
 
 
 
 
 
 

FREE-VIBRATION ANALYSIS OF THREE-DIMENSIONAL SOLIDS  USING COONS-
PATCH BOUNDARY SUPERELEMENTS 

 
 

C. G. Provatidis 
Department of Mechanical Engineering 

University of Athens, GR-15773 Athens, Greece 
 

 N. K. Zafiropoulos 
Greek Army Laboratories 

Tropaion 22, GR-12132 Peristeri, Greece 
 

 
1. SUMMARY 

A new modified BEM technique is proposed for the extraction of eigenvalues in solid structures. 
Instead of dividing the whole boundary into elements of small size, it is proposed to decompose that 
into large curvilinear Coons patches. Nodal points and associated degrees of freedom are located 
along the boundaries of the aforementioned patches. In this way, the model size is drastically reduced 
for the two static matrices as well as the Nardini-Brebbia mass matrix. Moreover, investigation is 
performed on the quality of the mass matrix, that is, on its capability of preserving the real mass of the 
structure. The methodology is sustained by numerical examples on a rectangular structure where the 
well-known conical radial basis functions are used.  

 

2. INTRODUCTION 

It is well known that geometric modeling (CAD) and computer-aided analysis (CAE) are individually 
powerful, but they do not always work well together. In this context, large-scale interpolation, which 
operates directly on the geometric modeling representation, is welcome. With respect to the BEM, 
Casale and Bobrow [1] propose a division of the solid’s boundary into a certain number of large 
patches and application of global interpolation over each of them. So, instead of the usual linear and 
quadratic boundary elements, they globally apply Lagrange polynomials; the so produced boundary 
elements have been called “trimmed-patch boundary elements”. As numerical results have not been 
presented in their paper, it is hypothesized that Lagrange polynomials will probably have 
shortcomings due to their well-known oscillating behavior.  

In this paper, instead of global interpolation per patch using Lagrange polynomials, a different 
interpolation is proposed for the BEM solution of eigenvalue elasticity problems. The origin of our 
method is based on CAD surfaces used in automotive industry, where blending function methods 
based on the ideas put forward by Coons [2] have been proposed to produce the so-called transfinite 
elements [3,4]. These large elements constitute an extension of the isoparametric elements and 
especially those ones called ‘serendipity’. In other words, the well-known linear and quadratic 
boundary elements are simple members of the class of the proposed Coons-patch boundary 
macroelements.  

The advantage of the proposed method is that the number of nodal points is dramatically reduced. For 
example, in case of six-sided solids, the degrees of freedom are arranged only along the twelve edges! 
So far, these elements were recently applied to elastostatics by the first author [5] but in this paper the 



method is extended to the determination of the eigenfreqiencies of a solid using the Nardini-Brebbia 
Dual Reciprocity Method (DR/BEM) [6,7].  

The method was successfully applied to a free-free rectangular solid and the macroelement solution is 
compared with conventional nine-node Lagrange isoparametric boundary elements (using the same 
set of conical base functions), as well as conventional finite elements.  

 

3. GENERAL DYNAMIC BEM FORMULATION 

According the the Nardini-Brebbia methodology [6], the stress equilibrium equation 

iijij ubx &&ρσ =+∂∂      (1) 

is tranformed into an integral formulation as follows: 
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Usually the term including the body forces vanishes, but if not, it can be easily transformed into the 
boundary using a proper Galerkin-vector or a similar technique. Moreover, the first integral appearing 
in (2) is a volume one and it can be handled by considering a series expansion in time (t) and space 
(X) as follows 

( ) ( ) ( )XfttXu jj
ii α=,   [sum over the idle index j=1,…,m]   (3) 

 with ( )Xf j  denoting the radial basis function (RBF). In its initial form, the basis function had been 

chosen as a conical function given by ( ) rCXf j −= , with C denoting a suitable constant and r the 
Euclidian distance between any field point and the ‘ j’-th source point, usually on the boundary of the 
structure. Further research on 3D structures suggested that C should be taken as the largest distance 
between any two source points of the body [7, p.1743].  

According to Nardini and Brebbia [6], when finding a displacement field j
liψ  (associated with traction 

field j
liη ) with the corresponding stress tensor j
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finally to 

tGuHαM =+&&ˆ , where ( )GηHψM −= ρˆ     (4) 

Using the relationship between nodal displacements u  and coefficients α  through a matrix F (u = F 
α), and pre-multiplying both members of equation (4) by the inverse of matrix G (assuming a smooth 
boundary), one obtains 

( )ttuKuM =+&&      (5) 

where 

11 ˆ −−= FMGM    and   HGK 1−=     (6) 

For the purpose of this paper, we use a suitable matrix L , well-known from the BEM/FEM coupling 
procedures (e.g., [8,p.274]), which achieves to transform the time-dependent tractions t(t) into 
boundary nodal forces f(t) as follows  

f(t) = L  t(t)      (7) 

By substituting equation (7) into equation (6) the latter becomes 

( )tfuKuM =+&&     with   KLKMLM == ,     (8) 

So, the DR/BEM leads finally to a matrix formulation similar to that of the FEM.  



4. COONS INTERPOLATION – NUMERICAL IMPLEMENTATION 

The above formulation is valid for any interpolation involved along the boundary. One of the 
possibilities is to apply the Coons interpolation formula [2] that takes place in a curvilinear 
quadrilateral patch and approximates the coordinates of an internal point with those of its boundary 
through the equation [9,p.361; 10]: 
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As also mentioned in [10] where more details may be found, in this paper equation (9) is extended 
from geometry to both displacements and tractions within the same patch. In the sequence, it is trivial 
to obtain global cardinal shape functions ),( srkΦ , of which typical shapes may be found in [11] and 
elsewhere. So, the geometry x(x,y,z), the displacement vector u(x,y,z) and the traction vector p(x,y,z) 
inside a Coons patch, are all approximated by:  
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with ),( srkΦ  denoting the shape functions within the whole patch, ku  nodal degrees of freedom 

appearing only at the boundaries of the patch, while r and s being its normalised  (0 ≤ sr, ≤ 1) 
curvilinear co-ordinates [11].   

With respect to the numerical implementation, for the purposes of the numerical integration only, the 
patch is divided into sr NN ×  cells where a second set of normalized co-ordinates ( )1,1 ≤′′≤− sr  is 

introduced [5]. So, the term ( ) dsdrsrGd ,=Γ  in (2), with G denoting the Jacobian from Cartesian to 

natural coordinates, is replaced by ( ) ( ) sdrdsrGsrG ′′′′′⋅ ,, , which requires a trivial (e.g., 22× , 33× , 

44× ) Gaussian quadrature. Of course, special attention was paid to identify the areas around each 
source where singularities occur.  

 

5. EXAMPLES 

 As an example, a rectangular structure of dimensions 3×3×2 under free-free boundary conditions was 
considered. Material properties were taken as follows: ρE =104, ν =0.30. The Cartesian axes were 
chosen so that x and y are parallel to the edges of length three while z-axis is parallel to the edge of 
length two. The edges were uniformly divided into Nx, Ny and Nz segments, respectively. Wherever 
comparison is performed, the same number of nodal points exists along the twelve edges of the 
rectangular.  

Table 1 presents the results for several discretizations (Nx, Ny and Nz) using both the proposed Coons 

BEM macroelements (constant in radial basis function: 22233 222 =++=C ) and finite elements 
with the same number of nodes along the edges. Obviously, due to the free-free boundary conditions, 
the first six eigenvalues equal to zero. Moreover, since the next exact eigenvalues are not known 
(contrary to the acoustic problem), relative errors were calculated with respect to a fine finite element 
mesh (Nx=15, Ny=15 and Nz=10, i.e. 2816nodes and 2250 elements).  

One can notice in Table 1 that, for a small number of nodes, the proposed Coons-patch macroelement 
is more accurate than the FEM solution. As the number of nodes increases, the first nonzero 
eigenvalue (calculated using the proposed Coons-BEM formulation) is still adequately accurate but 
the higher ones become slightly less accurate than FEM solution, however being acceptable for 
engineering purposes. It is remarkable that the FEM solution overestimates the eigenvalues 
(monotonically converges from higher values) while the BEM solution does not. 

 

 



Table 1: Calculated eigenvalues (2ω ) using Coons-patch macroelements and finite elements with the 
same number of nodes (Nx, Ny and Nz segments) along the twelve edges of the rectangular.  

 
 

“EXACT” 
EIGEVALUES 

(FEM: 2816 
nodes) 

CALCULATED EIGENVALUES ( 2ω ) 

RELATIVE ERRORS IN (%) 

(Nx=6, Ny=6 and Nz=4) (Nx=9, Ny=9 and Nz=4) 
Coons-patch 

BEM macroelement 
(60 nodes) 

FEM 
(245 nodes, 144 

elements) 

Coons-patch 
BEM macroelement 

(84 nodes) 

FEM 
(500 nodes, 324 

elements) 
2615.8 +1.30 +5.07 -0.93 +2.70 
5101.7 -0.41 +7.28 -3.71 +3.01 
6632.8 +1.83 +5.11 +2.46 +1.77 
7284.4 -3.19 +7.69 -4.46 +3.77 

 
 

Furthermore, for comparison purposes the same problem was solved using conventional boundary 
elements. In order to avoid shortcomings associated to the corners, discontinuous none-node 
Lagrangian elements were chosen. Each surface of the rectangular was uniformly divided into 2×2=4 
boundary elements, leading to totally 24 elements (98 geometrical nodes and 216 collocation nodes). 
A sensitivity analysis was performed with respect to the position of the outer collocation points, which 
are defined in normalized coordinates within the interval [ ] [ ]1,1, +−=ηξ . The relative results are 
shown in Table 2.  

 

Table 2: Influence of the position of collocation points in discontinuous nine-node Lagrangian 
boundary elements on the calculated eigenvalues. Radial basis functions were considered with the 
same constant C as in Table 1. Mesh consists of 24 boundary elements and 216 collocation nodes.  

 

CALCULATED EIGENVALUES ( 2ω ) 

50.0, ±=ηξ  31, ±=ηξ  75.0, ±=ηξ  85.0, ±=ηξ  

2319.9 2315.7 2328.4 2346.1 
4320.3 4318.7 4383.5 4448.1 
5741.3 5583.4 5360.6 5261.2 
5956.9 5863.5 5720.6 5652.5 

 

It can be noticed in Table 2 that, for this mesh the conventional discontinuous boundary elements are 
not adequately accurate, as the error in first calculated eigenvalue is about 10 percent. This happens 
despite the fact that the participating collocation nodes are 216:60=3.6 times more than the coarse 
mesh in the proposed Coon-patch macroelement. It is also remarkable that when equation (8) was 
applied, the total mass was found to be equal to 35.2 times the mass density, which is less than the real 
mass [3 times the Volume = 3.(3×3×2) = 54.0 times the mass density!]. In other words, there is a 
considerable lack of mass (about one-third is missing), a finding being consistent to previous two-
dimensional observations [12,p.123; 13]. Attempt was also made to determine the total mass for the 
simplest case of one boundary element per side but the matrix F could not be inverted.  

In the sequence, we tried to increase the number of discontinuous conventional boundary elements 
from 24 to 42 (378 collocation-nodes, i.e. 1134 degrees of freedom). In this case, the computer effort 
became extremely high and the mass matrix could not be immediately inverted. Several multipliers 



were applied (e.g. 3×106) so that the determinant was estimated of the order of 10-70, but nevertheless 
the quality of the results was not satisfactory because of many complex values found.  

 

6. CONCLUSIONS 

A new formulation for large boundary elements was presented and applied to the extraction of 
eigenvalues of elastic solid structures. It was proposed to divide the boundary of the structure into a 
small number of large patches at the boundaries of which the collocation points are arranged. In this 
way a significant reduction of the degrees of freedom was achieved. In case of simple rectangular-like 
structures, the dimensionality of the problem is drastically reduced from 3-D to 1-D, as only the 
twelve edges should be discretized. In other words, the proposed method achieves to deal with only 
the solid model and it therefore minimizes possible errors during data-transfer from the geometrical to 
the analytical model. The method was successfully applied to a rectangular solid structure and was 
found to be more accurate than conventional discontinuous boundary elements and finite elements. In 
the latter comparison, the same number of nodal points was considered along the twelve edges of the 
structure. After these encouraging results, the proposed method should be thoroughly tested for 
several support conditions and geometrical shapes. It should also be compared with other types of 
conventional boundary elements.  
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