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1. SUMMARY

In its usual formulation, three-dimensional DR/BEAhalysis requires the discretization of the
boundary using constant, linear or quadratic elésién this paper it is shown that transfinite Coon
interpolation allows for the construction of largigape functions affecting a whole smooth boundary
patch of quadrilateral shape. The nodal pointsaar@nged along the patch boundaries only, so that
the number of nodal points necessary to perforraratysis is drastically reduced. The efficiency of
the proposed boundary superelements to deal witheidpenvalue acoustic problem is investigated.
Test cases on a cubic and a rectangular cavityesisagtain the theory, where the proposed
formulation is successfully compared with finitements and exact analytical solution.

2. INTRODUCTION

Considerable progress has been made in recent yedeveloping the finite element (FEM) and
finite difference methods (FDM) for acoustic cavitgalysis [1]. However, since three-dimensional
problems are characterized by the formidable densandata preparation effort when FEM or FDM
is applied, the Boundary Element Method (BEM) isha@s the most powerful tool, as it demands
only the discretization of the boundary of the taviNevertheless, frequency-domain BEM analysis
requires frequency-dependent kernels, a fact éaalsl to full matrices, which have to be re-caledat
for each discrete frequency (nonalgebraic problem).

However, since 1982 this problem was overcome tiir@uglobal set of conical radial basis functions
(RBFs) that approximate the inertial term [2]. IRerimore, using a dual set it becomes possible to
derive boundary-type mass matrices, so as BEM dealswith an algebraic problem. This technique
was called “dual reciprocity boundary element mdth(ODR/BEM) [3] and was further extended
apart from conical to spline and multiquadraticetyd4]. So far, the radial basis functions were
proven to be effective tools in multivariate sudanterpolation and have wide applications in neura
networks, computer graphics design, geosciencgstd review paper on the evaluation of 29 two-
dimensional interpolation methods was reported tanke [6]. Furthermore, Micchelli [7] cleared up
the issue of invertability of the resulting matrusing RBF interpolation, which gave a firm
mathematical foundation to the development of tBE®

Usually, BEM requires a discretization of the baamydusing constant, linear or quadratic elements.
This paper is an attempt to further reduce the rurabdegrees of freedom involved in a BEM model
in order to (i) reduce computer cost, (i) increagEnmunication-reliability between solid model

(CAD) and analysis (CAE) and (iii) obtain a bettentrol on shape optimization or inverse problems



solution. Clearly, it will be shown that the uselidfariate Coons interpolation allows for the glbba
interpolation of geometry, acoustic pressure antigha velocity within a whole quadrilateral patch
(at the boundary of the cavity), so that the ngutahts can be arranged along their boundaries only.
For any interpolation assumed along each sideagfrt@in patch, for example piecewise linear or B-
splines, a global cardinal shape function can tienated using simple analytical formulas [8,9]. So
far, the method has been successfully appliedgsttution of sound radiation (Helmholtz) problem
[10]. It is the purpose of this paper to investigéte accuracy of this method in the eigenvalue
extraction of 3-D acoustic cavities, despite paservations for the 2-D problem [11,12].

The proposed method will be applied to cubic andtarggular cavities and compared with
conventional finite elements.

3. BIVARIATE COONS INTERPOLATION — ISOPARAMETRIC MA CROELEMENTS

The origin of Coons patch interpolation is middi@6Qs, where it was applied to approximate a
smooth curvilinear surface [13]. Since then, it wb® applied to mesh generation tasks [14]. Here,
is assumed that the exact solution (acoustic pressud particle velocity) over a boundary patch is
smooth. Furthermore, the aforementioned interpmiat extended from geometry to the interpolation
of the unknown variable. In other words, Coons ripdéation formula offers the mathematical
background to develop large isoparametric elemeafrasbitrary nodes (also small ones [8]).

Within a smooth curvilinear patch it is possibleastablish a reasonable relation between the four
surrounding boundaries and the internal points.usehow consider a curviline&oons patch that
consists of four boundaries AB, BC, CD and DA, gltime normalized- ands-axes, with0< r,s<1,

as shown in Figure 1. In this case, the coordinatésy,? of the internal points can be interpolated
in terms of the boundary and the two internal liaggollows [14,p.361]:

x(r,s)=(@0-r)x(0,8)+r x(Ls)+ L—-s)x(r,0)+sx(rl)
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Figure 1: Boundary curvag0,s), u(1,s), u(r,0), u(r,1) and linear ‘blending function&, andE; of the
macro-element.

In this work, the interpolation according to eqaat(1) is also valid to acoustic pressure as wetba
particle velocity within any patch.

4. DR/BEM FORMULATION
The 3D wave propagation problem is described byetheation

(1/02)62 p/ot? —v2p=0 (2)

and the boundary conditions



p=p(t)onT, and v=v(t)onT, (3)

In (2), (3) p denotes the acoustic pressuwethe velocity of the wave propagatiol, the Nabla
operatort the time, and’, and T, parts of the boundary , where the acoustic pressure respectively

the velocity is prescribed .

Using the Galerkin’s method, the partial differahgquation (2) is transformed into

[P {ye?)o pfot> -v2 plav =0, i = 12.., (4)

with p’ being the fundamental solution of 3-D Laplace ¢iguafulfilling the equation
Vip +A =0 (5)

where A' is the Dirac function at the source pdihtof the domain. For the 3D case of this papgr,
is given by

Py (&%) = Y(4ar) (6)
with & and x; being the field and source points, respectivahyg, la=|§ - Xi| the distance between the
above points.

Substitution of (5) in (4) in conjunction with Grée theorem leads finally to the following equation

o We?o?p/ot)av+ cp + ffp-op] /on=ff o -ap/ondr ")
\ r r

wherec equals to %2, 1 or O for a (smooth) boundary, &grival or an external point, respectively.

In the conventional BEM, the boundary is discratizeto a number of boundary elements where
constant, linear or quadratic interpolation is assd for both acoustic pressure and velocity. It is
reminded that the normal component of the veloaity, is proportional to the normal derivative of

the acoustic pressurég/on=-jwp,v, ), with @ denoting the angular frequency, the mass density
of the still fluid and j? =-1.

Now, an interpolation should be made for the imétérms through a series expansion

p(x,t):g (%, )e, @:g f,(9)a, 1) (8)

wherex is a point inside the cavity;; is a boundary node ar‘léi(x,gj) is a basis functions carried by

thej-th boundary node. Note that numerical experienoe 2D analysis has shown that results may
improve when extending the sum in (8) through s@emeinternal nodes [11,12,15,16].

Among the several alternative possibilities, thégpgr follows Nardini [2] as well as Banerjee et al.
[17] and assumes that

f, = flxg)=C-r (9)

whereC is the largest distance between any two pointserbody and is the distance betweerand

<

Then, if the smooth boundary is discretized usimdements, in matrix form eq.(7) becomes
I\7I~('i+H~p:G~v (10)

whereH andG are the conventional static matrices [19], wHile élements oM (nxn) are given by

iy =(/c?) [ o fdv, i, j=12., (11)



Now, we define a dual functional set, , to that of eq.(9), so that

Vi, =1 (12)
By substituting (12) into (11) and then applyinge@n’s theorem, one finally obtains
iy = (1/c?) {ﬁ P, oy, /andr—{q w; (% )+ ffop fon-y, }} (13)
T r

So, according to (13), the elements of the massimean be calculated as boundary integrals.
Furthermore, if the continuous function, is approximated along each boundary element, én th

same manner as the pressure and the velocity 2¢ds(&implified to

M =(1/c?)-(G-n-H ) (14)
For the particular case of eq.(9), the dual fumaiset may be given as
y, =r*12-Cr°/6 (15)

Remark: The above formulation is consistent to the gdnpracedure proposed by Nardini and
Brebbia [2] while an alternative approach througittipl solutions proposed by Banerjee et al [17] is
essentially identical, as has been shown by Polgzas [18].

5. NUMERICAL IMPLEMENTATION

For the purposes of the numerical integration otflg, patch is automatically divided int®, x N,
cells where a second set of normalized co-ordingtés r',s' <1) is introduced [20]. So, the term
dl":|c{r,§|drds in (2), with G denoting the Jacobian from cartesian to naturalrdipates, is
replaced by|G(r,s)-G'(1, s)dr'as’, which requires a trivial (e.g.2x2,3x3, 4x4) Gaussian

quadrature. Of course, special attention shoulpaie to identify the areas around each source where
singularities occur.

6. EXAMPLES
Example 1: Cube of unit dimensions

The twelve edges of the cube were uniformly disoeetusing progressively 2, 4 and 6 segments. The
corresponding number of nodal points is 20, 44 @&dThe constantC’ in (15) was taken equal to

V3, which is the maximum distance between two pdmtse cube. Convergence quality is shown in
Table 1.

Table 1: Calculated eigen-wavenumbers for a uriieawnder free-free boundary conditions

Boundary Macroelement FEM Exact
20 nodes 44 nodes 68 nodes (343 nodes) Eigenwavenumbef
(k=w/c)
0. 0. 0. 0. 0.
3.39 3.30 3.29 3.18 3.14
4.90 4.71 4.68 4.49 4.44
6.37 5.77 5.69 5.50 5.44




It can be noticed that the proposed macroelemamterges towards the exact solution but it is less
accurate than the FEM solution that correspondeda@ase of 68 nodes. This difference appears also
in case of conventional boundary elements anddasons have been discussed in the past [11,12]. It
is anticipated that when using higher order rafiiattions, the difference will decrease. In anyegas
the engineering purposes the results of the prapwsthod are acceptable.

Example 2: Rectangular cavity

A rectangular cavity of dimensioris x L, xL,=2.5x1.1x1.0 was divided in 76 nodes using 10, an

5 uniform segments along the edges paralletty- andz-axis, respectively. The calculated natural
wavenumbersK = w/c ) and corresponding modes are shown in Table 2.

Table 2: Calculated eigen-wavenumbers for a reclangcavity of dimensions 2.5x1.1x1.0 under
free-free boundary conditions

Exact Boundary FEM
Eigen-wavenumbers Mode Macroelement (396 nodes,
(76 nodes) 250 elements)

o, = 0000 (0,0,0) 0.000 0.000

®, =1.2566 (2,0,0) 1.2564 1.2618
o, = 25133 (2,0,0) 2.6258 2.5548
w, = 2.8560 (0,1,0) 3.0387 2.9032
w5 =3.1202 (1,12,0) 3.2549 3.1655
wg = 3.1416 (0,0,1) 3.3588 3.1935
w, =3.3836 (2,0,2) 3.5554 3.4337
wg =3.7699 (3,0,0) 4.0801 3.8672

Despite the fact that the proposed macroelemdetssaccurate than the FEM, for the same number
of 76 nodes along the twelve edges, however foinergng purposes it is acceptable.

7. CONCLUSIONS

It was shown that global shape functions based oon€ interpolation over large patches could
successfully substitute conventional boundary etémén the solution of eigenvalue extraction in
acoustic cavities. The advantage of the proposdtiadds that it integrates the geometrical model
with computational analysis, using degrees of foeedlong those geometrical entities absolutely
necessary to determine the shape of the cavityinSiead of surface discretization, in many casiss i
only necessary to deal with only a few lines (efiga®l -in this sense- the dimensionality reduces
from 3D (volume) to 1D (lines). It is anticipatdtht the proposed approach will be useful in prattic
cases of shape optimization, where a minimum nunaberariables will participate in nonlinear
mathematical programming or other techniques.
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