19: Reviewing Status 
Date: Wed, 27 Jul 2005 17:47:54 +0300 
From: C.G. Provatidis <cprovat@central.ntua.gr> 
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Re: Log number EWC03-19: CAD-FEA integration using Coons interpolation, by C.G.Provatidis 
(paper submitted to Engineering with Computers) 
 
Dear Professor Shephard, 
 
I am kindly asking you about the reviewing process of the abovementioned paper, which was 
submitted on 12th September 2003. 
 
In the meanwhile, I have published (or "in-press") on the same subject, the following six 
additional papers which should be added in References: 
1) C. Provatidis, Coons-patch macroelements in two-dimensional eigenvalue and scalar wave 
propagation problems, Computers & Structures, 82, 2004, 383-395. 
2) C. Provatidis, Solution of two-dimensional Poisson problems in quadrilateral domains 
using transfinite Coons interpolation, Communications in Numerical Methods in Engineering, 
Vol. 20 (7), July 2004, pp. 521-533. 
3) C. G. Provatidis, Three-dimensional Coons macroelements in Laplace and acoustic 
problems, Computers and Structures, Vol. 83 (2005) 1572-1583. 
4) C. G. Provatidis, Analysis of box-like structures using 3-D Coons' 
interpolation, Communications in Numerical Methods in Engineering, (ON-LINE: 
April 2005). 
5) C. G. Provatidis, Coons-patch macroelements in two-dimensional parabolic problems, 
Applied Mathematical Modelling (in-press, PDF is attached: 
article.pdf). 
6) C. G. Provatidis, Three-dimensional Coons' macroelements: Application to eigenvalue and 
scalar wave propagation problems, International Journal for Numerical Methods in 
Engineering, (accepted). 
 
Probably, these articles should be forwared to the reviewers. 
 
Apart from the reviewing aspects, a significant part of EWC03-019 includes original 
findings (such as several formulations of Coons interpolation, 3-D smoothening, BEM 
macroelements), on which further progress has been made. 
Therefore, I have a dilemma how to proceed with my next paper submissions in other 
journals, i.e. should I refer to EWC03-019 as "submitted" or I have no chance for that? 
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As I will be on holidays between 1st and 15th August 2005, there is no need to answer 
immediately. 
 
Looking forward to hearing from you soon. 
 
Sincerely, 
 
 
Christopher Gabriel PROVATIDIS 
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Review of EWC03-019: 
 
Review comments for Engineering with Computers, “CAD-FEA Integration Using Coons 
Interpolation” by Provatidis 
 
I recommend that the paper needs major revision and re-review. 
 
The paper seems to wander between too many topics under the overly broad justification 
of integration of CAD and CAE.  First is the review of bi- and tri-variate interpolation, 
followed by some node smoothing (“smoothening” in the paper), and then Coons 
macroelements.  Within these sections are changing topics that cause confusion, and left 
me unsure of any real objective of the paper. 
 
Also, it was unclear at times what is really new.  The paper begins with a review of basic 
and well-known Coons interpolation.  It then states that there are two novel features of 
the paper, namely generating smooth meshes within boxlike structures, and avoiding 
mesh generation by working in conjunction with only the twelve edges of the boxlike 
structure.  In my opinion, this material does not seem new.  It is at best a restatement or 
small improvement over known methods.  The smoothing is simply nearest neighbor 
point averaging in XYZ space after the nodes are generated in equi-spaced parametric 
space, which as everyone knows creates uneven XYZ spacing due to the nonlinear 
mapping. 
 
The novelty of the trivariate discussion concerned me because it has been my 
understanding that commercial finite element programs long ago used trivariate 
parameter elements (e.g. PATRAN?).  So, it seemed that this too is not new. 
 
The macroelement may be new and a noteworthy focus of the revised paper. 
 
Finally, there is the problem of how current CAD solid models with their complex 
trimmed NURB surfaces can be “meshed” into sets of these boxlike structures.  This is a 
complex and unsolved problem that may negate the proposed elegance of the trivariate 
boxlike element.  This is not addressed in the paper – so it is not correct to claim CAD-
CAE integration. 


