
3rd International Conference on Experiments/Process/System Modeling/Simulation & Optimization 
3rd IC-EpsMsO 

Athens, 8-11 July, 2009 
© IC-EpsMsO 

 
 

A NOVEL MECHANISM TO PRODUCE FIGURE-EIGHT-SHAPED CLOSED 
CURVES IN THE THREE-DIMENSIONAL SPACE 

 
Christopher G. Provatidis* 

 
*Division of Mechanical Design and Control Systems, School of Mechanical Engineering 

National Technical University of Athens, Greece 
9 Heroes of Polytechnion Ave, GR-15780, Athens, Greece, tel: +30 210 772 1520, fax: +30 210 772 2347 

Email: cprovat@central.ntua.gr, web page: http://users.ntua.gr/cprovat  
 
Keywords: Mechanisms, propulsion, centrifugal force, antigravity, rotating mass. 
 
Abstract. This paper presents the concept of a novel mechanism that achieves to produce a special closed ∞ -
shaped curve in the three-dimensional space, along which two or more concentrated masses continuously move. 
In more details, the aforementioned path lies along the boundary (surface) of a sphere, thus possessing some 
remarkable properties. In addition, other curve configurations produced by different relationships between the 
angular velocities of the rolling components are discussed and relevant numerical results of the simulation are 
presented. In general, the findings of this work depict that this concept could inspire future applications. 
 
1 INTRODUCTION 

An adequately detailed survey of antigravity and propulsive systems has been previously reported [1]. 
Concerning mechanical antigravity systems to which this paper belongs, the first relevant patent is probably due 
to Dean [2] (http://en.wikipedia.org/wiki/Dean_drive). An extension of this idea was made by Cook [3] who 
proposed a device that uses a couple of contra-rotating masses around a common axis, which transfers a mass 
from one rod to other, drawing an angle of 180 degrees. Later, Robertson [4] as well as Hoshino [5] proposed 
alternative ways to introduce eccentric masses of variable radius, aiming at reducing the centrifugal forces along 
the lower part of the mass track. Also, Chung [6] proposed a propulsion system based on the Coriolis force. 
Although electro-gravitics [7] and ion thrusters [8] is the tendency in non-conventional antigravity propulsion, 
within the years 1996-2002 NASA spent six whole years of research without a remarkable success [9,10]; an 
Internet search also reveals that some aerospace industries have simultaneously conducted a similar research.  

Instead of using two synchronized and contra-rotating masses over a permanent vertical plane as in the case 
of the original Dean’s drive, this paper investigates an alternative configuration in which the rotating masses 
move along a closed ∞ -shaped curve within the three-dimensional space, in such a way that the reference vector 
rG  lies always in the half space below or beyond the centre of this curve (it draws an angle of 180 degrees). 
Initial results [11] and a detailed description [12,13] have been previously presented elsewhere.  
 
2 DESCRIPTION OF MECHANISM 

Between several alternative designs, this preliminary study concerns the primitive mechanism shown in 
Figure 1. The mechanism consists of a conventional planetary system (spin gears S1 and S2, planet gears P1 and 
P2), in which concentrated masses, i.e. mass (a) and mass (b), are attached perpendicularly to the shafts of the 
spin gears S1 and S2, respectively. Briefly, a motor drives the planet gear (P1) thus offering power transmission 
through P1-S1 towards the mass (a). Similarly, the rest half of the power produced by the motor is transmitted 
through P1-S2 towards the other mass (b).  

A characteristic of this mechanism is that the second planet gear, P2, is fixed thus causing rolling of the spin 
gears S1 and S2 on P2. Obviously, the rotation of the planet gear P1 enforces the spin gear S1 to rotate about its 
local axis (initially coinciding with the global z-axis) and also enforces the casing to rotate around x-axis. When 
assuming the same diameters of the four gears (P1, P2, S1 and S2), due to the aforementioned rolling at the 
interface between P2 and S1: 

• the spin gear S1 has an angular velocity ω  that is half that of the motor ( 2motorω ω= ) 
• the spin gear S2 has the same angular velocity but of opposite sign, ω−  
• the casing rotates with the same angular velocity,ω . 

 Regarding the sign of the angles, the convention is that positive angles are considered those formatted as 
(Ox,Oy), (Oy,Oz) and (Oz,Ox).  
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Figure 1: Abstractive sketch of the mechanism at the initial time instant (t = 0) 

 
The characteristic dimensions of the mechanism are (Figure 1): 

• the radius r of the level where the masses are attached and 
• the radius R of the casing; more accurately it should be the distance between the centroids of the masses 

at the positions (a) and (b)   
As shown in Figure 1, the initial coordinates of the masses, at time t = 0, are: 

• Mass (a): (x, y, z) = (-r, 0, +R), and Mass (b): (x, y, z) = (+r, 0, -R)  
 
3 EQUATIONS OF MOTION 
 The description of section 2 reveals that each spin gear, S1 and S2, undertakes two simultaneous rotations, 
both of the same angular velocity, ω . In the general case, the first motion (rotation of S1) is related to an angle 

1 1tθ ω=  about the z-axis, and corresponds to a relative rotation of the initial coordinate system by 1 1tθ ω′ = − , 

while the second motion (rotation of the casing about the x-axis by 2 2tθ ω= ) is related to an relative angle 

2 2tθ ω′ = − . Therefore, with respect to the global inertial Cartesian co-ordinate system Oxyz, the path followed 
by the rotating mass (a) is finally given by: 
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Henceforth, we consider the particular case that: 1 2ω ω ω= = , and therefore Eq(1) becomes:  

( ) ( ) ( ) ( ) 2cos , sin cos sin sin cos,a a ax t r t y t r t t R t z t r t R tω ω ω ω ω ω= − = − + = − +   (1b) 
Furthermore, the corresponding velocities are given as: 

( ) ( ) ( ) ( ) ( )1sin , cos 2 cos sin 2 sins,a a ax t r t y t r t R t z t r t R tω ω ω ω ω ω ω ω ω ω= = − + = − +� � � ,  (2)     
while the corresponding accelerations are given as: 

( ) ( ) ( ) ( )2 2 2 2 2cos , 2 sin 2 sin 2 , 2 cos 2 cosa a ax t r t y t r t R t z t r t R tω ω ω ω ω ω ω ω ω= = + = − +�� �� ��   (3) 

In a similar way, the path of the mass (b), as well as the velocity and accelerations components, is given by: 

( ) ( ) ( ) ( )2cos , sin cos sin , sin cosb b bx t r t y t r t t R t z t r t R tω ω ω ω ω ω= = − + = − +    (4) 

Also: 
( ) ( ) ( )2 cos , cos 2 cos , sin 2 sinb b bx t r t y t r t R t z t r t R tω ω ω ω ω ω ω ω ω ω= − = − + = − +� � �   (5) 

and also: 

( ) ( ) ( ) ( )2 2 2 2 2cos , 2 sin 2 sin , 2 cos 2 cosb b bx t r t y t r t R t z t r t R tω ω ω ω ω ω ω ω ω ω= − = − = − −�� �� ��  (6) 
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4 GEOMETRIC PROPERTIES OF THE PATH 
 Concerning the properties of the path on which the masses (a) and (b) move, using Eq(1) and Eq(4), it can 
be proven that: 
1)  Both masses move on the same path, and each of them gives away to the other. For example, when the spin 
gear S1 rotates by 90 degrees ( 2tω π= ), the co-ordinates of the mass (a) become (x, y, z) = (+r, 0, -R), which 
means that it takes the initial position of (b) shown in Figure 1. In a similar way, the co-ordinates of the mass (b) 
become (x, y, z) = (-r, 0, +R), which means that it takes the initial position of (a) shown in Figure 1. The same 
happens after 90 degrees of further rotation of the casing around x-axis (and simultaneous rotation of S1 and S2 
by also 90 degrees), and so on.  
2) All points of the abovementioned path belong to a sphere of radius, i.e.:  

2 2 2 2 2 2 2
a a a b b b spherex y z x y z r+ + = + + = , with 2 2

spherer r R= +      (7) 
3) The point, Ι, at which the patch intersects itself, is found at the place (see Appendix):  

intersect intersect intersect, 0,x R y z r= + = = −      (8) 
As a consequence of eq(8), it is worth-mentioning that in the hypothetical case that R = 0, the intersection I lies 
along the z-axis ( intersect intersect0, 0x y= = ).  
4) The co-ordinates of the centroid of the couple (a,b) are: 

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]

( ) ( ) ( )[ ] 2

1
0

2
1 1
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2
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    (9) 

Obviously, since it holds that: 

( ) ( ) ( )[ ] ( )2 22 2 2 2cm cm cmx t y t z t r r+ + + = ,      (10) 
it is evident that the centroid of the two masses moves on the yz-plane along the circumference of a circle of 
radius ( )2r , centered at the point ( )0, 0, 2r− .  
 
5 INDUCED INERTIAL FORCES 
 Using Eq(1)-Eq(6) in combination with Newton’s Second Law [2], the inertial force components at each 
makeweight are given by: 
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and 
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Therefore, the resultant inertial force components in the entire mechanism are given by: 

, ,

2
, ,

2
, ,

0

4 sin 2
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x a x b x
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     (13) 

We notice that while in the x-direction there is no resultant force, in contrast, harmonic components exist in the 
y- and z-directions. Most interesting, the vertical z-component is of amplitude 24m rω  and appears a maximum 
upward value at 0, , 2 ,3 ,tω π π π= … , while it appears the same downward value at 

2 ,3 2 ,5 2 ,tω π π π= …  
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6 MOMENTS AND POWER 
 With respect to the x-axis the induced moments of the inertial forces at the makeweights are found as: 

2 2

, , 2 sin 2x a x b xM M M m r tω ω= + = −      (14) 
Also, the power spent by the electric motor is calculated using the classical consideration of the inertial forces 
through the formula 

( )a a a a a a b b b b b bP m x x y y z z x x y y z z= − + + + + +�� � �� � �� � �� ��� � �� �       (15) 
which, in virtue of Eqs(1-6), leads to: 

( ) 3 2 sin 2P t m r tω ω= −     (16) 
 
7 KINETIC AND POTENTIAL ENERGY 
Kinetic, kineticE , and potential, potentialE , energy of the couple of masses (a) and (b) is given by: 

( ) ( )
( )

2 2 2 2 2 2

2 2 2 2

1
2

1 sin

kinetic a a a b b bE m x y z x y z

m R r tω ω

= + + + + + =

= + +

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

� � � �� �
      (17) 

and 
22 sinpotentialE mgr tω= −     (18) 

 
8 WORK OF INERTIAL FORCES 
Integrating Eq(16), the work spent from t = 0 until to every other time t is given by: 

( ) ( ) 2 2 2

0
2 sin

t
W t P d m r tτ τ ω ω= − =∫      (19) 

One can easily validate that the work given by Eq(19) equals to the change of the kinetic energy, as always 
happens. The sign (-) in Eq(19) was put in order to depict that the real resultant is am rG�� , while the inertial force 

was taken as am r−
G�� .  

 
9 APPLICATIONS 
9.1 Typical paths 
 For time instances so that 0 2tω π≤ ≤ , a typical path followed by the masses (a) and (b) is illustrated in 
Figure 2. One can notice that the path is a continuous ∞ -shaped curve of unequal loops. Clearly, when the 
casing and the spin gear rotate by 90 degrees, the mass (a) completes the blue line while the mass (b) completes 
the red line. For 2 tπ ω π≤ ≤ , the mass (a) follows exactly the path already completed by the mass (b), while 
the mass (b) follows exactly the path already completed by the mass (a), and so on!  In other words, the masses 
(a) and (b) mutually offer space to each other. 

 
Figure 2: Patch of the masses and their centroid ( r =80mm, R=25mm). The blue line corresponds to the mass (a), 

the red one to the mass (b), while the green corresponds to the centroid.  
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Figure 3: A different perspective view for the conditions of Figure 2. 

 
 In order to have a better feeling of the path, its asymmetry and its unique intersection point I, as well as the 
circle followed by the centroid of the two rotating masses (a) and (b), are all shown in Figure 3.  
 
9.2 Simulation of forces and power 
 The resultant of the vertical force components are shown in Figure 4, where the x-, y- and z-components are 
illustrated in blue, red and green colour, respectively. The z- force component (Fz), which is in green colour, is of 
major importance as it is related to the ability of the mechanism to move upwards. One can notice in Figure 4 an 
alternating time history, thus causing no upward impulse.  
 In more details, when the masses are found exactly as in Figure 4 (at initial time: t = 0, Angle = 0 degrees), 
the resultant vertical force is positive (upwards) and it is very similar for both masses (identical only when R = 
0), while the same value but of negative sign appears at the angle of 90 degrees.  
 Moreover, concerning the power transmitted generated by the motor and then transmitted to the masses is 
shown in Figure 5, in which the friction has been neglected. The maximum power appears at 1 4θ π= .  

 
Figure 4: Centrifugal force components (blue: Fx, red: Fy, green: Fz). Data: ( r =80mm, R=25mm). 
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Figure 5: Time history of the motor power ( r =80mm, R=25mm). 

 

 
Figure 6: Paths of the masses. The blue line corresponds to the mass (a), the red to the mass (b) while the green to 

their centroid. ( r =100mm, R=60mm, ωcasing=ωspin gear/2) 
 

9.3 Modification of the mechanism 
 Using a different configuration, it could be possible to modify the angular velocity of the casing, so that it 
obtains, for example, half the value of the spin gear S1 (ωcasing=ωspin gear/2). In such as case, the corresponding 
paths of the two masses do not coincide but they are quite distinct as shown in Figure 6. In more details, the 
masses (a) and (b) follow the blue and red lines, respectively, while their centroid forms an exotic shape of a 
tetrafilon (four-leaf) flower!  
 It is also worth-mentioning that in the abovementioned case, not one (I) but two intersections of the path 
appear. 
 A more close investigation reveals that the motion sequence of the centroid along the tetrafilon is according 
to the sequence (1 2 3 4 5 6 7 8 9≡1) shown in Figure 7.  
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Figure 7: Motion sequence of the centroid along the tetrafilon (shown in Figure 6) 
 

 
Figure 8: Paths of the makeweights and their centroid (r = 500mm, R = 60mm). 

 
Remark: Preserving the diameter of the casing and increasing the radius of the concentrated mass, for example, 
choosing r = 500mm, R = 60mm, the paths become as those shown in Figure 8. In other words, the longer the 
radius r becomes the larger the extreme loops become, by also increase of the four-leaf shape.  
 
10    DISCUSSION AND CONCLUSIONS 
 The principle of a novel mechanism has been presented in full detail. Not only its operation but also closed-
form analytical expressions of kinematics and dynamics have been reported. Concerning its possibility to obtain 
a propulsion, when applying the second Newton’s law towards the vertical direction, similar equations with 
those obtained in Ref[1] were received, a fact that dictates that an upwards motion is again possible. This 
happens under the condition that a considerable angular velocity has been obtained, before the object to which 
the proposed mechanism has been attached is left free to move. The only difference is that instead of leaving the 
object free when the rigid bars are at the horizontal position moving upwards as happened in Ref[1], in the 
present case the maximum altitude is achieved when these bars are found at the position 4φ π= −  thus leaving 
sufficient path at which the centrifugal forces are positive.  
 In this preliminary report the case of a rotation around the vertical axis ( 0zω ≠ ) has been omitted, but a 
detailed report is in preparation.  
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APPENDIX: Intersection of the ∞-shaped path 
In fact, if the rotating mass (a) is as shown in Figure 1 (at time t = 0), then at a later time t′  that fulfills the 
relationship: 

cos Rt rω ′ = − ,   (20) 

The corresponding coordinates of the rotating mass (a) will be given by: 

( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )
2 2

2 2 2
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= − − + − = − + − ≡ −

    (21) 

In the sequence, we shall prove that through the same point, Ι, the rotating mass (b) has earlier passed. In fact, if 
we choose the time t′′ , such as: 

cos Rt rω ′′ = + ,  (22) 

The coordinates of the mass (b) are given by: 
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       (23) 

Equation (23) proves that the time instants t′  and t′′ correspond to the intersection I of the path, which the 
masses (a) and (b), respectively, pass through. Obviously, it holds that t t′′ ′< , and also, 
( ) ( ) ( ) ( )1 1 1 1,2 2 ,t t t tθ π θ π θ π θ′ ′′ ′ ′′= −> < .  


