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SUMMARY 
 
This paper presents the concept of a novel mechanism that achieves to produce a closed ∞ -shaped 
curve in the three-dimensional space, along which two or more concentrated masses continuously 
move. In more details, the aforementioned path lies along the boundary (surface) of a sphere, thus 
possessing some remarkable properties. Besides, other configurations with different relationships 
between the angular velocities of the rolling components are discussed and relevant numerical results 
of the simulation are presented. In general, the findings of this work depict that this concept could 
inspire future designs of many rotating machines for either earth (energy save), marine, air or space 
applications.  
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1. INTRODUCTION 
This preliminary study concerns the primitive mechanism shown in Figure 1. The 
mechanism consists of a conventional planetary system (spin gears S1 and S2, planet 
gears P1 and P2), in which concentrated masses, i.e. mass (a) and mass (b), are 
attached perpendicularly to the shafts of the spin gears S1 and S2, respectively. 

Briefly, a motor drives the planet gear (P1) thus offering power transmission through 
P1-S1 towards the mass (a). Similarly, the rest half of the power produced by the 
motor is transmitted through P1-S2 towards the other mass (b).  
 

 
Figure 1: Sketch of the mechanism at the initial time instant (t = 0) 
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A characteristic of this mechanism is that the second planet gear, P2, is fixed thus 
causing rolling of the spin gears S1 and S2 on P2. Obviously, the rotation of the 
planet gear P1 enforces the spin gear S1 to rotate about its local axis (initially 
coinciding with the global z-axis) and also enforces the casing to rotate around x-axis. 
When assuming the same diameters of the four gears (P1, P2, S1 and S2), due to the 
aforementioned rolling at the interface between P2 and S1: 

• the spin gear S1 has an angular velocity ω  that is half that of the motor 
( 2motorω ω= ) 

• the spin gear S2 has the same angular velocity but of opposite sign, ω−  
• the casing rotates with the same angular velocity,ω . 

Regarding the sign of the angles, the convention is that positive angles are considered 
those formatted as (OX,OY), (OY,OZ) and (OZ,OX).  

The characteristic dimensions of the mechanism are (Figure 1): 

• the radius r of the level where the masses are attached and 

• the radius R of the casing; more accurately it is the distance between the 
centroids of the masses (a) and (b)   

As shown in Figure 1, the initial coordinates of the masses, at time t = 0, are: 

• Mass (a): (x, y, z) = (-r, 0, +R) 

• Mass (b): (x, y, z) = (+r, 0, -R)  

 
2. EQUATIONS OF MOTION 
The description of section 1 reveals that each spin gear, S1 and S2, undertakes two 
simultaneous rotations, both of the same angular velocity, ω . Instead of 
superimposing the corresponding inertial forces, which procedure is amenable to 
mistakes due to inattention, we prefer to express the global Cartesian co-ordinates 
(inertial system) as a function of the time t.  
 Superimposing the two abovementioned rotations in the usual way [1], it can be 
easily found that the path of the mass (a) with respect to the global inertial Cartesian 
co-ordinate system Oxyz, are finally given by: 
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Furthermore, the corresponding velocities are given as: 
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while the corresponding accelerations are given as: 
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In a similar way, the path of the mass (b), as well as the velocity and accelerations 
components, is given by: 
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3. GEOMETRIC PROPERTIES OF THE PATH 

Concerning the properties of the path on which the masses (a) and (b) move, using 
Eq(1) and Eq(4), it can be proven that: 

1.  Both masses move on the same path, and each of them gives away to the other. For 
example, when the spin gear S1 rotates by 90 degrees ( 2tω π= ), the co-ordinates of 
the mass (a) become (x, y, z) = (+r, 0, -R), which means that it takes the initial 
position of (b) shown in Figure 1. In a similar way, the co-ordinates of the mass (b) 
become (x, y, z) = (-r, 0, +R), which means that it takes the initial position of (a) 
shown in Figure 1. The same happens after 90 degrees of further rotation of the casing 
around x-axis (and simultaneous rotation of S1 and S2 by also 90 degrees), and so on.  

2. All points of the abovementioned path belong to a sphere of radius, i.e.:  
2 2 2 2 2 2 2
a a a b b b spherex y z x y z r+ + = + + = , with 2 2

spherer r R= +   (7) 

3. The point, Ι, at which the patch intersects itself, is found at the place:  

intersect intersect intersect, 0,x R y z r= + = = −    (8) 

It is worth-mentioning that in the hypothetical case that R = 0, the intersection I lies 
along the z-axis ( intersect intersect0, 0x y= = ).  

4. The co-ordinates of the centroid of the couple (a,b) are: 
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Obviously, since it holds that: 
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it is evident that the centroid of the two masses moves on the yz-plane along the 

circumference of a circle of radius 
2
r⎛ ⎞

⎜ ⎟
⎝ ⎠

, centered at the point 0,0,
2
r⎛ ⎞−⎜ ⎟

⎝ ⎠
.  

4. INDUCED INERTIAL FORCES 
Using Eq(1)-Eq(6) in combination with Newton’s Second Law [2], the inertial force 
components at each makeweight are given by: 
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and 
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Therefore, the resultant inertial force components in the entire mechanism are given 
by: 
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We notice that while in the x-direction there is no resultant force, in contrast, 
harmonic components exist in the y- and z-directions. Most interesting, the vertical z-
component is of amplitude 24m rω  and appears a maximum upward value at 

0, , 2 ,3 ,tω π π π= … , while it appears the same downward value at 
2,3 2,5 2,tω π π π= …  

 
5. MOMENTS AND POWER 

With respect to the x-axis the induced moments of the inertial forces at the 
makeweights are found as: 

2 2
, , 2 sin 2x a x b xM M M m r tω ω= + = −    (14) 

Also, the power spent by the electric motor is calculated using the classical 
consideration of the inertial forces through the formula 

( )a a a a a a b b b b b bP m x x y y z z x x y y z z= − + + + + +�� � �� � �� � �� ��� � �� �     (15) 

which, in virtue of Eqs(1-6), leads to: 

( ) 3 2 sin 2P t m r tω ω= −   (16) 
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6. KINETIC AND POTENTIAL ENERGY 

Kinetic, kineticE , and potential, potentialE , energy of the couple of masses (a) and (b) is 
given by: 
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and 
22 sinpotentialE mgr tω= −    (18) 

 
 

7. WORK OF INERTIAL FORCES 
Integrating Eq(16), the work spent from t = 0 until to every other time t is given by: 
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One can easily validate that the work given by Eq(19) equals to the change of the 
kinetic energy, as always happens. The sign (-) in Eq(19) was put in order to depict 
that the real resultant is am rG�� , while the inertial force was taken as am r−

G�� .  

  
8. APPLICATIONS 

8.1 Typical paths 

For time instances so that 0 2tω π≤ ≤ , a typical path followed by the masses (a) and 
(b) is illustrated in Figure 2. One can notice that the path is a continuous ∞ -shaped 
curve of unequal loops. Clearly, when the casing and the spin gear rotate by 90 
degrees, the mass (a) completes the blue line while the mass (b) completes the red 
line. For 2 tπ ω π≤ ≤ , the mass (a) follows exactly the path already completed by the 
mass (b), while the mass (b) follows exactly the path already completed by the mass 
(a), and so on! 

In other words, the masses (a) and (b) mutually offer space to each other. 

 
In order to have a better feeling of the path, its asymmetry and its unique intersection 
point I, as well as the circle followed by the centroid, are shown in Figure 3.  
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Figure 2: Patch of the masses and their centroid ( r =80mm, R=25mm). The blue line corresponds to 
the mass (a), the red one to the mass (b), while the green corresponds to the centroid.  

 
 

Figure 3: A different perspective view for the conditions of Figure 2. 
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8.2 Simulation of forces and power 
The resultant of the vertical force components are shown in Figure 4, where the x-, y- 
and z-components are illustrated in blue, red and green colour, respectively. The z- 
force component (Fz), which is in green colour, is of major importance as it is related 
to the ability of the mechanism to move upwards. One can notice in Figure 4 an 
alternating time history, thus causing no upward impulse.  

In more details, when the masses are found exactly as in Figure 4 (at initial time: t = 
0, Angle = 0 degrees), the resultant vertical force is positive (upwards) and it is very 
similar for both masses (identical only when R = 0), while the same value but of 
negative sign appears at the angle of 90 degrees.  

Moreover, concerning the power transmitted generated by the motor and then 
transmitted to the masses is shown in Figure 5, in which the friction has been 
neglected.  

Figure 4: Centrifugal force components (blue: Fx, red: Fy, green: Fz). Data: ( r =80mm, R=25mm). 
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Figure 5: Time history of the motor power ( r =80mm, R=25mm). 
 

 

 

8.3 Modification of the mechanism 

Using a different configuration, it could be possible to modify the angular velocity of 
the casing, so that it obtains, for example, half the value of the spin gear S1 
(ωcasing=ωspin gear/2). In such as case, the corresponding paths of the two masses do not 
coincide but they are quite distinct as shown in Figure 6. In more details, the masses 
(a) and (b) follow the blue and red lines, respectively, while their centroid forms an 
exotic shape of a four-leaf (tetrafilon) flower!  

It is also worth-mentioning that in the abovementioned case, not one (I) but two 
intersections of the path appear. 
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Figure 6: Paths of the masses. The blue line corresponds to the mass (a), the red to the mass (b) while 
the green to their centroid. ( r =100mm, R=60mm, ωcasing=ωspin gear/2) 

 
 
 
A more close investigation reveals that the motion sequence of the centroid along the 
four leaves (tetrafilon) is according to Figure 7 (1 2 3 4 5 6 7 8 9≡1).  
 

 
Figure 7: Motion sequence of the centroid along the four leaves (shown in Figure 6) 

 
 
 
Remark: Preserving the diameter of the casing and increasing the radius of the 
concentrated mass, for example, choosing r = 500mm, R = 60mm, the paths become 
as those shown in Figure 8. In other words, the longer the radius r becomes the larger 
the extreme loops become, by also increase of the four-leaf shape.  
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Figure 8: Paths of the makeweights and their centroid (r = 500mm, R = 60mm). 

 
 

 

9. DISCUSSION – CONCLUSION - QUESTIONS 

The principle of a novel mechanism has been presented in full detail. Not only its 
operation but also closed-form analytical expressions of kinematics and dynamics 
have been reported.  

For the sake of briefness, in this preliminary report the case 0zω ≠  has been omitted.  

Instead of a usual conclusion, we would prefer to pose some questions: 

• What would happen if, besides the abovementioned two rotations (ω ), the 
entire mechanism rotates at a high angular velocity zω  about the z-axis? 

• Do the three force components remain constant when the zω  is introduced? 

• Which of the three force components are altered by zω ? 

• Do antigravity ‘components’ appear in the mechanism?  

• Does the sign of zω±  play any role? 

• Are other peculiar inertial phenomena anticipated? 

• How could this primitive mechanism be improved? 

 



© Copyright     C. G. Provatidis, Analytical model of a promising novel mechanism 

National Technical University of Athens, School of Mechanical Engineering, August 2008 
 

11

10. Acknowledgement 
I acknowledge the inventor, Mr. Theodore Tsiriggakis [3], with whom I have 
cooperated since 1981, for the fruitful discussions we had since then about the 
concept elaborated in this paper. Particularly, I thank him, as well as his son Mr. 
Vassilis Tsiriggakis, for our continuous discussions we had during the last two years 
where the novel mechanism was developed in a more systematic way and was 
manufactured by them in some options, one of which is illustrated in Figure 1.  

 

REFERENCES 
[1]  P.C. Hughes, Spacecraft attitude dynamics, John Wiley & Sons, Inc., New York, 

1986. 

[2] R. Resnick, D. Halliday, Physics, Wiley International Edition, New York, 1966. 

[3] www.tsiriggakis.com, 

      and more particularly: 

      http://www.tsiriggakis.gr/sm.html#1 

 

©©©©©©©©©©© 


