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1. SUMMARY 

In its usual formulation, three-dimensional DR/BEM analysis requires the discretization of the 
boundary using constant, linear or quadratic elements. In this paper it is shown that transfinite Coons 
interpolation allows for the construction of large shape functions affecting a whole smooth boundary 
patch of quadrilateral shape. The nodal points are arranged along the patch boundaries only, so that 
the number of nodal points necessary to perform an analysis is drastically reduced. The efficiency of 
the proposed boundary superelements to deal with the eigenvalue acoustic problem is investigated. 
Test cases on a cubic and a rectangular cavity shape sustain the theory, where the proposed 
formulation is successfully compared with finite elements and exact analytical solution.  

 

2. INTRODUCTION 

Considerable progress has been made in recent years in developing the finite element (FEM) and 
finite difference methods (FDM) for acoustic cavity analysis [1]. However, since three-dimensional 
problems are characterized by the formidable demand on data preparation effort when FEM or FDM 
is applied, the Boundary Element Method (BEM) is perhaps the most powerful tool, as it demands 
only the discretization of the boundary of the cavity. Nevertheless, frequency-domain BEM analysis 
requires frequency-dependent kernels, a fact that leads to full matrices, which have to be re-calculated 
for each discrete frequency (nonalgebraic problem).  

However, since 1982 this problem was overcome through a global set of conical radial basis functions 
(RBFs) that approximate the inertial term [2]. Furthermore, using a dual set it becomes possible to 
derive boundary-type mass matrices, so as BEM deals now with an algebraic problem. This technique 
was called “dual reciprocity boundary element method” (DR/BEM) [3] and was further extended 
apart from conical to spline and multiquadratic types [4]. So far, the radial basis functions were 
proven to be effective tools in multivariate surface interpolation and have wide applications in neural 
networks, computer graphics design, geoscience etc. [5]. A review paper on the evaluation of 29 two-
dimensional interpolation methods was reported by Franke [6]. Furthermore, Micchelli [7] cleared up 
the issue of invertability of the resulting matrix using RBF interpolation, which gave a firm 
mathematical foundation to the development of the RBFs.  

Usually, BEM requires a discretization of the boundary using constant, linear or quadratic elements. 
This paper is an attempt to further reduce the number of degrees of freedom involved in a BEM model 
in order to (i) reduce computer cost, (ii) increase communication-reliability between solid model 
(CAD) and analysis (CAE) and (iii) obtain a better control on shape optimization or inverse problems 



solution. Clearly, it will be shown that the use of bivariate Coons interpolation allows for the global 
interpolation of geometry, acoustic pressure and particle velocity within a whole quadrilateral patch 
(at the boundary of the cavity), so that the nodal points can be arranged along their boundaries only. 
For any interpolation assumed along each side of a certain patch, for example piecewise linear or B-
splines, a global cardinal shape function can be estimated using simple analytical formulas [8,9]. So 
far, the method has been successfully applied to the solution of sound radiation (Helmholtz) problem 
[10]. It is the purpose of this paper to investigate the accuracy of this method in the eigenvalue 
extraction of 3-D acoustic cavities, despite past reservations for the 2-D problem [11,12].  

The proposed method will be applied to cubic and rectangular cavities and compared with 
conventional finite elements. 

 

3. BIVARIATE COONS INTERPOLATION – ISOPARAMETRIC MA CROELEMENTS 

The origin of Coons patch interpolation is middle 1960s, where it was applied to approximate a 
smooth curvilinear surface [13]. Since then, it was also applied to mesh generation tasks [14]. Here, it 
is assumed that the exact solution (acoustic pressure and particle velocity) over a boundary patch is 
smooth. Furthermore, the aforementioned interpolation is extended from geometry to the interpolation 
of the unknown variable. In other words, Coons interpolation formula offers the mathematical 
background to develop large isoparametric elements of arbitrary nodes (also small ones [8]).  

Within a smooth curvilinear patch it is possible to establish a reasonable relation between the four 
surrounding boundaries and the internal points. Let us now consider a curvilinear Coons’ patch that 
consists of four boundaries AB, BC, CD and DA, along the normalized r- and s-axes, with 1,0 ≤≤ sr , 
as shown in Figure 1. In this case, the coordinates x=(x,y,z) of the internal points can be interpolated 
in terms of the boundary and the two internal lines as follows [14,p.361]: 
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Figure 1: Boundary curves u(0,s), u(1,s), u(r,0), u(r,1) and linear ‘blending functions’ E0 and E1 of the 
macro-element. 

In this work, the interpolation according to equation (1) is also valid to acoustic pressure as well as to 
particle velocity within any patch.  

 

4. DR/BEM FORMULATION 

The 3D wave propagation problem is described by the equation 

( ) 01 2222 =∇−∂∂ ptpc      (2) 

and the boundary conditions 



( )tpp =  on 1Γ    and ( )tvv =  on 2Γ     (3) 

In (2), (3) p denotes the acoustic pressure, c the velocity of the wave propagation, ∇  the Nabla 
operator, t the time, and 1Γ  and 2Γ  parts of the boundary Γ , where the acoustic pressure respectively 
the velocity is prescribed .  

Using the Galerkin’s method, the partial differential equation (2) is transformed into 
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with *
ip  being the fundamental solution of 3-D Laplace equation, fulfilling the equation 

0*2 =∆+∇ i
ip      (5) 

where i∆  is the Dirac function at the source point ‘i’  of the domain. For the 3D case of this paper, *
ip  

is given by 
( ) ( )rp ii π41,* =xξ      (6) 

with ξ  and ix  being the field and source points, respectively, and ir xξ −=  the distance between the 

above points.  

Substitution of (5) in (4) in conjunction with Green’s theorem leads finally to the following equation: 
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where ic  equals to ½, 1 or 0 for a (smooth) boundary, an internal or an external point, respectively.  

In the conventional BEM, the boundary is discretized into a number of boundary elements where 
constant, linear or quadratic interpolation is assumed for both acoustic pressure and velocity. It is 
reminded that the normal component of the velocity, nv , is proportional to the normal derivative of 
the acoustic pressure ( nvjnp 0ωρ−=∂∂ ), with ω  denoting the angular frequency, 0ρ  the mass density 

of the still fluid and 12 −=j .  

Now, an interpolation should be made for the inertial terms through a series expansion 
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where x is a point inside the cavity, jξ  is a boundary node and ( )jxF ξ,  is a basis functions carried by 

the j-th boundary node. Note that numerical experience from 2D analysis has shown that results may 
improve when extending the sum in (8) through some few internal nodes [11,12,15,16].  

Among the several alternative possibilities, this paper follows Nardini [2] as well as Banerjee et al. 
[17] and assumes that 

( ) rCxff jj −== ξ,      (9) 

where C is the largest distance between any two points in the body and r is the distance between x and 
jξ .  

Then, if the smooth boundary is discretized using n elements, in matrix form eq.(7) becomes 

vGpHαM ⋅=⋅+⋅ &&ˆ      (10) 

where H and G are the conventional static matrices [19], while the elements of M̂  (n×n) are given by 

( ) ∫ =⋅⋅=
V
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Now, we define a dual functional set, jψ , to that of eq.(9), so that  

jj f=∇ ψ2       (12) 

By substituting (12) into (11) and then applying Green’s theorem, one finally obtains 
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So, according to (13), the elements of the mass matrix can be calculated as boundary integrals. 
Furthermore, if the continuous function jψ  is approximated along each boundary element, in the 

same manner as the pressure and the velocity, eq.(12) is simplified to 

( ) ( )ψHηGM ⋅−⋅⋅= 21ˆ c      (14) 

For the particular case of eq.(9), the dual functional set may be given as  

612 23 rCrj −=ψ      (15) 

Remark: The above formulation is consistent to the general procedure proposed by Nardini and 
Brebbia [2] while an alternative approach through partial solutions proposed by Banerjee et al [17] is 
essentially identical, as has been shown by Polyzos et al. [18].  

 
5. NUMERICAL IMPLEMENTATION 

For the purposes of the numerical integration only, the patch is automatically divided into sr NN ×  
cells where a second set of normalized co-ordinates ( )1,1 ≤′′≤− sr  is introduced [20]. So, the term 

( ) dsdrsrGd ,=Γ  in (2), with G denoting the Jacobian from cartesian to natural coordinates, is 

replaced by ( ) ( ) sdrdsrGsrG ′′′′′⋅ ,, , which requires a trivial (e.g., 22× , 33× , 44× ) Gaussian 

quadrature. Of course, special attention should be paid to identify the areas around each source where 
singularities occur.  

 

 6. EXAMPLES 

Example 1: Cube of unit dimensions 

The twelve edges of the cube were uniformly discretized using progressively 2, 4 and 6 segments. The 
corresponding number of nodal points is 20, 44 and 68. The constant ‘C’ in (15) was taken equal to 

3 , which is the maximum distance between two points in the cube. Convergence quality is shown in 
Table 1.  

 

Table 1: Calculated eigen-wavenumbers for a unit cube under free-free boundary conditions 

Boundary Macroelement FEM 

(343 nodes) 

Exact 
Eigenwavenumber 

( ck ω= ) 
20 nodes 44 nodes 68 nodes 

0. 0. 0. 0. 0. 

3.39 3.30 3.29 3.18 3.14 

4.90 4.71 4.68 4.49 4.44 

6.37 5.77 5.69 5.50 5.44 

 



It can be noticed that the proposed macroelement converges towards the exact solution but it is less 
accurate than the FEM solution that corresponds to the case of 68 nodes. This difference appears also 
in case of conventional boundary elements and the reasons have been discussed in the past [11,12]. It 
is anticipated that when using higher order radial functions, the difference will decrease. In any case, 
the engineering purposes the results of the proposed method are acceptable.  

 

Example 2: Rectangular cavity 

A rectangular cavity of dimensions zyx LLL ×× =2.5×1.1×1.0 was divided in 76 nodes using 10, 5 and 

5 uniform segments along the edges parallel to x-, y- and z-axis, respectively. The calculated natural 
wavenumbers ( ck ω= ) and corresponding modes are shown in Table 2.  

 

Table 2: Calculated eigen-wavenumbers for a rectangular cavity of dimensions 2.5×1.1×1.0 under 
free-free boundary conditions 

 

Exact 

Eigen-wavenumbers 

 

Mode 

Boundary 

Macroelement 

(76 nodes) 

FEM 

(396 nodes, 

250 elements) 

000.01 =ω  (0,0,0) 0.000 0.000 

2566.12 =ω  (1,0,0) 1.2564 1.2618 

5133.23 =ω  (2,0,0) 2.6258 2.5548 

8560.24 =ω  (0,1,0) 3.0387 2.9032 

1202.35 =ω  (1,1,0) 3.2549 3.1655 

1416.36 =ω  (0,0,1) 3.3588 3.1935 

3836.37 =ω  (1,0,1) 3.5554 3.4337 

7699.38 =ω  (3,0,0) 4.0801 3.8672 

 

Despite the fact that the proposed macroelement is less accurate than the FEM, for the same number 
of 76 nodes along the twelve edges, however for engineering purposes it is acceptable.  

 

7. CONCLUSIONS 

It was shown that global shape functions based on Coons interpolation over large patches could 
successfully substitute conventional boundary elements in the solution of eigenvalue extraction in 
acoustic cavities. The advantage of the proposed method is that it integrates the geometrical model 
with computational analysis, using degrees of freedom along those geometrical entities absolutely 
necessary to determine the shape of the cavity. So, instead of surface discretization, in many cases it is 
only necessary to deal with only a few lines (edges) and -in this sense- the dimensionality reduces 
from 3D (volume) to 1D (lines). It is anticipated that the proposed approach will be useful in practical 
cases of shape optimization, where a minimum number of variables will participate in nonlinear 
mathematical programming or other techniques.  
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