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1. SUMMARY

A new modified BEM technique is proposed for thdrastion of eigenvalues in solid structures.
Instead of dividing the whole boundary into elersenit small size, it is proposed to decompose that
into large curvilinear Coons patches. Nodal poimtsl associated degrees of freedom are located
along the boundaries of the aforementioned patdhdhis way, the model size is drastically reduced
for the two static matrices as well as the Nar@iréebbia mass matrix. Moreover, investigation is
performed on the quality of the mass matrix, teabn its capability of preserving the real masthef
structure. The methodology is sustained by numleeixamples on a rectangular structure where the
well-known conical radial basis functions are used.

2. INTRODUCTION

It is well known that geometric modeling (CAD) acomputer-aided analysis (CAE) are individually
powerful, but they do not always work well togethierthis context, large-scale interpolation, which
operates directly on the geometric modeling reprad®n, is welcome. With respect to the BEM,
Casale and Bobrow [1] propose a division of théd&lboundary into a certain number of large
patches and application of global interpolationrae@ch of them. So, instead of the usual linear and
guadratic boundary elements, they globally applgraage polynomials; the so produced boundary
elements have been calletlifnmed-patch boundary elements’. As numerical results have not been
presented in their paper, it is hypothesized thagrange polynomials will probably have
shortcomings due to their well-known oscillatindhbeior.

In this paper, instead djlobal interpolation per patch using Lagrange polynomials, a different
interpolation is proposed for the BEM solution @fjemnvalue elasticity problems. The origin of our
method is based on CAD surfaces used in automdtisestry, where blending function methods
based on the ideas put forward by Coons [2] hae& Ipeoposed to produce the so-calieshsfinite
elements [3,4]. These large elements constitute extension of the isoparametric elements and
especially those ones called ‘serendipity’. In otleords, the well-known linear and quadratic
boundary elements are simple members of the clastheo proposed Coons-patch boundary
macroelements.

The advantage of the proposed method is that thibauof nodal points is dramatically reduced. For
example, in case of six-sided solids, the degréé®edom are arranged only along the twelve edges!
So far, these elements were recently applied siadtatics by the first author [5] but in this paties



method is extended to the determination of therdiggiencies of a solid using the Nardini-Brebbia
Dual Reciprocity Method (DR/BEM) [6,7].

The method was successfully applied to a freesieetangular solid and the macroelement solution is
compared with conventional nine-node Lagrange isopatric boundary elements (using the same
set of conical base functions), as well as conwveatifinite elements.

3. GENERAL DYNAMIC BEM FORMULATION
According the the Nardini-Brebbia methodology [l stress equilibrium equation

0o /0% +b = pu, (1)
is tranformed into an integral formulation as felk

fufk pU AV +¢uy + ﬁ: P Uy dl” = ﬁurk pdl’ + fufk b dv (2)
v r r v

Usually the term including the body forces vanisheg if not, it can be easily transformed into the
boundary using a proper Galerkin-vector or a sintdéghnique. Moreover, the first integral appearing
in (2) is a volume one and it can be handled bysiaring a series expansion in tintg gnd space
(X) as follows

u(X,t)=a/([t)f'(X) [sum over the idle indgx1,...m| )

with f1(X) denoting the radial basis function (RBF). In ititial form, the basis function had been

chosen as a conical function given iby(X)=C-r, with C denoting a suitable constant anthe

Euclidian distance between any field point and‘théh source point, usually on the boundary of the
structure. Further research on 3D structures stggekatC should be taken as the largest distance
between any two source points of the body [7, 8174

According to Nardini and Brebbia [6], when findiaglisplacement fielqﬁ/”j (associated with traction

field 7}) with the corresponding stress tensgf, such thatz,, . =35, f', equation (2) leads
finally to

|\}|d+Hu=Gt,wherel\7I:p(H\ll—G'l) “)

Using the relationship between nodal displacementnd coefficientsy through a matrir (u = F
a), and pre-multiplying both members of equationtf¢the inverse of matri$6 (assuming a smooth
boundary), one obtains

M U +Ku=t(t) (5)
where
M=G'MF* and K=G'H (6)

For the purpose of this paper, we use a suitabteixrla, well-known from the BEM/FEM coupling
procedures (e.g., [8,p.274]), which achieves tmdiarm the time-dependent tractiobd) into
boundary nodal forcet) as follows

f(t) =L t(t) )
By substituting equation (7) into equation (6) ker becomes

Mi+Ku=f(t) with M=LM,K =LK (8)
So, the DR/BEM leads finally to a matrix formulatisimilar to that of the FEM.



4. COONS INTERPOLATION — NUMERICAL IMPLEMENTATION

The above formulation is valid for any interpolationvolved along the boundary. One of the
possibilities is to apply the Coons interpolatioornfiula [2] that takes place in a curvilinear
guadrilateral patch and approximates the coordsnatean internal point with those of its boundary
through the equation [9,p.361; 10]:

x(r,s)=(@-r)x(0,8)+ r x(Ls)+ (@-s)x(r,0)+ sx(r 1)
—(@-r)a-s)x(00)-r(@-s)x(10)-(@-r)sx(01)-rsx(11)
As also mentioned in [10] where more details mayfdund, in this paper equation (9) is extended

from geometry to both displacements and tractioitisinvthe same patch. In the sequence, it is trivia
to obtain global cardinal shape functiog(r,s) , of which typical shapes may be found in [11] and

elsewhere. So, the geomek{x,y,2), the displacement vectoKx,y,2) and the traction vectq(x,y,2)
inside a Coons patch, are all approximated by:

(9)

X(r,s) = Z(Dk(ris)xk!u(rls) = Z(Dk(rls)uk’p(rls) = zq)k(rls)pk (10)
k=1 k=1 k=1

with @, (r,s) denoting the shape functions within the whole Ipatg, nodal degrees of freedom

appearing only at the boundaries of the patch, emhiand s being its normalised (&r,s< 1)
curvilinear co-ordinates [11].

With respect to the numerical implementation, fog purposes of the numerical integration only, the
patch is divided intoN, x N, cells where a second set of normalized co-ordingteé<r’,s <1) is

introduced [5]. So, the termr =|G(r,s)|dr ds in (2), with G denoting the Jacobian from Cartesian to
natural coordinates, is replaced |8(r,s)-G'(r',s'|dr'ds’, which requires a trivial (e.g2x2,3x3,

4x4) Gaussian quadrature. Of course, special attentas paid to identify the areas around each
source where singularities occur.

5. EXAMPLES

As an example, a rectangular structure of dimerss®3x2 under free-free boundary conditions was
considered. Material properties were taken asvi@loE/p =10", v=0.30. The Cartesian axes were

chosen so that andy are parallel to the edges of length three whikis is parallel to the edge of
length two. The edges were uniformly divided itNg N, andN, segments, respectively. Wherever
comparison is performed, the same number of nodailtp exists along the twelve edges of the
rectangular.

Table 1 presents the results for several disctedizs (N, N, andN,) using both the proposed Coons

BEM macroelements (constant in radial basis functio=v3? + 32 + 22 =+/22) and finite elements
with the same number of nodes along the edges.oD$lyi due to the free-free boundary conditions,
the first six eigenvalues equal to zero. Moreogsice the next exact eigenvalues are not known
(contrary to the acoustic problem), relative ermoese calculated with respect to a fine finite ebain
mesh N=15,N,=15 and\~=10, i.e. 2816nodes and 2250 elements).

One can notice in Table 1 that, for a small nunderodes, the proposed Coons-patch macroelement
is more accurate than the FEM solution. As the remmtif nodes increases, the first nonzero
eigenvalue (calculated using the proposed Coons-B&lulation) is still adequately accurate but
the higher ones become slightly less accurate #aM solution, however being acceptable for
engineering purposes. It is remarkable that the FBEblution overestimates the eigenvalues
(monotonically converges from higher values) witile BEM solution does not.



Table 1: Calculated eigenvalues?() using Coons-patch macroelements and finite elésneith the
same number of nodel,{ N, andN, segments) along the twelve edges of the rectangula

“EXACT” CALCULATED EIGENVALUES (0?)
EIGEVALUES RELATIVE ERRORS IN (%)
(FEM: 2816
nodes) (Nx=6, N,=6 andN,=4) (Ny=9, Ny=9 andN,=4)
Coons-patch FEM Coons-patch FEM
BEM macroelemen (245 nodes, 144| BEM macroelemen (500 nodes, 324
(60 nodes) elements) (84 nodes) elements)
2615.8 +1.30 +5.07 -0.93 +2.70
5101.7 -0.41 +7.28 -3.71 +3.01
6632.8 +1.83 +5.11 +2.46 +1.77
7284.4 -3.19 +7.69 -4.46 +3.77

Furthermore, for comparison purposes the same gmolbVas solved using conventional boundary
elements. In order to avoid shortcomings associdgtedhe corners, discontinuous none-node
Lagrangian elements were chosen. Each surfaceeoktitangular was uniformly divided inte 2=4
boundary elements, leading to totally 24 eleme@8sgeometrical nodes and 216 collocation nodes).
A sensitivity analysis was performed with respedhe position of the outer collocation points, @i
are defined in normalized coordinates within theeival [£,7]=[-1+1]. The relative results are

shown in Table 2.

Table 2: Influence of the position of collocatiowiqts in discontinuous nine-node Lagrangian
boundary elements on the calculated eigenvaluediaRBbasis functions were considered with the
same constar@ as in Table 1. Mesh consists of 24 boundary elé¢sramd 216 collocation nodes.

CALCULATED EIGENVALUES (w?)

.17 = £050 £n=1143 &.17=1075 &77=2085
2319.9 2315.7 2328.4 2346.1
4320.3 4318.7 4383.5 4448.1
5741.3 5583.4 5360.6 5261.2
5956.9 5863.5 5720.6 5652.5

It can be noticed in Table 2 that, for this mesh ¢bnventional discontinuous boundary elements are
not adequately accurate, as the error in firstutaled eigenvalue is about 10 percent. This happens
despite the fact that the participating collocatimdes are 216:60=3.6 times more than the coarse
mesh in the proposed Coon-patch macroelement. dtsis remarkable that when equation (8) was
applied, the total mass was found to be equal 12 85es the mass density, which is less thandhk r
mass [3 times the Volume = 332) = 54.0 times the mass density!]. In other wottsye is a
considerable lack of mass (about one-third is mggsia finding being consistent to previous two-
dimensional observations [12,p.123; 13]. Attempswaiso made to determine the total mass for the
simplest case of one boundary element per sidéhbuhatrixF could not be inverted.

In the sequence, we tried to increase the numbeliisocbntinuous conventional boundary elements
from 24 to 42 (378 collocation-nodes, i.e. 1134rdeg of freedom). In this case, the computer effort
became extremely high and the mass matrix couldbadtmmediately inverted. Several multipliers



were applied (e.g.xa0°) so that the determinant was estimated of thera®i20'°, but nevertheless
the quality of the results was not satisfactorydose of many complex values found.

6. CONCLUSIONS

A new formulation for large boundary elements wasspnted and applied to the extraction of
eigenvalues of elastic solid structures. It wagpsed to divide the boundary of the structure ato
small number of large patches at the boundarieghoth the collocation points are arranged. In this
way a significant reduction of the degrees of foeadvas achieved. In case of simple rectangular-like
structures, the dimensionality of the problem iastically reduced from 3-D to 1-D, as only the
twelve edges should be discretized. In other wdits, proposed method achieves to deal with only
the solid model and it therefore minimizes possdrters during data-transfer from the geometrigal t
the analytical model. The method was successfylplied to a rectangular solid structure and was
found to be more accurate than conventional dismontis boundary elements and finite elements. In
the latter comparison, the same number of nodaitpevas considered along the twelve edges of the
structure. After these encouraging results, thepgsed method should be thoroughly tested for
several support conditions and geometrical shdpeshould also be compared with other types of
conventional boundary elements.
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